15
Ecology and Evolution. 2017;1–15. | 1 www.ecolevol.org Received: 3 August 2017 | Revised: 16 October 2017 | Accepted: 22 November 2017 DOI: 10.1002/ece3.3725 ORIGINAL RESEARCH Simulations inform design of regional occupancy-based monitoring for a sparsely distributed, territorial species Quresh S. Latif 1 | Martha M. Ellis 2 | Victoria A. Saab 1 | Kim Mellen-McLean 3 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. Ecology and Evolution published by John Wiley & Sons Ltd 1 Rocky Mountain Research Station, U.S. Forest Service, Bozeman, MT, USA 2 Montana State University, Bozeman, MT, USA 3 Region 6, U.S. Forest Service, Portland, OR, USA Correspondence Quresh S. Latif, Rocky Mountain Research Station, U.S. Forest Service, Bozeman, MT, USA. Email: [email protected] Funding information Rocky Mountain Research Station, U.S. Forest Service; Region 6, U.S. Forest Service Abstract Sparsely distributed species attract conservation concern, but insufficient informa- tion on population trends challenges conservation and funding prioritization. Occupancy-based monitoring is attractive for these species, but appropriate sam- pling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify minimum levels of sampling effort for a regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus), a sparsely distributed, territorial species threatened by habitat decline and degradation, as a case study. We compared the original design with com- monly proposed alternatives with varying targets of inference (i.e., species range, space use, or abundance) and spatial extent of sampling. Sampling effort needed to achieve adequate power to observe a long-term population trend (≥80% chance to observe a 2% yearly decline over 20 years) with the previously used study design consisted of annually monitoring ≥120 transects using a single-survey approach or ≥90 transects surveyed twice per year using a repeat-survey approach. Designs that shifted inference toward finer-resolution trends in abundance and extended the spatial extent of sampling by shortening transects, employing a single-survey ap- proach to monitoring, and incorporating a panel design (33% of units surveyed per year) improved power and reduced error in estimating abundance trends. In contrast, efforts to monitor coarse-scale trends in species range or space use with repeat surveys provided extremely limited statistical power. Synthesis and applications. Sampling resolutions that approximate home range size, spatially extensive sampling, and designs that target inference of abundance trends rather than range dynamics are probably best suited and most feasible for broad-scale occupancy-based monitor- ing of sparsely distributed territorial animal species. KEYWORDS broad-scale monitoring, detection probability, Picoides albolvartus, population trends, power analysis, spatial simulation, species conservation, survey design, white-headed woodpecker

Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

Ecology and Evolution 20171ndash15 emsp|emsp1wwwecolevolorg

Received3August2017emsp |emsp Revised16October2017emsp |emsp Accepted22November2017DOI101002ece33725

O R I G I N A L R E S E A R C H

Simulations inform design of regional occupancy- based monitoring for a sparsely distributed territorial species

Quresh S Latif1 emsp|emspMartha M Ellis2emsp|emspVictoria A Saab1emsp|emspKim Mellen-McLean3

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicensewhichpermitsusedistributionandreproductioninanymediumprovidedtheoriginalworkisproperlycitedPublished2017ThisarticleisaUSGovernmentworkandisinthepublicdomainintheUSAEcology and EvolutionpublishedbyJohnWileyampSonsLtd

1RockyMountainResearchStationUSForestServiceBozemanMTUSA2MontanaStateUniversityBozemanMTUSA3Region6USForestServicePortlandORUSA

CorrespondenceQureshSLatifRockyMountainResearchStationUSForestServiceBozemanMTUSAEmailqlatiffsfedus

Funding informationRockyMountainResearchStationUSForestServiceRegion6USForestService

AbstractSparselydistributedspeciesattractconservationconcernbut insufficient informa-tion on population trends challenges conservation and funding prioritizationOccupancy-basedmonitoring is attractive for these species but appropriate sam-plingdesignandinferencedependonparticularsofthestudysystemWeemployedspatially explicit simulations to identify minimum levels of sampling effort for aregional occupancy monitoring study design using white-headed woodpeckers(Picoides albolvartus)asparselydistributedterritorialspeciesthreatenedbyhabitatdeclineanddegradationasacasestudyWecomparedtheoriginaldesignwithcom-monly proposed alternativeswith varying targets of inference (ie species rangespaceuseorabundance)andspatialextentofsamplingSamplingeffortneededtoachieveadequatepowertoobservealong-termpopulationtrend(ge80chancetoobservea2yearlydeclineover20years)with thepreviouslyused studydesignconsistedofannuallymonitoringge120transectsusingasingle-surveyapproachorge90transectssurveyedtwiceperyearusingarepeat-surveyapproachDesignsthatshifted inference toward finer-resolution trends in abundance and extended thespatial extent of sampling by shortening transects employing a single-survey ap-proachtomonitoringandincorporatingapaneldesign(33ofunitssurveyedperyear)improvedpowerandreducederrorinestimatingabundancetrendsIncontrastefforts to monitor coarse-scale trends in species range or space use with repeatsurveys provided extremely limited statistical power Synthesis and applications Samplingresolutionsthatapproximatehomerangesizespatiallyextensivesamplinganddesignsthattarget inferenceofabundancetrendsratherthanrangedynamicsareprobablybestsuitedandmostfeasibleforbroad-scaleoccupancy-basedmonitor-ingofsparselydistributedterritorialanimalspecies

K E Y W O R D S

broad-scalemonitoringdetectionprobabilityPicoides albolvartuspopulationtrendspoweranalysisspatialsimulationspeciesconservationsurveydesignwhite-headedwoodpecker

2emsp |emsp emspensp LATIF eT AL

1emsp |emspINTRODUCTION

Population monitoring informs biological conservation by revealingpopulation trends which inform conservation status and fundingpriorities (MarshampTrenham 2008) Conservationists focus on spe-ciesexperiencingsevereorconsistentdeclinesduetoanthropogenicimpacts that elevateextinction risk (MaleBeanampSchwartz2005RodriguesPilgrimLamoreuxHoffmannampBrooks2006)Speciesofuncertainstatusduetoinsufficientdataaredifficulttotargeteveniflifehistoryordeclininghabitatwarrantconcern Informationforpri-oritizing conservation is particularly limited for sparsely distributedspecies (RobertsTaylorampJoppa2016) Imperfectdetectabilityanddifficultieswithmodelingalsoimposechallengesforterritorialanimals(EffordampDawson2012LatifEllisampAmundson2016)Lowdetect-abilityandanextensiverangemaynecessitatebroadandsustainedef-forttocharacterizepopulationstatusdespitetypicallylimitedfunding(JosephFieldWilcoxampPossingham2006)

Biologistsincreasinglyuseoccupancy-basedmonitoringforthesespecies(EllisIvanampSchwartz2014Josephetal2006)Detectionndashnondetectiondatademandlessfundingthancountsormarkndashrecap-ture data allowing more spatially extensive surveys (Joseph etal2006NoonBaileySiskampMcKelvey2012)whilereplicatesamplingcan correct for imperfect detection (MacKenzie etal 2002 Tyreetal2003)Occupancyquantifiesspeciesdistributionwhichcanin-form species range at coarse scales or finer-scale changes in spaceuseorabundanceall relevant toextinction risk (ClareAndersonampMacFarland2015Josephetal2006Noonetal2012)

Studydesignformonitoringoccupancydependsondesiredinfer-enceandspeciesecologyRelatively largesamplingunitspotentiallyoccupiedbymultiple individualscanefficiently informspeciesrangeestimateswhereassmallerunitsmaybebetterfortrackingfiner-scalechangesinlocalabundance(Clareetal2015EffordampDawson2012Noonetal2012)Withsmallerunitsthetimingofreplicatesamplesusedtocorrectfordetectabilityinrelationtoterritorialmovementfur-thershapespotential inference (EffordampDawson2012Latifetal2016ValenteHutchinsonampBetts2017)Samplingcontinuouslydis-tributedpopulationsofmobileindividualswithindefinitehomerangeboundaries isespeciallychallengingsuchpopulationsare inherentlyheterogeneousinwaysnotquantifiedbycommonlyusedmodelspo-tentiallyobscuringinference(EffordampDawson2012)Morecomplexmodelsthatcorrectlyspecifythisheterogeneitytypicallyrequiremoresamplingeffortwhichmaybeinfeasibleorcompromisesamplingex-tent needed to document broad-scale trends (Welsh LindenmayerampDonnelly2013)Simulationapproachescanhelpinformdesignofoccupancy-basedmonitoringwithsuchinherentandunavoidablemis-specificationofspatialheterogeneity(Ellis IvanTuckerampSchwartz2015Ellisetal2014)

Desired inference should primarily determine monitoring ap-proach but pragmatic considerations also influence study designBiologistsmaysizesamplingunitsforstudyareacoverageortomatchthe resolution of available environmental data (Zielinski BaldwinTruex Tucker amp Flebbe 2013 eg Steenweg etal 2016 but seeLinden Fuller Royle amp Hare 2017) Additionally biologists select

statisticalmodelsthatbest leverageavailabledataForexamplede-spiteafundamentalrelationshipbetweendetectabilityandabundance(RoyleampNichols2003)analystsmayholddetectabilityconstantforparsimony(egZielinskietal2013)Samplingisoftenthendesignedtoachieveadequatestatisticalpower for trackingoccupancy trendswithoutapriori specifyingdesired targetsof inference (eg speciesrangespaceuseorabundance)Inferenceofprocesshoweverisulti-matelyneededtoinformconservation

Ourquestionsonmonitoringdesignweremotivatedbyaregionaloccupancy-basedmonitoringprogramforwhite-headedwoodpecker(Picoides albolvartus hereafterWHWOFigure1) a sparselydistrib-uted regionally endemic species with narrow habitat requirements(Garrett Raphael amp Dixon 1996 Latif Saab Mellen-Mclean ampDudley 2015)WHWOdependondrymixed conifer forests domi-natedbyponderosapine(Pinus ponderosa)andmaintainedbymixed-severity fire (cf Hessburg Agee amp Franklin 2005) Recent habitatdeclinesandevidenceoflowreproductivesuccessinsomeareashaveraisedconservationconcerns(HollenbeckSaabampFrenzel2011)butdataonpopulationtrendsarelacking(Wisdometal2002)

Tohelpfillthisinformationgapregionaloccupancy-basedmoni-toringwasestablishedtoevaluatepopulationanddistributionaltrends(Mellen-McLeanSaabBressonWalesampVanNorman2015)Repeatdetectionndashnondetection surveys along transects inpotential habitatofOregonandWashington(Figure2)informedoccupancytrendscor-rected for imperfect detection Surveyors applied a commonproto-colforbirdsofpoint-basedsurveysorientedalongtransects(seealsoRotaFletcherDorazioampBetts2009Valenteetal2017)Availablefundingwas substantial (~$800 thousand) but nevertheless limitedmonitoringto6yearsat30transectswhilealsoaccommodatingother

F IGURE 1emspPhotographofaWhite-headedWoodpecker

emspensp emsp | emsp3LATIF eT AL

objectives (Mellen-McLean etal 2015)Growing agency interest inwhite-headedwoodpeckers couldmotivate expanded andmore fo-cusedmonitoringoflong-termtrendswhichweaimedtoinform

Toaddressthequestionsraisedbythiscasestudyweusedsim-ulations to evaluate alternative approaches to regional monitoringwhile explicitly consideringpotential inference and species ecologySpatiallyexplicitsimulationscorrectlyrepresentedmodelmisspecifi-cationtypicallyinherentwithoccupancy-basedmonitoringofcontinu-ouslydistributedpopulationsimprovingestimatesofstatisticalpowerforinformingstudydesign(Ellisetal20142015)Weassessedmin-imumeffortneededfordesirablestatisticalpowergiventhehistoricalstudydesignandweexploredhowalternatesamplingallocationsin-fluencedstatisticalpowerWeconsideredsamplingallocationsalter-natelysuitedforinferringcoarse-scaledistributionalchangesorrangedynamicsversusfiner-scalechangesinabundanceorspaceuse(egValente etal 2017)Candidate designsvaried in how they favoredspatiallyextensiveversusmoreintensivesurveyallocationthevalueof which depends on population heterogeneity (Rhodes amp Jonzeacuten

2011)Alternativesconsideredhererepresentcommonlyuseddesignsforbroad-scaleoccupancy-basedstudiesthusprovidinggeneralguid-anceformonitoringsparselydistributedterritorialanimals

2emsp |emspMATERIALS AND METHODS

21emsp|emspWhite- headed Woodpecker regional monitoring

Occupancy-basedmonitoringofWHWOacross the inlandnorth-westernUnited Stateswas originally implemented in 2011ndash2016(Mellen-McLeanetal2015)Surveysoccurredalong30transectstwiceayearduringthenestingseasonMay1ndashJune30Surveyorsbroadcastrecordedcallsanddrummingtoelicitterritorialresponsesto improvedetectabilityTransectswere10 surveypoints spaced~300mapartAtransectsurveyconsistedofsurveyingeachpointalongatransectThisapproachiscommonforsurveyingbirds(com-mon approach for birds eg Amundson Royle ampHandel 2014

F IGURE 2emspNationalforestsoftheeasternCascadeMountainsOregonandWashingtonUSAWhite-headedWoodpeckerregionalmonitoringfocusedonpotentialhabitat(gray)wherelarge-conepinespecies(mainlyponderosa)dominate

4emsp |emsp emspensp LATIF eT AL

Pavlacky Blakesley White Hanni amp Lukacs 2012 Rota etal2009)andforWHWOprovidedopportunityforbroadcastingcallsfollowedbyaperiodoflistening(max5mintotal)beforeproceed-ing to the next point To conserve time surveyors immediatelyproceeded to thenextpointalonga transectwhenwhite-headedwoodpecker was first detected Thus they strictly recorded de-tectionndashnondetection data restricting the focus ofmonitoring tooccupancy

