40
1 Comenius University Sisyphus cooling and pumping of linear oscillator by superconducting qubit A. Izmalkov, S.H.W. van der Ploeg, Th. Wagner, E. I’lichev, H.-G. Meyer Institute for Physical High Technology, Germany M. Grajcar Comenius University, Slovakia A. Fedorov, A. Shnirman, Gerd Schön, Institut für Theoretische Festkörperphysik Universität Karlsruhe, Germany S.N. Shevchenko, A.N. Omelyanchouk, B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine S. Ashhab, J.R. Johansson, A. Zagoskin and Franco Nori, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Japan

Sisyphus cooling and pumping of linear oscillator by superconducting qubit

  • Upload
    wilson

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

Sisyphus cooling and pumping of linear oscillator by superconducting qubit. M. Grajcar Comenius University, Slovakia. A. Izmalkov, S.H.W. van der Ploeg, Th. Wagner, E. I’lichev, H.-G. Meyer Institute for Physical High Technology, Germany. A. Fedorov, A. Shnirman, Gerd Schön, - PowerPoint PPT Presentation

Citation preview

Page 1: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

1

ComeniusUniversity

Sisyphus cooling and pumping of linear oscillator by superconducting qubit

A. Izmalkov, S.H.W. van der Ploeg, Th. Wagner, E. I’lichev, H.-G. Meyer

Institute for Physical High Technology, Germany

M. GrajcarComenius University, Slovakia

A. Fedorov, A. Shnirman, Gerd Schön, Institut für Theoretische Festkörperphysik UniversitätKarlsruhe, Germany

S.N. Shevchenko, A.N. Omelyanchouk,B.Verkin Institute for Low Temperature Physics and Engineering,Kharkov, Ukraine

S. Ashhab, J.R. Johansson, A. Zagoskin and Franco Nori,The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Japan

Page 2: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

2

ComeniusUniversity

Outline

1. Superconducting flux qubit2. Adiabatic measurement of the qubit in

the ground state3. Spectroscopic measurement 4. Sisyphus cooling and pumping5. Lower limit on the achievable

temperature

Page 3: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

3

ComeniusUniversity

Single-junction interferometer (RF-SQUID)

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

I/Ic

f=x/

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

I/Ic

f=x/

-0.4 -0.2 0.0 0.2 0.4

-1.0

-0.5

0.0

0.5

1.0

I/Ic

f=x/

)sin()(

2

2

sin-f2

sin

00

0

c

cJ

L

cx

II

LIL

L

LI

Classical two level System!

Or in normalized Units:

xx x

0

1

Page 4: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

4

ComeniusUniversity

Classical picture

JE

U

-1

0

1

2

3

4

-1

0

1

2

3

4

-1

0

1

2

3

4

Particle with mass ~ CJ in potential:

f

minU 01

2)2(2

1cos f

E

U

J

Page 5: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

5

ComeniusUniversity

-1

0

1

2

3

4

Quantum Picture

JE

U

If CJ is small enough tunneling between both wells becomes possible and therefore the degeneracy is lifted. So we need Small Josephson Junctions with EJ/EC~10-100

f

-1

0

1

2

3

4

-1

0

1

2

3

4

-1

0

1

2

3

4

-1

0

1

2

3

4

0 1

10 minU

10

Page 6: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

6

ComeniusUniversity

Persistent current (flux) qubit – analogue of ammonia molecule

rightleft

U/E

J

e

h

20

B 710

m

eB 2

n0

B

N

H

H

H++

+

Superconducting persistent current qubit – oscillation of a magnetic dipole moment (magnetic flux), Ammonia molecule – oscillation of an electric dipole moment(f=24 GHz)

Page 7: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

7

ComeniusUniversity

Size problem and solution

dL 0

)μA(

μm250

2 0

0

cc IId

x1

2

0

cLI

For quantum behavior

Typical parameters for aluminum technology :

276

22

A/m10-10

F/m104

c

s

j

cm][ 10 44 aa

E

E

C

J

EJ/EC~10-100

Page 8: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

8

ComeniusUniversity

Solution of the size problem

‚Size‘ problem solved in 70´sT. Yamashita et al., J. Appl. Phys. 50, 3547 (1979)

This idea was dusted off by J.E. Mooij et al., Science 285, 1036, 1999x

x

Page 9: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

9

ComeniusUniversity

Hamiltonian. Energy surface.