22emsp|emspPopulation and sampling simulations

Following the initial 6-year effort we simulated occupancy-basedmonitoringofwhite-headedwoodpeckerstoinformpotentialfutureeffortsRecognizingtheneedforgreatersamplingefforttomeaning-fullyquantifytrendshoweverwesimulatedsurveysofge60transectsover20years

Simulatedpopulationsexperienceddeterministictrendsbasedonanexponentialmodel

where Nt ispopulationabundanceinyeart and λN istheproportionchangeinabundanceperyear(fortheoreticalbasisseeGotelli2001)Weconsidereda rangeof trendscenariosofpotential conservationconcernλN=10098095or09thatis03364or88declineover20years Simulated trends representedeffect sizes foranalyzingpowerPositivetrends(λNgt10)werelessofaconcernforinformingprioritizationofWHWOforconservationactionandthere-forenotconsideredAlthoughrealpopulationsfluctuatestochasticallywe lacked information for simulating specific levels of stochasticityanddeterministictrendsprovidedclearereffectsizesforinterpretingpowerestimates(seealsoEllisetal2015MacKenzieampRoyle2005)We intended the range of simple deterministic trends consideredhereto informsurveillancemonitoringaimedatdocumentingunan-ticipatedchangeratherthanparticularecologicalscenarios(HuttoampBelote2013)

Wesimulatedpopulationmonitoringsoastoexplicitlyrepresentthe process of sampling discrete detectionndashnondetection data forcontinuouslydistributedpopulations(cfEffordampDawson2012Ellisetal 2014 contraMacKenzie amp Royle 2005)We conducted sim-ulations using the rSPACE package (Ellis etal 2014 2015) in R (RCoreTeam2015) Simulationsentailed (1) randomlydistributingN1 homerangesacrosssuitablehabitat(2)calculatingtheprobabilityofencounteringge1white-headedwoodpeckeratasurveypoint(3)gen-eratingdetectionndashnondetectiondatabasedontheseencounterprob-abilitiesand(4)randomlyremovingNttimes(1minusλN)individualsfromthelandscapeandrepeatingsteps2ndash3foreachremainingyeart = 2ndash20 (AppendixS1)Wecollecteddataforaregion-wide300mpointgridand laterderivedtransectmonitoringscenariosSurveyorsrarelyre-cordeddetectionsgt150maway(7of2011ndash2016detections)sowesimulated150-mfixed-radiuspointsurveys

Weconsolidatedpointdatatorepresenttransectmonitoringsce-nariosvaryinginsamplingeffortandallocationAtransectdetectionrepresented ge1 detection at any given point along a transect on a

givendayOnehomerange(1-kmradius)couldincludemultipleneigh-boringpointssopoint-leveldetectionswithintransectswerespatiallycorrelatedwhereasge2kmtransectspacingavoidedspatialcorrelationin transectdetectionsAdditionallywith transectswewereable toexploreafundamentalissueinmonitoringdesigntherelativemeritsofsampling intensively (egmorepointspertransectorrepeatsur-veys)versusextensively(moretransects)

Weconsideredmonitoringscenariostoaccomplishtwoobjectives(1) identify levels of sampling effort capable of providing desirablepower(ge80chancetoobserveadeclinegivenλNle098) (2)com-parecommonlyconsideredsamplingallocationstrategiesrepresentingalternativetargetsofinferenceandspatialextentsofsamplingWead-dressedobjective1byvaryingsamplingeffort(ntransectge60ienpoint-surveys-per-yearge1200)withdifferenttrendsandthehistoricalsamplingallocationof10pointspertransectsurveyedtwiceeveryyearForob-jective2wefocusedonalong-termdeclinescenario(λN=098)andfixedsamplingeffort (npoint-surveys-per-year=1200)whilevaryingmoni-toringstrategiesThehistoricalallocationschemerepresentedanin-tendedinferenceofrelativelycoarse-scaletrendsAlternativeschemesincludedsurveyingshortertransects(8ndash3pointspertransect)whichtargetedinferenceoffiner-scaletrendsbysamplingsmallerareaspo-tentiallyoccupiedbyfewerindividualsWealsoconsideredsurveyingtransects only once per year representing single-survey occupancyapproacheswhoseestimatesprovidetemporalsnapshotsofpopula-tions useful for inferring changes in abundance (Hutto 2016 Latifetal2016)Finallyweconsideredsurveyinglt100oftransectsperyear (ie paneldesignsBaileyHinesNicholsampMacKenzie2007UrquhartampKincaid1999)orrepeatingsurveysatlt100oftransectseachyearHavingfixedsamplingeffort thesealternateschemesal-lowedmonitoringofmoretransectswhichextendedspatialsampling

For simplicity simulations assumed no false-negative observererror (hereafter observer error) that iswhite-headedwoodpeckerswerealwaysdetected ifpresentduringasurveyThusdetectabilitywasdeterminedexclusivelybyterritorialmovementbetweenrepeatsurveyswithinayearThisassumptionwasdefensiblebecausecall-broadcast surveys reduce observer error and standardized surveyslimit potentially confounding interannual variation in observer error(Mellen-McLeanetal2015)Additionallywecalibratedsimulationswith pilot data (Appendix S2) Encounter probabilities during a sur-vey therefore reflected the number location size and spacing ofhome ranges informedbywhite-headedwoodpeckerecologypop-ulationsizereflectedcalibrationwithpilotdataandassumedtrends(AppendicesS1andS2)

Spatialvariability indetectability (ieencounterprobabilities insimulations)emerged fromvariation innestinghabitatandrandomplacement of home rangeswithin this habitatwhich caused localabundanceandproximitytocentersofactivitytovaryamongtran-sects Reflecting likely realities detectability at occupied transectsincreasedwith increasing abundance and decreasedwith distancefromhome rangecenters (seeAppendixS1)Analyses ignored thisspatialheterogeneityandthusinformedstudydesignwhileaccount-ingforlikelyconstraintsonmodelcomplexityduetolimitedsamplingeffortWe initially considered smallerhome ranges (600m radius)

(1)Nt=N1timesλtN

emspensp emsp | emsp5LATIF eT AL

butcalibrationtopilotdatarequiredcompensatoryadjustments toinitialabundanceresultinginsimilarpatternsinstatisticalpower(QLatif unpublished data)We restricted simulations to national for-estsrepresenting77(77times106ha)ofpotentialhabitatwithintheregion(Figure2)

23emsp|emspData analysis

Forscenariosyieldingrepeat-surveydataweestimatedtrendswithtwo different occupancy models representing commonly consid-eredwaysofcorrectingfordetectability(pegLindenetal2017Steenweg etal 2016 Zielinski etal 2013) to estimate occupancyprobability (ψ Figure3ab) One model allowed detectability esti-matestovaryinterannually(hereaftertheyearly-pmodelFigure3a)whereastheotherhelddetectabilityconstant(hereafter the constant- pmodelFigure3bformodelstructuresseeAppendixS3)Becauseindividuals couldmove in or out of the surveyed areabetween re-peat surveyswithin a year thesemodels quantified the probabilityof a transect intersectingge1home rangehereafter true occupancywhichdescribesspeciesrangeorspaceuse(EffordampDawson2012MacKenzieampRoyle 2005) Theyearly-pmodel allowsdetectability

tochangewithchangingabundance(RoyleampNichols2003)tobet-terestimatetrueoccupancyTheconstant-pmodelmisspecifiestrueoccupancybutisfrequentlyconsideredandmaybeselectedforpar-simonyinappliedstudies(egZielinskietal2013)Additionallyhav-ingcontrolledforobservererror(egifnonexistentasinsimulationsorcontrolledviastandardizedsurveys)theconstant-pmodelcoercesoccupancyestimatestoreflectanyinterannualchangesshiftingthetargetofinferencetoabundance(Figure3b)

For scenarios yielding single-survey data we estimated trendsusing logistic regression (see structure inAppendix S3) Having ex-cludedobservererror insimulations logistic regressionmodelsesti-matedprobabilityofge1individualrsquosphysicalpresenceduringasurveyhereafter probability of physical presence Single-survey scenariosrepresented single-surveyoccupancyapproaches inwhich replicatesurveysoccurwithinanarrowenoughtimeframefordetectabilitytoquantifyobservererrorsothatoccupancyestimatesquantifyproba-bilityofphysicalpresence(egdouble-observerandremovaldesignsNicholsetal2008Rotaetal2009)ByomittingobservererrorfromsimulationshoweverreplicatesurveyswereunnecessarytoquantifyphysicalpresenceProbabilityofphysicalpresencerepresentsatem-poral snapshot of a population unaffected by territorial movement

F IGURE 3emspHowmodelestimatesreflectunderlyingprocessesunderalternativemonitoringapproachesRepeat-surveyoccupancyestimatesfundamentallyquantifytrueoccupancy(ab)butcanindexabundancetrendsifdetectabilityisheldconstant(bcontraA)Territorialmovementinfluencesrepeat-surveyoccupancyestimates(ab)whereassingle-surveyoccupancyestimatesrepresentpopulationsnapshotsnotinfluencedbymovement(c)False-negativeobservererrorwasnotsimulatedbutcouldinfluenceestimatesinreality

6emsp |emsp emspensp LATIF eT AL

expected to closely track abundance (Figure3c Hutto 2016 Latifetal2016)AdditionallysurveyingtransectsonlyonceallowedustomonitortwiceasmanytransectsincreasingsamplingextentInprac-ticeauxiliarysampling (eg recordingdetectiontimingordeployingmultipleobservers)wouldaccount forobservererror (Nicholsetal2008 Rota etal 2009) likely adding to uncertainty in trend esti-matesIgnoringobservererrorinbothsingle-andrepeat-surveysce-narioshowevermadetheircomparisoninformative

Wequantified occupancy trends as proportionyearly change inodds occupancy λψ =

ψt+1∕(1minusψt+1)

ψt∕(1minusψt) (MacKenzie etal 2006)We ana-

lyzeddetectionndashnondetectiondatawithfixedyeareffectsandsubse-quentlycalculatedleast-squarestrendsinyearlyoccupancyestimates(seealsoEllisetal2014)Wequantifiedstatisticalpoweraspercentsimulationswhen95Bayesiancredibleintervals(BCIs)fortheesti-matedtrendforthestudyperiod(λψ where logit(ψt)=β0+ log (λψ)times t p200MacKenzieetal2006)fellbelow1Wealsocalculatedrootmean squared error for trend estimates (RMSEN=

radic

mean(λψ minusλN) RMSEψ =

radic

mean(λψ minusλψ )) When quantifying true occupancy weconsidered occupied transects to be thosewith encounter pge05Having foundextremely limited statistical powerwithyearly-p esti-mates(seeObjective1Results)weprimarilyassessedsamplingallo-cations(Objective2)forconstant-pandlogisticregressionmodelsbutthentestedyearly-pagainwithbetterallocationFurthermoregivenlikely targets of inference we considered RMSEN most relevant toconstant- pandlogisticregressionmodelsandRMSEψ relevant to the yearly-pmodelForadditionalmethodsand rationale seeAppendixS3

3emsp |emspRESULTS

31emsp|emspOccupancy abundance and estimator behavior

Comparingtrueoccupancy(proportiontransectswithencounterpge05)andabundanceinformedunderstandingofstatisticalpowerandestima-torpropertiesTrueoccupancyrelatedpositivelywithabundancebutpla-teauedathigherabundances(Figure4ac)Trueoccupancydeclineslaggedabundancedeclines(Figure4bd)Withshortertransectstrueoccupancycorrespondedbetterbutstillimperfectlywithabundance(Figure4cd)

Occupancyestimatesremainedconstantwithnoabundancetrendand declinedwith declining abundance (Figure5) Detectability es-timates declined with declining abundance either across scenarios(constant- pestimates)orthroughtime(yearly-pestimatesFigure6)Yearly-p estimator precisionwas less than for constant-p estimatesanddeclinedwithdecliningabundance(Figures5and6)

Detectabilityestimatesfollowedthebehaviorofencounterprob-abilitiesatoccupiedtransectsbutweregenerallyhigherthatisposi-tivelybiased(Figure6)makingoccupancyestimatesnegativelybiased(Figure5)Logisticregressionestimatesdeviatedevenmorefromtrueoccupancy (Figure5cfil) reflecting thediffering targetof inference(ieprobabilityofphysicalpresenceseeSection2andAppendixS3)

32emsp|emspObjective 1 Sampling effort

Withhistoricalsurveyallocationstatisticalpowerincreasedwithin-creasingsamplingeffortandstrongerpopulationdeclines(Figure7)

F IGURE 4emspTrueoccupancy(ψ) versus abundance(N=numberofindividualsacrossall7676971haofpotentialhabitatinOregonandWashingtonnationalforestsac)andcorrespondenceof(odds)occupancy(λψ)withabundancetrends(λNbd)forsimulatedwhite-headedwoodpeckerpopulationsThirtyreplicatepopulationsmonitoredfor20yearsforeachtrendscenarioaredepictedwhensurveyedattransectsconsistingof10points(ab)orthreepoints(cd)eachInpanelsbanddtheredlineindicates11correspondence(desirableforinference)betweenoccupancyandabundancetrends

emspensp emsp | emsp7LATIF eT AL

The constant- pmodeland logistic regression (withsingle-surveyal-location) generally provided adequate power (ge80 chance of ob-servingadecline)Powerwasonlyinadequatewithasmalleffectsize(λN=098) andminimal sampling effort (j le 60 and90 transects forconstant- p and logistic regression respectively) In contrast powerwasneveradequatewith theyearly-pmodelSpurious trendswererarelyobserved(15ofsimulationsinwhichλN = 1)

With no abundance or occupancy trendsmodels estimated ac-tual trendswithminimal error and no apparent bias but error andbiasgrewwith increasingtrend (Figure8)Theconstant-pmodel in-creasingly overestimated declineswith steeper abundance declines

although abundance trendswere estimated better (RMSENle0055)than occupancy trends (RMSEψle0105) Yearly-p trend estimateswere centered between actual abundance and occupancy trends(RMSEle005) Models fitted to single-survey data estimated trueabundance trendswith the least error (RMSENle0008) and no ob-viousbias

33emsp|emspObjective 2 Sampling allocation

Monitoringstrategiesthattargetedinferenceoffiner-scaletrendsinspaceuseorabundanceandextendedsamplingspatiallygenerally

F IGURE 5emspYearlyoccupancyestimatesfromsimulatedregionalwhite-headedwoodpeckermonitoringSimulatedtrendswereλN=1(andashc)098(dndashf)095(gndashi)and09(jndashl)Repeat-surveyoccupancyestimatesassumedconstantdetectability(adgandj)orvariabledetectabilityamongyears(behandk)Single-surveyestimatesassumedperfectdetectability(cfiandl)Thirtysimulationsofmonitoringtransectsof10pointseachfor20yearsarerepresentedforeachscenario(n = 150and300transectsforrepeat-andsingle-surveyscenariosrespectively)Blackdotsandblueverticalbarsshowyearlyestimatesand95BCIsjitteredfordisplayBlacklinesconnectestimatesfromconsecutiveyearsforindividualsimulationsReddotsshowmeantrueoccupancyfor30simulationsthatisproportionofallpossibletransectsoccupied

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 2: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

2emsp |emsp emspensp LATIF eT AL

1emsp |emspINTRODUCTION

Population monitoring informs biological conservation by revealingpopulation trends which inform conservation status and fundingpriorities (MarshampTrenham 2008) Conservationists focus on spe-ciesexperiencingsevereorconsistentdeclinesduetoanthropogenicimpacts that elevateextinction risk (MaleBeanampSchwartz2005RodriguesPilgrimLamoreuxHoffmannampBrooks2006)Speciesofuncertainstatusduetoinsufficientdataaredifficulttotargeteveniflifehistoryordeclininghabitatwarrantconcern Informationforpri-oritizing conservation is particularly limited for sparsely distributedspecies (RobertsTaylorampJoppa2016) Imperfectdetectabilityanddifficultieswithmodelingalsoimposechallengesforterritorialanimals(EffordampDawson2012LatifEllisampAmundson2016)Lowdetect-abilityandanextensiverangemaynecessitatebroadandsustainedef-forttocharacterizepopulationstatusdespitetypicallylimitedfunding(JosephFieldWilcoxampPossingham2006)

Biologistsincreasinglyuseoccupancy-basedmonitoringforthesespecies(EllisIvanampSchwartz2014Josephetal2006)Detectionndashnondetectiondatademandlessfundingthancountsormarkndashrecap-ture data allowing more spatially extensive surveys (Joseph etal2006NoonBaileySiskampMcKelvey2012)whilereplicatesamplingcan correct for imperfect detection (MacKenzie etal 2002 Tyreetal2003)Occupancyquantifiesspeciesdistributionwhichcanin-form species range at coarse scales or finer-scale changes in spaceuseorabundanceall relevant toextinction risk (ClareAndersonampMacFarland2015Josephetal2006Noonetal2012)

Studydesignformonitoringoccupancydependsondesiredinfer-enceandspeciesecologyRelatively largesamplingunitspotentiallyoccupiedbymultiple individualscanefficiently informspeciesrangeestimateswhereassmallerunitsmaybebetterfortrackingfiner-scalechangesinlocalabundance(Clareetal2015EffordampDawson2012Noonetal2012)Withsmallerunitsthetimingofreplicatesamplesusedtocorrectfordetectabilityinrelationtoterritorialmovementfur-thershapespotential inference (EffordampDawson2012Latifetal2016ValenteHutchinsonampBetts2017)Samplingcontinuouslydis-tributedpopulationsofmobileindividualswithindefinitehomerangeboundaries isespeciallychallengingsuchpopulationsare inherentlyheterogeneousinwaysnotquantifiedbycommonlyusedmodelspo-tentiallyobscuringinference(EffordampDawson2012)Morecomplexmodelsthatcorrectlyspecifythisheterogeneitytypicallyrequiremoresamplingeffortwhichmaybeinfeasibleorcompromisesamplingex-tent needed to document broad-scale trends (Welsh LindenmayerampDonnelly2013)Simulationapproachescanhelpinformdesignofoccupancy-basedmonitoringwithsuchinherentandunavoidablemis-specificationofspatialheterogeneity(Ellis IvanTuckerampSchwartz2015Ellisetal2014)

Desired inference should primarily determine monitoring ap-proach but pragmatic considerations also influence study designBiologistsmaysizesamplingunitsforstudyareacoverageortomatchthe resolution of available environmental data (Zielinski BaldwinTruex Tucker amp Flebbe 2013 eg Steenweg etal 2016 but seeLinden Fuller Royle amp Hare 2017) Additionally biologists select

statisticalmodelsthatbest leverageavailabledataForexamplede-spiteafundamentalrelationshipbetweendetectabilityandabundance(RoyleampNichols2003)analystsmayholddetectabilityconstantforparsimony(egZielinskietal2013)Samplingisoftenthendesignedtoachieveadequatestatisticalpower for trackingoccupancy trendswithoutapriori specifyingdesired targetsof inference (eg speciesrangespaceuseorabundance)Inferenceofprocesshoweverisulti-matelyneededtoinformconservation

Ourquestionsonmonitoringdesignweremotivatedbyaregionaloccupancy-basedmonitoringprogramforwhite-headedwoodpecker(Picoides albolvartus hereafterWHWOFigure1) a sparselydistrib-uted regionally endemic species with narrow habitat requirements(Garrett Raphael amp Dixon 1996 Latif Saab Mellen-Mclean ampDudley 2015)WHWOdependondrymixed conifer forests domi-natedbyponderosapine(Pinus ponderosa)andmaintainedbymixed-severity fire (cf Hessburg Agee amp Franklin 2005) Recent habitatdeclinesandevidenceoflowreproductivesuccessinsomeareashaveraisedconservationconcerns(HollenbeckSaabampFrenzel2011)butdataonpopulationtrendsarelacking(Wisdometal2002)

Tohelpfillthisinformationgapregionaloccupancy-basedmoni-toringwasestablishedtoevaluatepopulationanddistributionaltrends(Mellen-McLeanSaabBressonWalesampVanNorman2015)Repeatdetectionndashnondetection surveys along transects inpotential habitatofOregonandWashington(Figure2)informedoccupancytrendscor-rected for imperfect detection Surveyors applied a commonproto-colforbirdsofpoint-basedsurveysorientedalongtransects(seealsoRotaFletcherDorazioampBetts2009Valenteetal2017)Availablefundingwas substantial (~$800 thousand) but nevertheless limitedmonitoringto6yearsat30transectswhilealsoaccommodatingother

F IGURE 1emspPhotographofaWhite-headedWoodpecker

emspensp emsp | emsp3LATIF eT AL

objectives (Mellen-McLean etal 2015)Growing agency interest inwhite-headedwoodpeckers couldmotivate expanded andmore fo-cusedmonitoringoflong-termtrendswhichweaimedtoinform

Toaddressthequestionsraisedbythiscasestudyweusedsim-ulations to evaluate alternative approaches to regional monitoringwhile explicitly consideringpotential inference and species ecologySpatiallyexplicitsimulationscorrectlyrepresentedmodelmisspecifi-cationtypicallyinherentwithoccupancy-basedmonitoringofcontinu-ouslydistributedpopulationsimprovingestimatesofstatisticalpowerforinformingstudydesign(Ellisetal20142015)Weassessedmin-imumeffortneededfordesirablestatisticalpowergiventhehistoricalstudydesignandweexploredhowalternatesamplingallocationsin-fluencedstatisticalpowerWeconsideredsamplingallocationsalter-natelysuitedforinferringcoarse-scaledistributionalchangesorrangedynamicsversusfiner-scalechangesinabundanceorspaceuse(egValente etal 2017)Candidate designsvaried in how they favoredspatiallyextensiveversusmoreintensivesurveyallocationthevalueof which depends on population heterogeneity (Rhodes amp Jonzeacuten

2011)Alternativesconsideredhererepresentcommonlyuseddesignsforbroad-scaleoccupancy-basedstudiesthusprovidinggeneralguid-anceformonitoringsparselydistributedterritorialanimals

2emsp |emspMATERIALS AND METHODS

21emsp|emspWhite- headed Woodpecker regional monitoring

Occupancy-basedmonitoringofWHWOacross the inlandnorth-westernUnited Stateswas originally implemented in 2011ndash2016(Mellen-McLeanetal2015)Surveysoccurredalong30transectstwiceayearduringthenestingseasonMay1ndashJune30Surveyorsbroadcastrecordedcallsanddrummingtoelicitterritorialresponsesto improvedetectabilityTransectswere10 surveypoints spaced~300mapartAtransectsurveyconsistedofsurveyingeachpointalongatransectThisapproachiscommonforsurveyingbirds(com-mon approach for birds eg Amundson Royle ampHandel 2014

F IGURE 2emspNationalforestsoftheeasternCascadeMountainsOregonandWashingtonUSAWhite-headedWoodpeckerregionalmonitoringfocusedonpotentialhabitat(gray)wherelarge-conepinespecies(mainlyponderosa)dominate

4emsp |emsp emspensp LATIF eT AL

Pavlacky Blakesley White Hanni amp Lukacs 2012 Rota etal2009)andforWHWOprovidedopportunityforbroadcastingcallsfollowedbyaperiodoflistening(max5mintotal)beforeproceed-ing to the next point To conserve time surveyors immediatelyproceeded to thenextpointalonga transectwhenwhite-headedwoodpecker was first detected Thus they strictly recorded de-tectionndashnondetection data restricting the focus ofmonitoring tooccupancy

22emsp|emspPopulation and sampling simulations

Following the initial 6-year effort we simulated occupancy-basedmonitoringofwhite-headedwoodpeckerstoinformpotentialfutureeffortsRecognizingtheneedforgreatersamplingefforttomeaning-fullyquantifytrendshoweverwesimulatedsurveysofge60transectsover20years

Simulatedpopulationsexperienceddeterministictrendsbasedonanexponentialmodel

where Nt ispopulationabundanceinyeart and λN istheproportionchangeinabundanceperyear(fortheoreticalbasisseeGotelli2001)Weconsidereda rangeof trendscenariosofpotential conservationconcernλN=10098095or09thatis03364or88declineover20years Simulated trends representedeffect sizes foranalyzingpowerPositivetrends(λNgt10)werelessofaconcernforinformingprioritizationofWHWOforconservationactionandthere-forenotconsideredAlthoughrealpopulationsfluctuatestochasticallywe lacked information for simulating specific levels of stochasticityanddeterministictrendsprovidedclearereffectsizesforinterpretingpowerestimates(seealsoEllisetal2015MacKenzieampRoyle2005)We intended the range of simple deterministic trends consideredhereto informsurveillancemonitoringaimedatdocumentingunan-ticipatedchangeratherthanparticularecologicalscenarios(HuttoampBelote2013)

Wesimulatedpopulationmonitoringsoastoexplicitlyrepresentthe process of sampling discrete detectionndashnondetection data forcontinuouslydistributedpopulations(cfEffordampDawson2012Ellisetal 2014 contraMacKenzie amp Royle 2005)We conducted sim-ulations using the rSPACE package (Ellis etal 2014 2015) in R (RCoreTeam2015) Simulationsentailed (1) randomlydistributingN1 homerangesacrosssuitablehabitat(2)calculatingtheprobabilityofencounteringge1white-headedwoodpeckeratasurveypoint(3)gen-eratingdetectionndashnondetectiondatabasedontheseencounterprob-abilitiesand(4)randomlyremovingNttimes(1minusλN)individualsfromthelandscapeandrepeatingsteps2ndash3foreachremainingyeart = 2ndash20 (AppendixS1)Wecollecteddataforaregion-wide300mpointgridand laterderivedtransectmonitoringscenariosSurveyorsrarelyre-cordeddetectionsgt150maway(7of2011ndash2016detections)sowesimulated150-mfixed-radiuspointsurveys

Weconsolidatedpointdatatorepresenttransectmonitoringsce-nariosvaryinginsamplingeffortandallocationAtransectdetectionrepresented ge1 detection at any given point along a transect on a

givendayOnehomerange(1-kmradius)couldincludemultipleneigh-boringpointssopoint-leveldetectionswithintransectswerespatiallycorrelatedwhereasge2kmtransectspacingavoidedspatialcorrelationin transectdetectionsAdditionallywith transectswewereable toexploreafundamentalissueinmonitoringdesigntherelativemeritsofsampling intensively (egmorepointspertransectorrepeatsur-veys)versusextensively(moretransects)