.)21( ,2)2/(

, ,2/)( ,2/)(

,)22cos(coscos2,,

,,,22

20

,,2121

22

0

MMCM

iP

fEfU

fUM

P

M

PH

J

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

/2

/2

1,CI 2,CI

CI

-0.2

-0.1

0

0.1

0.2

-0.4-0.2

00.2

0.41.5

2

2.5

3

/2/2

Page 10: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

10

ComeniusUniversity

Tunneling amplitude

2)2/1)(cos(2)( jEU

cj EES /2/)14(2

220

4(2 1)expJE S

h g

ЕС=5 GHz, g=EJ/EC=66, ЕJ=330 GHz.

jE

E00

2

2

1

2

1arccos

rightleft

U/E

J

-0 0

0.85 0.86 0.87 0.88 0.89 0.9 0.901 0.902 0.905 0.91 0.92

GHz

20 13 8.45 5.44 3.49 2.24 2.14 2.05 1.79 1.43 0.92

E0

Page 11: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

11

ComeniusUniversity

Pseudospin Hamiltonian

IC,

IC,

IC

(0.5<<1)

x

1 umE

a2

2

1

2

1

Page 12: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

12

ComeniusUniversity

Flux qubit coupled to oscillator

Φi

VTLT

L

CT

Ib

M

Page 13: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

13

ComeniusUniversity

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

E (

GH

z)

(fx) (GHz)

Adiabatic measurement away from degeneracy point

Page 14: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

14

ComeniusUniversity

-10 -8 -6 -4 -2 0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

E (

GH

z)

(fx) (GHz)

Adiabatic measurement at degeneracy point

Page 15: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

15

ComeniusUniversity

Lagrangian of the qubit-resonator system

Expanding into Taylor series up to the second order term

2

-

Page 16: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

16

ComeniusUniversity

Quantum approach

zrx

T

bbbb

HHHH

)(

int0

LCT

Ib

LT

Φi

At the degeneracy point

0, HAThe sufficient condiction for Quantum Nondemolition Measurements

is satisfied. 0, Hx

xq

rx

q

r

Wkbb

Wk

H

21

22

2

2qq

q

ILW

No perturbation of the measured observable [V.B. Braginsky and F.Ya. Khalili, Quantum Measurement, (Cambridge University Press, Cambridge, 1992].

pr ILk

Page 17: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

17

ComeniusUniversity

Impedance Measurement,classical resonator

Φ

0.0 0.4 0.8 1.2 1.6 2.0-2

-1

0

1

2

, rad

VT

LTL CT

Ib

M

Ya. S. Greenberg et al., PRB 66, 214525 (2002)DC-Squid Josephson Inductance: A. Lupascu et al., PRL 93, 177006 (2004).

0.0 0.4 0.8 1.2 1.6 2.00

2

4

6

8

10

Am

plit

ude

TTT CL

1

Page 18: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

18

ComeniusUniversity

Response of resonator

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

(R

ad)

/0

EJ/Ec103 EJ/Ec<102

=0.8

EJ/Ec<102

=0.9

0.86 0.88 0.9 0.901 0.902 0.905 0.91 0.92

GHz 13 5.44 2.24 2.14 2.05 1.79 1.43 0.92

Page 19: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

19

ComeniusUniversity

Resonant frequency of the resonator

Y. Greenberg et al., PRB 66214525 (2002).

Fitting parameters

Page 20: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

20

ComeniusUniversity

Sisyphus work

As a punishment from the gods for his trickery, Sisyphus was compelled to roll a huge rock up a steep hill, but before he reached the top of the hill, the rock always escaped him and he had to begin again.

Greek mythology

Titian (1549) artist vision of Sisyphus work

Physical realization: For atomsD. J. Wineland, J. Dalibard and C. Cohen-Tannouji, J.Opt. Soc. B9, 3242 (1992).

For qubit Grajcar et al., arXiv:0708.0665Nature Physics 4, 612-616 (2008).