Weconsideredmonitoringscenariostoaccomplishtwoobjectives(1) identify levels of sampling effort capable of providing desirablepower(ge80chancetoobserveadeclinegivenλNle098) (2)com-parecommonlyconsideredsamplingallocationstrategiesrepresentingalternativetargetsofinferenceandspatialextentsofsamplingWead-dressedobjective1byvaryingsamplingeffort(ntransectge60ienpoint-surveys-per-yearge1200)withdifferenttrendsandthehistoricalsamplingallocationof10pointspertransectsurveyedtwiceeveryyearForob-jective2wefocusedonalong-termdeclinescenario(λN=098)andfixedsamplingeffort (npoint-surveys-per-year=1200)whilevaryingmoni-toringstrategiesThehistoricalallocationschemerepresentedanin-tendedinferenceofrelativelycoarse-scaletrendsAlternativeschemesincludedsurveyingshortertransects(8ndash3pointspertransect)whichtargetedinferenceoffiner-scaletrendsbysamplingsmallerareaspo-tentiallyoccupiedbyfewerindividualsWealsoconsideredsurveyingtransects only once per year representing single-survey occupancyapproacheswhoseestimatesprovidetemporalsnapshotsofpopula-tions useful for inferring changes in abundance (Hutto 2016 Latifetal2016)Finallyweconsideredsurveyinglt100oftransectsperyear (ie paneldesignsBaileyHinesNicholsampMacKenzie2007UrquhartampKincaid1999)orrepeatingsurveysatlt100oftransectseachyearHavingfixedsamplingeffort thesealternateschemesal-lowedmonitoringofmoretransectswhichextendedspatialsampling

For simplicity simulations assumed no false-negative observererror (hereafter observer error) that iswhite-headedwoodpeckerswerealwaysdetected ifpresentduringasurveyThusdetectabilitywasdeterminedexclusivelybyterritorialmovementbetweenrepeatsurveyswithinayearThisassumptionwasdefensiblebecausecall-broadcast surveys reduce observer error and standardized surveyslimit potentially confounding interannual variation in observer error(Mellen-McLeanetal2015)Additionallywecalibratedsimulationswith pilot data (Appendix S2) Encounter probabilities during a sur-vey therefore reflected the number location size and spacing ofhome ranges informedbywhite-headedwoodpeckerecologypop-ulationsizereflectedcalibrationwithpilotdataandassumedtrends(AppendicesS1andS2)

Spatialvariability indetectability (ieencounterprobabilities insimulations)emerged fromvariation innestinghabitatandrandomplacement of home rangeswithin this habitatwhich caused localabundanceandproximitytocentersofactivitytovaryamongtran-sects Reflecting likely realities detectability at occupied transectsincreasedwith increasing abundance and decreasedwith distancefromhome rangecenters (seeAppendixS1)Analyses ignored thisspatialheterogeneityandthusinformedstudydesignwhileaccount-ingforlikelyconstraintsonmodelcomplexityduetolimitedsamplingeffortWe initially considered smallerhome ranges (600m radius)

(1)Nt=N1timesλtN

emspensp emsp | emsp5LATIF eT AL

butcalibrationtopilotdatarequiredcompensatoryadjustments toinitialabundanceresultinginsimilarpatternsinstatisticalpower(QLatif unpublished data)We restricted simulations to national for-estsrepresenting77(77times106ha)ofpotentialhabitatwithintheregion(Figure2)

23emsp|emspData analysis

Forscenariosyieldingrepeat-surveydataweestimatedtrendswithtwo different occupancy models representing commonly consid-eredwaysofcorrectingfordetectability(pegLindenetal2017Steenweg etal 2016 Zielinski etal 2013) to estimate occupancyprobability (ψ Figure3ab) One model allowed detectability esti-matestovaryinterannually(hereaftertheyearly-pmodelFigure3a)whereastheotherhelddetectabilityconstant(hereafter the constant- pmodelFigure3bformodelstructuresseeAppendixS3)Becauseindividuals couldmove in or out of the surveyed areabetween re-peat surveyswithin a year thesemodels quantified the probabilityof a transect intersectingge1home rangehereafter true occupancywhichdescribesspeciesrangeorspaceuse(EffordampDawson2012MacKenzieampRoyle 2005) Theyearly-pmodel allowsdetectability

tochangewithchangingabundance(RoyleampNichols2003)tobet-terestimatetrueoccupancyTheconstant-pmodelmisspecifiestrueoccupancybutisfrequentlyconsideredandmaybeselectedforpar-simonyinappliedstudies(egZielinskietal2013)Additionallyhav-ingcontrolledforobservererror(egifnonexistentasinsimulationsorcontrolledviastandardizedsurveys)theconstant-pmodelcoercesoccupancyestimatestoreflectanyinterannualchangesshiftingthetargetofinferencetoabundance(Figure3b)

For scenarios yielding single-survey data we estimated trendsusing logistic regression (see structure inAppendix S3) Having ex-cludedobservererror insimulations logistic regressionmodelsesti-matedprobabilityofge1individualrsquosphysicalpresenceduringasurveyhereafter probability of physical presence Single-survey scenariosrepresented single-surveyoccupancyapproaches inwhich replicatesurveysoccurwithinanarrowenoughtimeframefordetectabilitytoquantifyobservererrorsothatoccupancyestimatesquantifyproba-bilityofphysicalpresence(egdouble-observerandremovaldesignsNicholsetal2008Rotaetal2009)ByomittingobservererrorfromsimulationshoweverreplicatesurveyswereunnecessarytoquantifyphysicalpresenceProbabilityofphysicalpresencerepresentsatem-poral snapshot of a population unaffected by territorial movement

F IGURE 3emspHowmodelestimatesreflectunderlyingprocessesunderalternativemonitoringapproachesRepeat-surveyoccupancyestimatesfundamentallyquantifytrueoccupancy(ab)butcanindexabundancetrendsifdetectabilityisheldconstant(bcontraA)Territorialmovementinfluencesrepeat-surveyoccupancyestimates(ab)whereassingle-surveyoccupancyestimatesrepresentpopulationsnapshotsnotinfluencedbymovement(c)False-negativeobservererrorwasnotsimulatedbutcouldinfluenceestimatesinreality

6emsp |emsp emspensp LATIF eT AL

expected to closely track abundance (Figure3c Hutto 2016 Latifetal2016)AdditionallysurveyingtransectsonlyonceallowedustomonitortwiceasmanytransectsincreasingsamplingextentInprac-ticeauxiliarysampling (eg recordingdetectiontimingordeployingmultipleobservers)wouldaccount forobservererror (Nicholsetal2008 Rota etal 2009) likely adding to uncertainty in trend esti-matesIgnoringobservererrorinbothsingle-andrepeat-surveysce-narioshowevermadetheircomparisoninformative

Wequantified occupancy trends as proportionyearly change inodds occupancy λψ =

ψt+1∕(1minusψt+1)

ψt∕(1minusψt) (MacKenzie etal 2006)We ana-

lyzeddetectionndashnondetectiondatawithfixedyeareffectsandsubse-quentlycalculatedleast-squarestrendsinyearlyoccupancyestimates(seealsoEllisetal2014)Wequantifiedstatisticalpoweraspercentsimulationswhen95Bayesiancredibleintervals(BCIs)fortheesti-matedtrendforthestudyperiod(λψ where logit(ψt)=β0+ log (λψ)times t p200MacKenzieetal2006)fellbelow1Wealsocalculatedrootmean squared error for trend estimates (RMSEN=

radic

mean(λψ minusλN) RMSEψ =

radic

mean(λψ minusλψ )) When quantifying true occupancy weconsidered occupied transects to be thosewith encounter pge05Having foundextremely limited statistical powerwithyearly-p esti-mates(seeObjective1Results)weprimarilyassessedsamplingallo-cations(Objective2)forconstant-pandlogisticregressionmodelsbutthentestedyearly-pagainwithbetterallocationFurthermoregivenlikely targets of inference we considered RMSEN most relevant toconstant- pandlogisticregressionmodelsandRMSEψ relevant to the yearly-pmodelForadditionalmethodsand rationale seeAppendixS3

3emsp |emspRESULTS

31emsp|emspOccupancy abundance and estimator behavior

Comparingtrueoccupancy(proportiontransectswithencounterpge05)andabundanceinformedunderstandingofstatisticalpowerandestima-torpropertiesTrueoccupancyrelatedpositivelywithabundancebutpla-teauedathigherabundances(Figure4ac)Trueoccupancydeclineslaggedabundancedeclines(Figure4bd)Withshortertransectstrueoccupancycorrespondedbetterbutstillimperfectlywithabundance(Figure4cd)

Occupancyestimatesremainedconstantwithnoabundancetrendand declinedwith declining abundance (Figure5) Detectability es-timates declined with declining abundance either across scenarios(constant- pestimates)orthroughtime(yearly-pestimatesFigure6)Yearly-p estimator precisionwas less than for constant-p estimatesanddeclinedwithdecliningabundance(Figures5and6)

Detectabilityestimatesfollowedthebehaviorofencounterprob-abilitiesatoccupiedtransectsbutweregenerallyhigherthatisposi-tivelybiased(Figure6)makingoccupancyestimatesnegativelybiased(Figure5)Logisticregressionestimatesdeviatedevenmorefromtrueoccupancy (Figure5cfil) reflecting thediffering targetof inference(ieprobabilityofphysicalpresenceseeSection2andAppendixS3)

32emsp|emspObjective 1 Sampling effort

Withhistoricalsurveyallocationstatisticalpowerincreasedwithin-creasingsamplingeffortandstrongerpopulationdeclines(Figure7)

F IGURE 4emspTrueoccupancy(ψ) versus abundance(N=numberofindividualsacrossall7676971haofpotentialhabitatinOregonandWashingtonnationalforestsac)andcorrespondenceof(odds)occupancy(λψ)withabundancetrends(λNbd)forsimulatedwhite-headedwoodpeckerpopulationsThirtyreplicatepopulationsmonitoredfor20yearsforeachtrendscenarioaredepictedwhensurveyedattransectsconsistingof10points(ab)orthreepoints(cd)eachInpanelsbanddtheredlineindicates11correspondence(desirableforinference)betweenoccupancyandabundancetrends

emspensp emsp | emsp7LATIF eT AL

The constant- pmodeland logistic regression (withsingle-surveyal-location) generally provided adequate power (ge80 chance of ob-servingadecline)Powerwasonlyinadequatewithasmalleffectsize(λN=098) andminimal sampling effort (j le 60 and90 transects forconstant- p and logistic regression respectively) In contrast powerwasneveradequatewith theyearly-pmodelSpurious trendswererarelyobserved(15ofsimulationsinwhichλN = 1)

With no abundance or occupancy trendsmodels estimated ac-tual trendswithminimal error and no apparent bias but error andbiasgrewwith increasingtrend (Figure8)Theconstant-pmodel in-creasingly overestimated declineswith steeper abundance declines

although abundance trendswere estimated better (RMSENle0055)than occupancy trends (RMSEψle0105) Yearly-p trend estimateswere centered between actual abundance and occupancy trends(RMSEle005) Models fitted to single-survey data estimated trueabundance trendswith the least error (RMSENle0008) and no ob-viousbias

33emsp|emspObjective 2 Sampling allocation

Monitoringstrategiesthattargetedinferenceoffiner-scaletrendsinspaceuseorabundanceandextendedsamplingspatiallygenerally

F IGURE 5emspYearlyoccupancyestimatesfromsimulatedregionalwhite-headedwoodpeckermonitoringSimulatedtrendswereλN=1(andashc)098(dndashf)095(gndashi)and09(jndashl)Repeat-surveyoccupancyestimatesassumedconstantdetectability(adgandj)orvariabledetectabilityamongyears(behandk)Single-surveyestimatesassumedperfectdetectability(cfiandl)Thirtysimulationsofmonitoringtransectsof10pointseachfor20yearsarerepresentedforeachscenario(n = 150and300transectsforrepeat-andsingle-surveyscenariosrespectively)Blackdotsandblueverticalbarsshowyearlyestimatesand95BCIsjitteredfordisplayBlacklinesconnectestimatesfromconsecutiveyearsforindividualsimulationsReddotsshowmeantrueoccupancyfor30simulationsthatisproportionofallpossibletransectsoccupied

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 3: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

emspensp emsp | emsp3LATIF eT AL

objectives (Mellen-McLean etal 2015)Growing agency interest inwhite-headedwoodpeckers couldmotivate expanded andmore fo-cusedmonitoringoflong-termtrendswhichweaimedtoinform

Toaddressthequestionsraisedbythiscasestudyweusedsim-ulations to evaluate alternative approaches to regional monitoringwhile explicitly consideringpotential inference and species ecologySpatiallyexplicitsimulationscorrectlyrepresentedmodelmisspecifi-cationtypicallyinherentwithoccupancy-basedmonitoringofcontinu-ouslydistributedpopulationsimprovingestimatesofstatisticalpowerforinformingstudydesign(Ellisetal20142015)Weassessedmin-imumeffortneededfordesirablestatisticalpowergiventhehistoricalstudydesignandweexploredhowalternatesamplingallocationsin-fluencedstatisticalpowerWeconsideredsamplingallocationsalter-natelysuitedforinferringcoarse-scaledistributionalchangesorrangedynamicsversusfiner-scalechangesinabundanceorspaceuse(egValente etal 2017)Candidate designsvaried in how they favoredspatiallyextensiveversusmoreintensivesurveyallocationthevalueof which depends on population heterogeneity (Rhodes amp Jonzeacuten

2011)Alternativesconsideredhererepresentcommonlyuseddesignsforbroad-scaleoccupancy-basedstudiesthusprovidinggeneralguid-anceformonitoringsparselydistributedterritorialanimals

2emsp |emspMATERIALS AND METHODS

21emsp|emspWhite- headed Woodpecker regional monitoring

Occupancy-basedmonitoringofWHWOacross the inlandnorth-westernUnited Stateswas originally implemented in 2011ndash2016(Mellen-McLeanetal2015)Surveysoccurredalong30transectstwiceayearduringthenestingseasonMay1ndashJune30Surveyorsbroadcastrecordedcallsanddrummingtoelicitterritorialresponsesto improvedetectabilityTransectswere10 surveypoints spaced~300mapartAtransectsurveyconsistedofsurveyingeachpointalongatransectThisapproachiscommonforsurveyingbirds(com-mon approach for birds eg Amundson Royle ampHandel 2014

F IGURE 2emspNationalforestsoftheeasternCascadeMountainsOregonandWashingtonUSAWhite-headedWoodpeckerregionalmonitoringfocusedonpotentialhabitat(gray)wherelarge-conepinespecies(mainlyponderosa)dominate

4emsp |emsp emspensp LATIF eT AL

Pavlacky Blakesley White Hanni amp Lukacs 2012 Rota etal2009)andforWHWOprovidedopportunityforbroadcastingcallsfollowedbyaperiodoflistening(max5mintotal)beforeproceed-ing to the next point To conserve time surveyors immediatelyproceeded to thenextpointalonga transectwhenwhite-headedwoodpecker was first detected Thus they strictly recorded de-tectionndashnondetection data restricting the focus ofmonitoring tooccupancy

22emsp|emspPopulation and sampling simulations

Following the initial 6-year effort we simulated occupancy-basedmonitoringofwhite-headedwoodpeckerstoinformpotentialfutureeffortsRecognizingtheneedforgreatersamplingefforttomeaning-fullyquantifytrendshoweverwesimulatedsurveysofge60transectsover20years

Simulatedpopulationsexperienceddeterministictrendsbasedonanexponentialmodel

where Nt ispopulationabundanceinyeart and λN istheproportionchangeinabundanceperyear(fortheoreticalbasisseeGotelli2001)Weconsidereda rangeof trendscenariosofpotential conservationconcernλN=10098095or09thatis03364or88declineover20years Simulated trends representedeffect sizes foranalyzingpowerPositivetrends(λNgt10)werelessofaconcernforinformingprioritizationofWHWOforconservationactionandthere-forenotconsideredAlthoughrealpopulationsfluctuatestochasticallywe lacked information for simulating specific levels of stochasticityanddeterministictrendsprovidedclearereffectsizesforinterpretingpowerestimates(seealsoEllisetal2015MacKenzieampRoyle2005)We intended the range of simple deterministic trends consideredhereto informsurveillancemonitoringaimedatdocumentingunan-ticipatedchangeratherthanparticularecologicalscenarios(HuttoampBelote2013)

Wesimulatedpopulationmonitoringsoastoexplicitlyrepresentthe process of sampling discrete detectionndashnondetection data forcontinuouslydistributedpopulations(cfEffordampDawson2012Ellisetal 2014 contraMacKenzie amp Royle 2005)We conducted sim-ulations using the rSPACE package (Ellis etal 2014 2015) in R (RCoreTeam2015) Simulationsentailed (1) randomlydistributingN1 homerangesacrosssuitablehabitat(2)calculatingtheprobabilityofencounteringge1white-headedwoodpeckeratasurveypoint(3)gen-eratingdetectionndashnondetectiondatabasedontheseencounterprob-abilitiesand(4)randomlyremovingNttimes(1minusλN)individualsfromthelandscapeandrepeatingsteps2ndash3foreachremainingyeart = 2ndash20 (AppendixS1)Wecollecteddataforaregion-wide300mpointgridand laterderivedtransectmonitoringscenariosSurveyorsrarelyre-cordeddetectionsgt150maway(7of2011ndash2016detections)sowesimulated150-mfixed-radiuspointsurveys

Weconsolidatedpointdatatorepresenttransectmonitoringsce-nariosvaryinginsamplingeffortandallocationAtransectdetectionrepresented ge1 detection at any given point along a transect on a

givendayOnehomerange(1-kmradius)couldincludemultipleneigh-boringpointssopoint-leveldetectionswithintransectswerespatiallycorrelatedwhereasge2kmtransectspacingavoidedspatialcorrelationin transectdetectionsAdditionallywith transectswewereable toexploreafundamentalissueinmonitoringdesigntherelativemeritsofsampling intensively (egmorepointspertransectorrepeatsur-veys)versusextensively(moretransects)

Weconsideredmonitoringscenariostoaccomplishtwoobjectives(1) identify levels of sampling effort capable of providing desirablepower(ge80chancetoobserveadeclinegivenλNle098) (2)com-parecommonlyconsideredsamplingallocationstrategiesrepresentingalternativetargetsofinferenceandspatialextentsofsamplingWead-dressedobjective1byvaryingsamplingeffort(ntransectge60ienpoint-surveys-per-yearge1200)withdifferenttrendsandthehistoricalsamplingallocationof10pointspertransectsurveyedtwiceeveryyearForob-jective2wefocusedonalong-termdeclinescenario(λN=098)andfixedsamplingeffort (npoint-surveys-per-year=1200)whilevaryingmoni-toringstrategiesThehistoricalallocationschemerepresentedanin-tendedinferenceofrelativelycoarse-scaletrendsAlternativeschemesincludedsurveyingshortertransects(8ndash3pointspertransect)whichtargetedinferenceoffiner-scaletrendsbysamplingsmallerareaspo-tentiallyoccupiedbyfewerindividualsWealsoconsideredsurveyingtransects only once per year representing single-survey occupancyapproacheswhoseestimatesprovidetemporalsnapshotsofpopula-tions useful for inferring changes in abundance (Hutto 2016 Latifetal2016)Finallyweconsideredsurveyinglt100oftransectsperyear (ie paneldesignsBaileyHinesNicholsampMacKenzie2007UrquhartampKincaid1999)orrepeatingsurveysatlt100oftransectseachyearHavingfixedsamplingeffort thesealternateschemesal-lowedmonitoringofmoretransectswhichextendedspatialsampling

For simplicity simulations assumed no false-negative observererror (hereafter observer error) that iswhite-headedwoodpeckerswerealwaysdetected ifpresentduringasurveyThusdetectabilitywasdeterminedexclusivelybyterritorialmovementbetweenrepeatsurveyswithinayearThisassumptionwasdefensiblebecausecall-broadcast surveys reduce observer error and standardized surveyslimit potentially confounding interannual variation in observer error(Mellen-McLeanetal2015)Additionallywecalibratedsimulationswith pilot data (Appendix S2) Encounter probabilities during a sur-vey therefore reflected the number location size and spacing ofhome ranges informedbywhite-headedwoodpeckerecologypop-ulationsizereflectedcalibrationwithpilotdataandassumedtrends(AppendicesS1andS2)

Spatialvariability indetectability (ieencounterprobabilities insimulations)emerged fromvariation innestinghabitatandrandomplacement of home rangeswithin this habitatwhich caused localabundanceandproximitytocentersofactivitytovaryamongtran-sects Reflecting likely realities detectability at occupied transectsincreasedwith increasing abundance and decreasedwith distancefromhome rangecenters (seeAppendixS1)Analyses ignored thisspatialheterogeneityandthusinformedstudydesignwhileaccount-ingforlikelyconstraintsonmodelcomplexityduetolimitedsamplingeffortWe initially considered smallerhome ranges (600m radius)

(1)Nt=N1timesλtN

emspensp emsp | emsp5LATIF eT AL

butcalibrationtopilotdatarequiredcompensatoryadjustments toinitialabundanceresultinginsimilarpatternsinstatisticalpower(QLatif unpublished data)We restricted simulations to national for-estsrepresenting77(77times106ha)ofpotentialhabitatwithintheregion(Figure2)

23emsp|emspData analysis

Forscenariosyieldingrepeat-surveydataweestimatedtrendswithtwo different occupancy models representing commonly consid-eredwaysofcorrectingfordetectability(pegLindenetal2017Steenweg etal 2016 Zielinski etal 2013) to estimate occupancyprobability (ψ Figure3ab) One model allowed detectability esti-matestovaryinterannually(hereaftertheyearly-pmodelFigure3a)whereastheotherhelddetectabilityconstant(hereafter the constant- pmodelFigure3bformodelstructuresseeAppendixS3)Becauseindividuals couldmove in or out of the surveyed areabetween re-peat surveyswithin a year thesemodels quantified the probabilityof a transect intersectingge1home rangehereafter true occupancywhichdescribesspeciesrangeorspaceuse(EffordampDawson2012MacKenzieampRoyle 2005) Theyearly-pmodel allowsdetectability

tochangewithchangingabundance(RoyleampNichols2003)tobet-terestimatetrueoccupancyTheconstant-pmodelmisspecifiestrueoccupancybutisfrequentlyconsideredandmaybeselectedforpar-simonyinappliedstudies(egZielinskietal2013)Additionallyhav-ingcontrolledforobservererror(egifnonexistentasinsimulationsorcontrolledviastandardizedsurveys)theconstant-pmodelcoercesoccupancyestimatestoreflectanyinterannualchangesshiftingthetargetofinferencetoabundance(Figure3b)

For scenarios yielding single-survey data we estimated trendsusing logistic regression (see structure inAppendix S3) Having ex-cludedobservererror insimulations logistic regressionmodelsesti-matedprobabilityofge1individualrsquosphysicalpresenceduringasurveyhereafter probability of physical presence Single-survey scenariosrepresented single-surveyoccupancyapproaches inwhich replicatesurveysoccurwithinanarrowenoughtimeframefordetectabilitytoquantifyobservererrorsothatoccupancyestimatesquantifyproba-bilityofphysicalpresence(egdouble-observerandremovaldesignsNicholsetal2008Rotaetal2009)ByomittingobservererrorfromsimulationshoweverreplicatesurveyswereunnecessarytoquantifyphysicalpresenceProbabilityofphysicalpresencerepresentsatem-poral snapshot of a population unaffected by territorial movement

F IGURE 3emspHowmodelestimatesreflectunderlyingprocessesunderalternativemonitoringapproachesRepeat-surveyoccupancyestimatesfundamentallyquantifytrueoccupancy(ab)butcanindexabundancetrendsifdetectabilityisheldconstant(bcontraA)Territorialmovementinfluencesrepeat-surveyoccupancyestimates(ab)whereassingle-surveyoccupancyestimatesrepresentpopulationsnapshotsnotinfluencedbymovement(c)False-negativeobservererrorwasnotsimulatedbutcouldinfluenceestimatesinreality

6emsp |emsp emspensp LATIF eT AL

expected to closely track abundance (Figure3c Hutto 2016 Latifetal2016)AdditionallysurveyingtransectsonlyonceallowedustomonitortwiceasmanytransectsincreasingsamplingextentInprac-ticeauxiliarysampling (eg recordingdetectiontimingordeployingmultipleobservers)wouldaccount forobservererror (Nicholsetal2008 Rota etal 2009) likely adding to uncertainty in trend esti-matesIgnoringobservererrorinbothsingle-andrepeat-surveysce-narioshowevermadetheircomparisoninformative

Wequantified occupancy trends as proportionyearly change inodds occupancy λψ =

ψt+1∕(1minusψt+1)

ψt∕(1minusψt) (MacKenzie etal 2006)We ana-

lyzeddetectionndashnondetectiondatawithfixedyeareffectsandsubse-quentlycalculatedleast-squarestrendsinyearlyoccupancyestimates(seealsoEllisetal2014)Wequantifiedstatisticalpoweraspercentsimulationswhen95Bayesiancredibleintervals(BCIs)fortheesti-matedtrendforthestudyperiod(λψ where logit(ψt)=β0+ log (λψ)times t p200MacKenzieetal2006)fellbelow1Wealsocalculatedrootmean squared error for trend estimates (RMSEN=

radic

mean(λψ minusλN) RMSEψ =

radic

mean(λψ minusλψ )) When quantifying true occupancy weconsidered occupied transects to be thosewith encounter pge05Having foundextremely limited statistical powerwithyearly-p esti-mates(seeObjective1Results)weprimarilyassessedsamplingallo-cations(Objective2)forconstant-pandlogisticregressionmodelsbutthentestedyearly-pagainwithbetterallocationFurthermoregivenlikely targets of inference we considered RMSEN most relevant toconstant- pandlogisticregressionmodelsandRMSEψ relevant to the yearly-pmodelForadditionalmethodsand rationale seeAppendixS3

3emsp |emspRESULTS

31emsp|emspOccupancy abundance and estimator behavior

Comparingtrueoccupancy(proportiontransectswithencounterpge05)andabundanceinformedunderstandingofstatisticalpowerandestima-torpropertiesTrueoccupancyrelatedpositivelywithabundancebutpla-teauedathigherabundances(Figure4ac)Trueoccupancydeclineslaggedabundancedeclines(Figure4bd)Withshortertransectstrueoccupancycorrespondedbetterbutstillimperfectlywithabundance(Figure4cd)

Occupancyestimatesremainedconstantwithnoabundancetrendand declinedwith declining abundance (Figure5) Detectability es-timates declined with declining abundance either across scenarios(constant- pestimates)orthroughtime(yearly-pestimatesFigure6)Yearly-p estimator precisionwas less than for constant-p estimatesanddeclinedwithdecliningabundance(Figures5and6)

Detectabilityestimatesfollowedthebehaviorofencounterprob-abilitiesatoccupiedtransectsbutweregenerallyhigherthatisposi-tivelybiased(Figure6)makingoccupancyestimatesnegativelybiased(Figure5)Logisticregressionestimatesdeviatedevenmorefromtrueoccupancy (Figure5cfil) reflecting thediffering targetof inference(ieprobabilityofphysicalpresenceseeSection2andAppendixS3)

32emsp|emspObjective 1 Sampling effort

Withhistoricalsurveyallocationstatisticalpowerincreasedwithin-creasingsamplingeffortandstrongerpopulationdeclines(Figure7)