Page 21: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

21

ComeniusUniversity

-10 -8 -6 -4 -2 0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

4

6

8

10

E (

GH

z)

(fx) (GHz)

Sisyphus cooling

Page 22: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

22

ComeniusUniversity

-10 -8 -6 -4 -2 0 2 4 6 8 10-10

-8

-6

-4

-2

0

2

4

6

8

10

E (

GH

z)

(fx) (GHz)

Sisyphus pumping

Page 23: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

23

ComeniusUniversity

Adiabatic vs. spectroscopic measurement

Solid line is theoretical curve for Parameters determined from adiabatic measurement

0.000 0.005 0.010 0.0152

4

6

8

10

12

14

16

18

20

f [G

Hz]

dc

(0)

Page 24: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

24

ComeniusUniversity

Strong microwave driving at fmw=4.5 GHz

Weak driving

Transition from weak to strong driving

dc (0)

M. Sillanpää et al., PRL 96, 187002 (2006)

W.D. Oliver et al.,SCIENCE 310, 1653(2005)

Strong driving

A. Izmalkov et al., PRL 101, 017003 (2008)

Page 25: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

25

ComeniusUniversity

Landau-Zener interferometry

S.N. Shevchenko et al. Phys. Rev. B 78, 174527 (2008)

A.V. Shytov, D.A. Ivanov, and M.V. Feigel’man, Eur. Phys. J. B 36, 263 (2003).

E

a2

2

1

2

1

Page 26: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

26

ComeniusUniversity

More rigorous treatment of Sisyphus cooling/pumping

A. Fedorov, A. Shnirman, Gerd Schön

fmw=14 GHz

M. Grajcar et al., Nature Physics 4, 612-616 (2008).

Page 27: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

27

ComeniusUniversity

Spectral density of the voltage noise of the tank

fmw=8 GHz

Page 28: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

28

ComeniusUniversity

Tank circuit coupled to mechanical oscillator

Page 29: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

29

ComeniusUniversity

Sisyphus and sideband cooling limit

q

osc

q T

T

0

200

oscqq

TT

M. Grajcar, A. Ashhab, J.R. Johansson, F. NoriPhys. Rev. B 78, 035406 (2008)

2q

qT

Page 30: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

30

ComeniusUniversity

Conclusions

1. Superconducting flux qubits are well described by two-level (pseudospin) Hamiltonian

2. Experimental data obtained from adiabatic and spectroscopic measurement are consistent and fully agree with the quantum-mechanical predictions to the experimental accuracy.

3. The qubit can be used as an artificial atom for Sisyphus cooling of a low frequency oscillator (electrical, nanomechanical, etc.)

Page 31: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

31

ComeniusUniversity

Ground state energy modulation

222

4

+

m=

m= -1/2 m= 1/2

-

-

+

Page 32: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

32

ComeniusUniversity

Sisyphus cooling

222

4

4

zv

Page 33: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

33

ComeniusUniversity

Design for spectroscopic measurement

Page 34: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

34

ComeniusUniversity

Spectroscopy of the system of two coupled flux qubits.

Without microwave driving fmw= 14 GHz

fmw= 18 GHz fmw= 21 GHz

A. Izmalkov et al., PRL 101, 017003 (2008)

Page 35: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

35

ComeniusUniversity

Nanomechanical oscillators

Neik et al., Nature 443, 193 - 196 (2006)

Nanobridge from IPHT Jena

Prepared for measurement at temprature below1 mK in ulra low temp. lab in Košice

I. Martin, A. Shnirman, Lin Tian, P. ZollerGround state cooling of mechanical resonators Phys. Rev. B 69, 125339 (2004)

Page 36: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

36

ComeniusUniversity

Quantum metamaterials

Design of high efficiency microwave photon detector for GHz range

G. Romero et al., Microwave Photon Detector in Circuit QED, arXiv:0811.3909v1

Page 37: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

37

ComeniusUniversity

Four qubit sample

MicrographLayout

q1

q2

q3

q4

Iq2

Iq3Iq1

Ib4 A1

A2

A3

Page 38: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

38

ComeniusUniversity

Anti-Ferromagnetic and Ferromagnetic Coupling

AFM

FM

Iq2=-10 µA

Iq3=0

Iq4=-250 µA

Page 39: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

39

ComeniusUniversity

Theoretical fits. Phys. Rev. Lett. 96, 047006 (2006)

Experiment Theory

Page 40: Sisyphus cooling and pumping of linear oscillator by superconducting qubit

40

ComeniusUniversity

Psedo-spin Hamiltonian