F IGURE 4emspTrueoccupancy(ψ) versus abundance(N=numberofindividualsacrossall7676971haofpotentialhabitatinOregonandWashingtonnationalforestsac)andcorrespondenceof(odds)occupancy(λψ)withabundancetrends(λNbd)forsimulatedwhite-headedwoodpeckerpopulationsThirtyreplicatepopulationsmonitoredfor20yearsforeachtrendscenarioaredepictedwhensurveyedattransectsconsistingof10points(ab)orthreepoints(cd)eachInpanelsbanddtheredlineindicates11correspondence(desirableforinference)betweenoccupancyandabundancetrends

emspensp emsp | emsp7LATIF eT AL

The constant- pmodeland logistic regression (withsingle-surveyal-location) generally provided adequate power (ge80 chance of ob-servingadecline)Powerwasonlyinadequatewithasmalleffectsize(λN=098) andminimal sampling effort (j le 60 and90 transects forconstant- p and logistic regression respectively) In contrast powerwasneveradequatewith theyearly-pmodelSpurious trendswererarelyobserved(15ofsimulationsinwhichλN = 1)

With no abundance or occupancy trendsmodels estimated ac-tual trendswithminimal error and no apparent bias but error andbiasgrewwith increasingtrend (Figure8)Theconstant-pmodel in-creasingly overestimated declineswith steeper abundance declines

although abundance trendswere estimated better (RMSENle0055)than occupancy trends (RMSEψle0105) Yearly-p trend estimateswere centered between actual abundance and occupancy trends(RMSEle005) Models fitted to single-survey data estimated trueabundance trendswith the least error (RMSENle0008) and no ob-viousbias

33emsp|emspObjective 2 Sampling allocation

Monitoringstrategiesthattargetedinferenceoffiner-scaletrendsinspaceuseorabundanceandextendedsamplingspatiallygenerally

F IGURE 5emspYearlyoccupancyestimatesfromsimulatedregionalwhite-headedwoodpeckermonitoringSimulatedtrendswereλN=1(andashc)098(dndashf)095(gndashi)and09(jndashl)Repeat-surveyoccupancyestimatesassumedconstantdetectability(adgandj)orvariabledetectabilityamongyears(behandk)Single-surveyestimatesassumedperfectdetectability(cfiandl)Thirtysimulationsofmonitoringtransectsof10pointseachfor20yearsarerepresentedforeachscenario(n = 150and300transectsforrepeat-andsingle-surveyscenariosrespectively)Blackdotsandblueverticalbarsshowyearlyestimatesand95BCIsjitteredfordisplayBlacklinesconnectestimatesfromconsecutiveyearsforindividualsimulationsReddotsshowmeantrueoccupancyfor30simulationsthatisproportionofallpossibletransectsoccupied

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 4: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

4emsp |emsp emspensp LATIF eT AL

Pavlacky Blakesley White Hanni amp Lukacs 2012 Rota etal2009)andforWHWOprovidedopportunityforbroadcastingcallsfollowedbyaperiodoflistening(max5mintotal)beforeproceed-ing to the next point To conserve time surveyors immediatelyproceeded to thenextpointalonga transectwhenwhite-headedwoodpecker was first detected Thus they strictly recorded de-tectionndashnondetection data restricting the focus ofmonitoring tooccupancy

22emsp|emspPopulation and sampling simulations

Following the initial 6-year effort we simulated occupancy-basedmonitoringofwhite-headedwoodpeckerstoinformpotentialfutureeffortsRecognizingtheneedforgreatersamplingefforttomeaning-fullyquantifytrendshoweverwesimulatedsurveysofge60transectsover20years

Simulatedpopulationsexperienceddeterministictrendsbasedonanexponentialmodel

where Nt ispopulationabundanceinyeart and λN istheproportionchangeinabundanceperyear(fortheoreticalbasisseeGotelli2001)Weconsidereda rangeof trendscenariosofpotential conservationconcernλN=10098095or09thatis03364or88declineover20years Simulated trends representedeffect sizes foranalyzingpowerPositivetrends(λNgt10)werelessofaconcernforinformingprioritizationofWHWOforconservationactionandthere-forenotconsideredAlthoughrealpopulationsfluctuatestochasticallywe lacked information for simulating specific levels of stochasticityanddeterministictrendsprovidedclearereffectsizesforinterpretingpowerestimates(seealsoEllisetal2015MacKenzieampRoyle2005)We intended the range of simple deterministic trends consideredhereto informsurveillancemonitoringaimedatdocumentingunan-ticipatedchangeratherthanparticularecologicalscenarios(HuttoampBelote2013)

Wesimulatedpopulationmonitoringsoastoexplicitlyrepresentthe process of sampling discrete detectionndashnondetection data forcontinuouslydistributedpopulations(cfEffordampDawson2012Ellisetal 2014 contraMacKenzie amp Royle 2005)We conducted sim-ulations using the rSPACE package (Ellis etal 2014 2015) in R (RCoreTeam2015) Simulationsentailed (1) randomlydistributingN1 homerangesacrosssuitablehabitat(2)calculatingtheprobabilityofencounteringge1white-headedwoodpeckeratasurveypoint(3)gen-eratingdetectionndashnondetectiondatabasedontheseencounterprob-abilitiesand(4)randomlyremovingNttimes(1minusλN)individualsfromthelandscapeandrepeatingsteps2ndash3foreachremainingyeart = 2ndash20 (AppendixS1)Wecollecteddataforaregion-wide300mpointgridand laterderivedtransectmonitoringscenariosSurveyorsrarelyre-cordeddetectionsgt150maway(7of2011ndash2016detections)sowesimulated150-mfixed-radiuspointsurveys

Weconsolidatedpointdatatorepresenttransectmonitoringsce-nariosvaryinginsamplingeffortandallocationAtransectdetectionrepresented ge1 detection at any given point along a transect on a

givendayOnehomerange(1-kmradius)couldincludemultipleneigh-boringpointssopoint-leveldetectionswithintransectswerespatiallycorrelatedwhereasge2kmtransectspacingavoidedspatialcorrelationin transectdetectionsAdditionallywith transectswewereable toexploreafundamentalissueinmonitoringdesigntherelativemeritsofsampling intensively (egmorepointspertransectorrepeatsur-veys)versusextensively(moretransects)

Weconsideredmonitoringscenariostoaccomplishtwoobjectives(1) identify levels of sampling effort capable of providing desirablepower(ge80chancetoobserveadeclinegivenλNle098) (2)com-parecommonlyconsideredsamplingallocationstrategiesrepresentingalternativetargetsofinferenceandspatialextentsofsamplingWead-dressedobjective1byvaryingsamplingeffort(ntransectge60ienpoint-surveys-per-yearge1200)withdifferenttrendsandthehistoricalsamplingallocationof10pointspertransectsurveyedtwiceeveryyearForob-jective2wefocusedonalong-termdeclinescenario(λN=098)andfixedsamplingeffort (npoint-surveys-per-year=1200)whilevaryingmoni-toringstrategiesThehistoricalallocationschemerepresentedanin-tendedinferenceofrelativelycoarse-scaletrendsAlternativeschemesincludedsurveyingshortertransects(8ndash3pointspertransect)whichtargetedinferenceoffiner-scaletrendsbysamplingsmallerareaspo-tentiallyoccupiedbyfewerindividualsWealsoconsideredsurveyingtransects only once per year representing single-survey occupancyapproacheswhoseestimatesprovidetemporalsnapshotsofpopula-tions useful for inferring changes in abundance (Hutto 2016 Latifetal2016)Finallyweconsideredsurveyinglt100oftransectsperyear (ie paneldesignsBaileyHinesNicholsampMacKenzie2007UrquhartampKincaid1999)orrepeatingsurveysatlt100oftransectseachyearHavingfixedsamplingeffort thesealternateschemesal-lowedmonitoringofmoretransectswhichextendedspatialsampling

For simplicity simulations assumed no false-negative observererror (hereafter observer error) that iswhite-headedwoodpeckerswerealwaysdetected ifpresentduringasurveyThusdetectabilitywasdeterminedexclusivelybyterritorialmovementbetweenrepeatsurveyswithinayearThisassumptionwasdefensiblebecausecall-broadcast surveys reduce observer error and standardized surveyslimit potentially confounding interannual variation in observer error(Mellen-McLeanetal2015)Additionallywecalibratedsimulationswith pilot data (Appendix S2) Encounter probabilities during a sur-vey therefore reflected the number location size and spacing ofhome ranges informedbywhite-headedwoodpeckerecologypop-ulationsizereflectedcalibrationwithpilotdataandassumedtrends(AppendicesS1andS2)

Spatialvariability indetectability (ieencounterprobabilities insimulations)emerged fromvariation innestinghabitatandrandomplacement of home rangeswithin this habitatwhich caused localabundanceandproximitytocentersofactivitytovaryamongtran-sects Reflecting likely realities detectability at occupied transectsincreasedwith increasing abundance and decreasedwith distancefromhome rangecenters (seeAppendixS1)Analyses ignored thisspatialheterogeneityandthusinformedstudydesignwhileaccount-ingforlikelyconstraintsonmodelcomplexityduetolimitedsamplingeffortWe initially considered smallerhome ranges (600m radius)

(1)Nt=N1timesλtN

emspensp emsp | emsp5LATIF eT AL

butcalibrationtopilotdatarequiredcompensatoryadjustments toinitialabundanceresultinginsimilarpatternsinstatisticalpower(QLatif unpublished data)We restricted simulations to national for-estsrepresenting77(77times106ha)ofpotentialhabitatwithintheregion(Figure2)

23emsp|emspData analysis

Forscenariosyieldingrepeat-surveydataweestimatedtrendswithtwo different occupancy models representing commonly consid-eredwaysofcorrectingfordetectability(pegLindenetal2017Steenweg etal 2016 Zielinski etal 2013) to estimate occupancyprobability (ψ Figure3ab) One model allowed detectability esti-matestovaryinterannually(hereaftertheyearly-pmodelFigure3a)whereastheotherhelddetectabilityconstant(hereafter the constant- pmodelFigure3bformodelstructuresseeAppendixS3)Becauseindividuals couldmove in or out of the surveyed areabetween re-peat surveyswithin a year thesemodels quantified the probabilityof a transect intersectingge1home rangehereafter true occupancywhichdescribesspeciesrangeorspaceuse(EffordampDawson2012MacKenzieampRoyle 2005) Theyearly-pmodel allowsdetectability

tochangewithchangingabundance(RoyleampNichols2003)tobet-terestimatetrueoccupancyTheconstant-pmodelmisspecifiestrueoccupancybutisfrequentlyconsideredandmaybeselectedforpar-simonyinappliedstudies(egZielinskietal2013)Additionallyhav-ingcontrolledforobservererror(egifnonexistentasinsimulationsorcontrolledviastandardizedsurveys)theconstant-pmodelcoercesoccupancyestimatestoreflectanyinterannualchangesshiftingthetargetofinferencetoabundance(Figure3b)

For scenarios yielding single-survey data we estimated trendsusing logistic regression (see structure inAppendix S3) Having ex-cludedobservererror insimulations logistic regressionmodelsesti-matedprobabilityofge1individualrsquosphysicalpresenceduringasurveyhereafter probability of physical presence Single-survey scenariosrepresented single-surveyoccupancyapproaches inwhich replicatesurveysoccurwithinanarrowenoughtimeframefordetectabilitytoquantifyobservererrorsothatoccupancyestimatesquantifyproba-bilityofphysicalpresence(egdouble-observerandremovaldesignsNicholsetal2008Rotaetal2009)ByomittingobservererrorfromsimulationshoweverreplicatesurveyswereunnecessarytoquantifyphysicalpresenceProbabilityofphysicalpresencerepresentsatem-poral snapshot of a population unaffected by territorial movement

F IGURE 3emspHowmodelestimatesreflectunderlyingprocessesunderalternativemonitoringapproachesRepeat-surveyoccupancyestimatesfundamentallyquantifytrueoccupancy(ab)butcanindexabundancetrendsifdetectabilityisheldconstant(bcontraA)Territorialmovementinfluencesrepeat-surveyoccupancyestimates(ab)whereassingle-surveyoccupancyestimatesrepresentpopulationsnapshotsnotinfluencedbymovement(c)False-negativeobservererrorwasnotsimulatedbutcouldinfluenceestimatesinreality

6emsp |emsp emspensp LATIF eT AL

expected to closely track abundance (Figure3c Hutto 2016 Latifetal2016)AdditionallysurveyingtransectsonlyonceallowedustomonitortwiceasmanytransectsincreasingsamplingextentInprac-ticeauxiliarysampling (eg recordingdetectiontimingordeployingmultipleobservers)wouldaccount forobservererror (Nicholsetal2008 Rota etal 2009) likely adding to uncertainty in trend esti-matesIgnoringobservererrorinbothsingle-andrepeat-surveysce-narioshowevermadetheircomparisoninformative

Wequantified occupancy trends as proportionyearly change inodds occupancy λψ =

ψt+1∕(1minusψt+1)

ψt∕(1minusψt) (MacKenzie etal 2006)We ana-

lyzeddetectionndashnondetectiondatawithfixedyeareffectsandsubse-quentlycalculatedleast-squarestrendsinyearlyoccupancyestimates(seealsoEllisetal2014)Wequantifiedstatisticalpoweraspercentsimulationswhen95Bayesiancredibleintervals(BCIs)fortheesti-matedtrendforthestudyperiod(λψ where logit(ψt)=β0+ log (λψ)times t p200MacKenzieetal2006)fellbelow1Wealsocalculatedrootmean squared error for trend estimates (RMSEN=

radic

mean(λψ minusλN) RMSEψ =

radic

mean(λψ minusλψ )) When quantifying true occupancy weconsidered occupied transects to be thosewith encounter pge05Having foundextremely limited statistical powerwithyearly-p esti-mates(seeObjective1Results)weprimarilyassessedsamplingallo-cations(Objective2)forconstant-pandlogisticregressionmodelsbutthentestedyearly-pagainwithbetterallocationFurthermoregivenlikely targets of inference we considered RMSEN most relevant toconstant- pandlogisticregressionmodelsandRMSEψ relevant to the yearly-pmodelForadditionalmethodsand rationale seeAppendixS3

3emsp |emspRESULTS

31emsp|emspOccupancy abundance and estimator behavior

Comparingtrueoccupancy(proportiontransectswithencounterpge05)andabundanceinformedunderstandingofstatisticalpowerandestima-torpropertiesTrueoccupancyrelatedpositivelywithabundancebutpla-teauedathigherabundances(Figure4ac)Trueoccupancydeclineslaggedabundancedeclines(Figure4bd)Withshortertransectstrueoccupancycorrespondedbetterbutstillimperfectlywithabundance(Figure4cd)

Occupancyestimatesremainedconstantwithnoabundancetrendand declinedwith declining abundance (Figure5) Detectability es-timates declined with declining abundance either across scenarios(constant- pestimates)orthroughtime(yearly-pestimatesFigure6)Yearly-p estimator precisionwas less than for constant-p estimatesanddeclinedwithdecliningabundance(Figures5and6)

Detectabilityestimatesfollowedthebehaviorofencounterprob-abilitiesatoccupiedtransectsbutweregenerallyhigherthatisposi-tivelybiased(Figure6)makingoccupancyestimatesnegativelybiased(Figure5)Logisticregressionestimatesdeviatedevenmorefromtrueoccupancy (Figure5cfil) reflecting thediffering targetof inference(ieprobabilityofphysicalpresenceseeSection2andAppendixS3)

32emsp|emspObjective 1 Sampling effort

Withhistoricalsurveyallocationstatisticalpowerincreasedwithin-creasingsamplingeffortandstrongerpopulationdeclines(Figure7)

F IGURE 4emspTrueoccupancy(ψ) versus abundance(N=numberofindividualsacrossall7676971haofpotentialhabitatinOregonandWashingtonnationalforestsac)andcorrespondenceof(odds)occupancy(λψ)withabundancetrends(λNbd)forsimulatedwhite-headedwoodpeckerpopulationsThirtyreplicatepopulationsmonitoredfor20yearsforeachtrendscenarioaredepictedwhensurveyedattransectsconsistingof10points(ab)orthreepoints(cd)eachInpanelsbanddtheredlineindicates11correspondence(desirableforinference)betweenoccupancyandabundancetrends

emspensp emsp | emsp7LATIF eT AL

The constant- pmodeland logistic regression (withsingle-surveyal-location) generally provided adequate power (ge80 chance of ob-servingadecline)Powerwasonlyinadequatewithasmalleffectsize(λN=098) andminimal sampling effort (j le 60 and90 transects forconstant- p and logistic regression respectively) In contrast powerwasneveradequatewith theyearly-pmodelSpurious trendswererarelyobserved(15ofsimulationsinwhichλN = 1)

With no abundance or occupancy trendsmodels estimated ac-tual trendswithminimal error and no apparent bias but error andbiasgrewwith increasingtrend (Figure8)Theconstant-pmodel in-creasingly overestimated declineswith steeper abundance declines

although abundance trendswere estimated better (RMSENle0055)than occupancy trends (RMSEψle0105) Yearly-p trend estimateswere centered between actual abundance and occupancy trends(RMSEle005) Models fitted to single-survey data estimated trueabundance trendswith the least error (RMSENle0008) and no ob-viousbias

33emsp|emspObjective 2 Sampling allocation

Monitoringstrategiesthattargetedinferenceoffiner-scaletrendsinspaceuseorabundanceandextendedsamplingspatiallygenerally

F IGURE 5emspYearlyoccupancyestimatesfromsimulatedregionalwhite-headedwoodpeckermonitoringSimulatedtrendswereλN=1(andashc)098(dndashf)095(gndashi)and09(jndashl)Repeat-surveyoccupancyestimatesassumedconstantdetectability(adgandj)orvariabledetectabilityamongyears(behandk)Single-surveyestimatesassumedperfectdetectability(cfiandl)Thirtysimulationsofmonitoringtransectsof10pointseachfor20yearsarerepresentedforeachscenario(n = 150and300transectsforrepeat-andsingle-surveyscenariosrespectively)Blackdotsandblueverticalbarsshowyearlyestimatesand95BCIsjitteredfordisplayBlacklinesconnectestimatesfromconsecutiveyearsforindividualsimulationsReddotsshowmeantrueoccupancyfor30simulationsthatisproportionofallpossibletransectsoccupied

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 5: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

emspensp emsp | emsp5LATIF eT AL

butcalibrationtopilotdatarequiredcompensatoryadjustments toinitialabundanceresultinginsimilarpatternsinstatisticalpower(QLatif unpublished data)We restricted simulations to national for-estsrepresenting77(77times106ha)ofpotentialhabitatwithintheregion(Figure2)

23emsp|emspData analysis

Forscenariosyieldingrepeat-surveydataweestimatedtrendswithtwo different occupancy models representing commonly consid-eredwaysofcorrectingfordetectability(pegLindenetal2017Steenweg etal 2016 Zielinski etal 2013) to estimate occupancyprobability (ψ Figure3ab) One model allowed detectability esti-matestovaryinterannually(hereaftertheyearly-pmodelFigure3a)whereastheotherhelddetectabilityconstant(hereafter the constant- pmodelFigure3bformodelstructuresseeAppendixS3)Becauseindividuals couldmove in or out of the surveyed areabetween re-peat surveyswithin a year thesemodels quantified the probabilityof a transect intersectingge1home rangehereafter true occupancywhichdescribesspeciesrangeorspaceuse(EffordampDawson2012MacKenzieampRoyle 2005) Theyearly-pmodel allowsdetectability

tochangewithchangingabundance(RoyleampNichols2003)tobet-terestimatetrueoccupancyTheconstant-pmodelmisspecifiestrueoccupancybutisfrequentlyconsideredandmaybeselectedforpar-simonyinappliedstudies(egZielinskietal2013)Additionallyhav-ingcontrolledforobservererror(egifnonexistentasinsimulationsorcontrolledviastandardizedsurveys)theconstant-pmodelcoercesoccupancyestimatestoreflectanyinterannualchangesshiftingthetargetofinferencetoabundance(Figure3b)

For scenarios yielding single-survey data we estimated trendsusing logistic regression (see structure inAppendix S3) Having ex-cludedobservererror insimulations logistic regressionmodelsesti-matedprobabilityofge1individualrsquosphysicalpresenceduringasurveyhereafter probability of physical presence Single-survey scenariosrepresented single-surveyoccupancyapproaches inwhich replicatesurveysoccurwithinanarrowenoughtimeframefordetectabilitytoquantifyobservererrorsothatoccupancyestimatesquantifyproba-bilityofphysicalpresence(egdouble-observerandremovaldesignsNicholsetal2008Rotaetal2009)ByomittingobservererrorfromsimulationshoweverreplicatesurveyswereunnecessarytoquantifyphysicalpresenceProbabilityofphysicalpresencerepresentsatem-poral snapshot of a population unaffected by territorial movement

F IGURE 3emspHowmodelestimatesreflectunderlyingprocessesunderalternativemonitoringapproachesRepeat-surveyoccupancyestimatesfundamentallyquantifytrueoccupancy(ab)butcanindexabundancetrendsifdetectabilityisheldconstant(bcontraA)Territorialmovementinfluencesrepeat-surveyoccupancyestimates(ab)whereassingle-surveyoccupancyestimatesrepresentpopulationsnapshotsnotinfluencedbymovement(c)False-negativeobservererrorwasnotsimulatedbutcouldinfluenceestimatesinreality

6emsp |emsp emspensp LATIF eT AL

expected to closely track abundance (Figure3c Hutto 2016 Latifetal2016)AdditionallysurveyingtransectsonlyonceallowedustomonitortwiceasmanytransectsincreasingsamplingextentInprac-ticeauxiliarysampling (eg recordingdetectiontimingordeployingmultipleobservers)wouldaccount forobservererror (Nicholsetal2008 Rota etal 2009) likely adding to uncertainty in trend esti-matesIgnoringobservererrorinbothsingle-andrepeat-surveysce-narioshowevermadetheircomparisoninformative

Wequantified occupancy trends as proportionyearly change inodds occupancy λψ =

ψt+1∕(1minusψt+1)

ψt∕(1minusψt) (MacKenzie etal 2006)We ana-

lyzeddetectionndashnondetectiondatawithfixedyeareffectsandsubse-quentlycalculatedleast-squarestrendsinyearlyoccupancyestimates(seealsoEllisetal2014)Wequantifiedstatisticalpoweraspercentsimulationswhen95Bayesiancredibleintervals(BCIs)fortheesti-matedtrendforthestudyperiod(λψ where logit(ψt)=β0+ log (λψ)times t p200MacKenzieetal2006)fellbelow1Wealsocalculatedrootmean squared error for trend estimates (RMSEN=

radic

mean(λψ minusλN) RMSEψ =

radic

mean(λψ minusλψ )) When quantifying true occupancy weconsidered occupied transects to be thosewith encounter pge05Having foundextremely limited statistical powerwithyearly-p esti-mates(seeObjective1Results)weprimarilyassessedsamplingallo-cations(Objective2)forconstant-pandlogisticregressionmodelsbutthentestedyearly-pagainwithbetterallocationFurthermoregivenlikely targets of inference we considered RMSEN most relevant toconstant- pandlogisticregressionmodelsandRMSEψ relevant to the yearly-pmodelForadditionalmethodsand rationale seeAppendixS3

3emsp |emspRESULTS

31emsp|emspOccupancy abundance and estimator behavior

Comparingtrueoccupancy(proportiontransectswithencounterpge05)andabundanceinformedunderstandingofstatisticalpowerandestima-torpropertiesTrueoccupancyrelatedpositivelywithabundancebutpla-teauedathigherabundances(Figure4ac)Trueoccupancydeclineslaggedabundancedeclines(Figure4bd)Withshortertransectstrueoccupancycorrespondedbetterbutstillimperfectlywithabundance(Figure4cd)

Occupancyestimatesremainedconstantwithnoabundancetrendand declinedwith declining abundance (Figure5) Detectability es-timates declined with declining abundance either across scenarios(constant- pestimates)orthroughtime(yearly-pestimatesFigure6)Yearly-p estimator precisionwas less than for constant-p estimatesanddeclinedwithdecliningabundance(Figures5and6)

Detectabilityestimatesfollowedthebehaviorofencounterprob-abilitiesatoccupiedtransectsbutweregenerallyhigherthatisposi-tivelybiased(Figure6)makingoccupancyestimatesnegativelybiased(Figure5)Logisticregressionestimatesdeviatedevenmorefromtrueoccupancy (Figure5cfil) reflecting thediffering targetof inference(ieprobabilityofphysicalpresenceseeSection2andAppendixS3)

32emsp|emspObjective 1 Sampling effort

Withhistoricalsurveyallocationstatisticalpowerincreasedwithin-creasingsamplingeffortandstrongerpopulationdeclines(Figure7)

F IGURE 4emspTrueoccupancy(ψ) versus abundance(N=numberofindividualsacrossall7676971haofpotentialhabitatinOregonandWashingtonnationalforestsac)andcorrespondenceof(odds)occupancy(λψ)withabundancetrends(λNbd)forsimulatedwhite-headedwoodpeckerpopulationsThirtyreplicatepopulationsmonitoredfor20yearsforeachtrendscenarioaredepictedwhensurveyedattransectsconsistingof10points(ab)orthreepoints(cd)eachInpanelsbanddtheredlineindicates11correspondence(desirableforinference)betweenoccupancyandabundancetrends

emspensp emsp | emsp7LATIF eT AL

The constant- pmodeland logistic regression (withsingle-surveyal-location) generally provided adequate power (ge80 chance of ob-servingadecline)Powerwasonlyinadequatewithasmalleffectsize(λN=098) andminimal sampling effort (j le 60 and90 transects forconstant- p and logistic regression respectively) In contrast powerwasneveradequatewith theyearly-pmodelSpurious trendswererarelyobserved(15ofsimulationsinwhichλN = 1)

With no abundance or occupancy trendsmodels estimated ac-tual trendswithminimal error and no apparent bias but error andbiasgrewwith increasingtrend (Figure8)Theconstant-pmodel in-creasingly overestimated declineswith steeper abundance declines

although abundance trendswere estimated better (RMSENle0055)than occupancy trends (RMSEψle0105) Yearly-p trend estimateswere centered between actual abundance and occupancy trends(RMSEle005) Models fitted to single-survey data estimated trueabundance trendswith the least error (RMSENle0008) and no ob-viousbias

33emsp|emspObjective 2 Sampling allocation

Monitoringstrategiesthattargetedinferenceoffiner-scaletrendsinspaceuseorabundanceandextendedsamplingspatiallygenerally

F IGURE 5emspYearlyoccupancyestimatesfromsimulatedregionalwhite-headedwoodpeckermonitoringSimulatedtrendswereλN=1(andashc)098(dndashf)095(gndashi)and09(jndashl)Repeat-surveyoccupancyestimatesassumedconstantdetectability(adgandj)orvariabledetectabilityamongyears(behandk)Single-surveyestimatesassumedperfectdetectability(cfiandl)Thirtysimulationsofmonitoringtransectsof10pointseachfor20yearsarerepresentedforeachscenario(n = 150and300transectsforrepeat-andsingle-surveyscenariosrespectively)Blackdotsandblueverticalbarsshowyearlyestimatesand95BCIsjitteredfordisplayBlacklinesconnectestimatesfromconsecutiveyearsforindividualsimulationsReddotsshowmeantrueoccupancyfor30simulationsthatisproportionofallpossibletransectsoccupied

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 6: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

6emsp |emsp emspensp LATIF eT AL

expected to closely track abundance (Figure3c Hutto 2016 Latifetal2016)AdditionallysurveyingtransectsonlyonceallowedustomonitortwiceasmanytransectsincreasingsamplingextentInprac-ticeauxiliarysampling (eg recordingdetectiontimingordeployingmultipleobservers)wouldaccount forobservererror (Nicholsetal2008 Rota etal 2009) likely adding to uncertainty in trend esti-matesIgnoringobservererrorinbothsingle-andrepeat-surveysce-narioshowevermadetheircomparisoninformative

Wequantified occupancy trends as proportionyearly change inodds occupancy λψ =

ψt+1∕(1minusψt+1)

ψt∕(1minusψt) (MacKenzie etal 2006)We ana-

lyzeddetectionndashnondetectiondatawithfixedyeareffectsandsubse-quentlycalculatedleast-squarestrendsinyearlyoccupancyestimates(seealsoEllisetal2014)Wequantifiedstatisticalpoweraspercentsimulationswhen95Bayesiancredibleintervals(BCIs)fortheesti-matedtrendforthestudyperiod(λψ where logit(ψt)=β0+ log (λψ)times t p200MacKenzieetal2006)fellbelow1Wealsocalculatedrootmean squared error for trend estimates (RMSEN=

radic

mean(λψ minusλN) RMSEψ =

radic

mean(λψ minusλψ )) When quantifying true occupancy weconsidered occupied transects to be thosewith encounter pge05Having foundextremely limited statistical powerwithyearly-p esti-mates(seeObjective1Results)weprimarilyassessedsamplingallo-cations(Objective2)forconstant-pandlogisticregressionmodelsbutthentestedyearly-pagainwithbetterallocationFurthermoregivenlikely targets of inference we considered RMSEN most relevant toconstant- pandlogisticregressionmodelsandRMSEψ relevant to the yearly-pmodelForadditionalmethodsand rationale seeAppendixS3

3emsp |emspRESULTS

31emsp|emspOccupancy abundance and estimator behavior

Comparingtrueoccupancy(proportiontransectswithencounterpge05)andabundanceinformedunderstandingofstatisticalpowerandestima-torpropertiesTrueoccupancyrelatedpositivelywithabundancebutpla-teauedathigherabundances(Figure4ac)Trueoccupancydeclineslaggedabundancedeclines(Figure4bd)Withshortertransectstrueoccupancycorrespondedbetterbutstillimperfectlywithabundance(Figure4cd)

Occupancyestimatesremainedconstantwithnoabundancetrendand declinedwith declining abundance (Figure5) Detectability es-timates declined with declining abundance either across scenarios(constant- pestimates)orthroughtime(yearly-pestimatesFigure6)Yearly-p estimator precisionwas less than for constant-p estimatesanddeclinedwithdecliningabundance(Figures5and6)

Detectabilityestimatesfollowedthebehaviorofencounterprob-abilitiesatoccupiedtransectsbutweregenerallyhigherthatisposi-tivelybiased(Figure6)makingoccupancyestimatesnegativelybiased(Figure5)Logisticregressionestimatesdeviatedevenmorefromtrueoccupancy (Figure5cfil) reflecting thediffering targetof inference(ieprobabilityofphysicalpresenceseeSection2andAppendixS3)

32emsp|emspObjective 1 Sampling effort

Withhistoricalsurveyallocationstatisticalpowerincreasedwithin-creasingsamplingeffortandstrongerpopulationdeclines(Figure7)

F IGURE 4emspTrueoccupancy(ψ) versus abundance(N=numberofindividualsacrossall7676971haofpotentialhabitatinOregonandWashingtonnationalforestsac)andcorrespondenceof(odds)occupancy(λψ)withabundancetrends(λNbd)forsimulatedwhite-headedwoodpeckerpopulationsThirtyreplicatepopulationsmonitoredfor20yearsforeachtrendscenarioaredepictedwhensurveyedattransectsconsistingof10points(ab)orthreepoints(cd)eachInpanelsbanddtheredlineindicates11correspondence(desirableforinference)betweenoccupancyandabundancetrends

emspensp emsp | emsp7LATIF eT AL

The constant- pmodeland logistic regression (withsingle-surveyal-location) generally provided adequate power (ge80 chance of ob-servingadecline)Powerwasonlyinadequatewithasmalleffectsize(λN=098) andminimal sampling effort (j le 60 and90 transects forconstant- p and logistic regression respectively) In contrast powerwasneveradequatewith theyearly-pmodelSpurious trendswererarelyobserved(15ofsimulationsinwhichλN = 1)

With no abundance or occupancy trendsmodels estimated ac-tual trendswithminimal error and no apparent bias but error andbiasgrewwith increasingtrend (Figure8)Theconstant-pmodel in-creasingly overestimated declineswith steeper abundance declines

although abundance trendswere estimated better (RMSENle0055)than occupancy trends (RMSEψle0105) Yearly-p trend estimateswere centered between actual abundance and occupancy trends(RMSEle005) Models fitted to single-survey data estimated trueabundance trendswith the least error (RMSENle0008) and no ob-viousbias

33emsp|emspObjective 2 Sampling allocation

Monitoringstrategiesthattargetedinferenceoffiner-scaletrendsinspaceuseorabundanceandextendedsamplingspatiallygenerally

F IGURE 5emspYearlyoccupancyestimatesfromsimulatedregionalwhite-headedwoodpeckermonitoringSimulatedtrendswereλN=1(andashc)098(dndashf)095(gndashi)and09(jndashl)Repeat-surveyoccupancyestimatesassumedconstantdetectability(adgandj)orvariabledetectabilityamongyears(behandk)Single-surveyestimatesassumedperfectdetectability(cfiandl)Thirtysimulationsofmonitoringtransectsof10pointseachfor20yearsarerepresentedforeachscenario(n = 150and300transectsforrepeat-andsingle-surveyscenariosrespectively)Blackdotsandblueverticalbarsshowyearlyestimatesand95BCIsjitteredfordisplayBlacklinesconnectestimatesfromconsecutiveyearsforindividualsimulationsReddotsshowmeantrueoccupancyfor30simulationsthatisproportionofallpossibletransectsoccupied

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 7: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

emspensp emsp | emsp7LATIF eT AL

The constant- pmodeland logistic regression (withsingle-surveyal-location) generally provided adequate power (ge80 chance of ob-servingadecline)Powerwasonlyinadequatewithasmalleffectsize(λN=098) andminimal sampling effort (j le 60 and90 transects forconstant- p and logistic regression respectively) In contrast powerwasneveradequatewith theyearly-pmodelSpurious trendswererarelyobserved(15ofsimulationsinwhichλN = 1)

With no abundance or occupancy trendsmodels estimated ac-tual trendswithminimal error and no apparent bias but error andbiasgrewwith increasingtrend (Figure8)Theconstant-pmodel in-creasingly overestimated declineswith steeper abundance declines

although abundance trendswere estimated better (RMSENle0055)than occupancy trends (RMSEψle0105) Yearly-p trend estimateswere centered between actual abundance and occupancy trends(RMSEle005) Models fitted to single-survey data estimated trueabundance trendswith the least error (RMSENle0008) and no ob-viousbias

33emsp|emspObjective 2 Sampling allocation

Monitoringstrategiesthattargetedinferenceoffiner-scaletrendsinspaceuseorabundanceandextendedsamplingspatiallygenerally

F IGURE 5emspYearlyoccupancyestimatesfromsimulatedregionalwhite-headedwoodpeckermonitoringSimulatedtrendswereλN=1(andashc)098(dndashf)095(gndashi)and09(jndashl)Repeat-surveyoccupancyestimatesassumedconstantdetectability(adgandj)orvariabledetectabilityamongyears(behandk)Single-surveyestimatesassumedperfectdetectability(cfiandl)Thirtysimulationsofmonitoringtransectsof10pointseachfor20yearsarerepresentedforeachscenario(n = 150and300transectsforrepeat-andsingle-surveyscenariosrespectively)Blackdotsandblueverticalbarsshowyearlyestimatesand95BCIsjitteredfordisplayBlacklinesconnectestimatesfromconsecutiveyearsforindividualsimulationsReddotsshowmeantrueoccupancyfor30simulationsthatisproportionofallpossibletransectsoccupied

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 8: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

8emsp |emsp emspensp LATIF eT AL

providedmorepowerandlessestimationerrorthanthehistoricalstrategy Power improved and estimation error decreased whenmonitoring shorter butmore transects (Figures9 and 10) Powerwasgreatestanderror(RMSEN)leastwhenmonitoringtheprobabil-ityofphysicalpresencewithsingle-surveydata(Figures8cand10)Incontrastwefoundthe leastpowerandgreatesterror (RMSEψ) whenattemptingtomonitortrueoccupancywithrepeatsurveysandthe yearly-pmodel (Figure8b) Interestingly despitemoreexplic-itlytargetinginferenceofoccupancyyearly-ptrendsestimatesdidnotestimateoccupancytrendswithanylesserror(RMSEψle0105)thanlogisticregression(RMSEψle0055)Althoughitprovidedad-equatepower inmanyscenarios theconstant-pmodel tended tooverestimatebothoccupancyandabundancedeclines (Figures8aand9)

Paneldesignswith relativelysmallpanels (33of transectssur-veyed eachyear) also improved power and reduced error althoughlargerpanels (50of transectssurveyedeachyear)didnotprovidenotablegainsConductingfewerrepeatsurveysinexchangeformoretransects also did not substantively affect power and tended to in-creaseestimationerror(Figure11)

Thedesignthatmaximizedpowerandminimizederrorwithcon-stant- pand logistic regressionmodelswasa33paneldesignwith3 points per transects Even with this design the yearly-p modelprovided inadequate power (13) although trend estimation errorwas lessthanwiththehistoricaldesign (RMSEψ=0009nsim = 100 ntransect=600over20yearscomparewithFigure7b)

4emsp |emspDISCUSSION

Oursimulationssuggestedminimumlevelsofsamplingeffortneededtoprovideadequatepowerwhilealsoinformingstudydesignformon-itoringWHWOwithexplicittargetsofinferenceWiththehistoricaldesignofsurveyingtransectswith10pointseachtwiceayeartotar-getcoarse-scaletrendsintrueoccupancy(speciesrangeorspaceuse)we found 60ndash90 transects could be sufficient for desirable powerThisdesignwouldrequireholdingdetectabilityconstantacrossyearshoweverwhichwouldforceoccupancyestimatestoindexabundance(constant- pmodel)andcloudpotential inferenceSurveyingshortertransects (ie closer to the span of one home range) using a 33

F IGURE 6emspDetectionprobability(p black=medianblue=95BCIs)estimatesfromrepeat-surveyoccupancymodelsandencounterprobabilities(redietruedetectability)forsimulatedwhite-headedWoodpeckerregionalmonitoringScenariosentailedmonitoring150transectsof10pointseachsurveyedtwiceyearlyfor20yearsEstimatesassumeconstantdetectability(a)orvariabledetectabilityamongyears(bndashejitteredhorizontallyfordisplay)Encounterprobabilitiesaremedianvaluesforoccupiedtransects(iewithencounter pge05)SimulatedtrendswereλN=10(ab)098(ac)095(ad)or09(ae)(n = 30simulationsperscenario)

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 9: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

emspensp emsp | emsp9LATIF eT AL

paneldesigncouldallowstrongerandclearerinferenceofabundancetrendsextendsamplingspatiallyandimprovepowerForfurtherim-provementstopowerandinferencewecouldsurveytransectsonlyonceperyeartomonitortheprobabilityofphysicalpresencewhileaccountingforobservererrorIncontrastsamplingdesignedtodocu-mentchangesintrueoccupancydidnotappearfeasibleatsamplinglevels considered here

41emsp|emspSampling resolution and scale of inference

Ourresultsfurtheremphasizethebenefitsofsamplingatresolutions(ie unit size grid cell size) approximating the size of an individualhomerangedocumentedbyothers(EffordampDawson2012Lindenetal2017)FinerresolutionsamplinggeneratesoccupancyestimatesthatmorecloselytrackabundanceThisestimatorpropertyshouldbedesirable for practitionerswhomonitor occupancy in lieu of abun-danceprimarilyonpragmaticgrounds

Single-survey sampling can similarly benefit monitoring of ter-ritorial animals by providing temporal snapshots of populations un-affected by movement and therefore closely related to abundance(Hutto2016Latifetal2016)Wesimulatedanidealworldwithnoobservererrorwhereinsingle-surveyestimateswerereadilyinterpre-tableastheprobabilityofphysicalpresenceInrealitysomeobservererrorislikelyrequiringauxiliarysamplingtoestimateasnapshotprob-abilityofphysicalpresenceAuxiliarymeasurementsofdetectiontim-ingorcovariatesofobservererrorcould informbiascorrectionwithminimaladditionalsurveyeffort(LeleMorenoampBayne2012Rotaetal2009)Formonitoringwhite-headedwoodpeckersanalysisofdetection timings recorded historically (Mellen-McLean etal 2015)

combinedwithpublishedguidelines(MacKenzieampRoyle2005)couldinformoptimalsurveylengthforsinglesurveysOtherapproachesaredescribed butwould requiremore effort or are designed to informabundanceratherthanoccupancyestimates(egmultipleobserversreplicated camera or track stations distance sampling Amundsonetal2014Nicholsetal2008)Lackingdataonobservererrornaiumlveoccupancy could usefully index abundance ifwe are confident thatobservererrordoesnotvaryinterannuallyandthereforecannotcon-found trendestimation (egwith standardizingbird surveysHutto2016)

Observer error canvarywith local abundance (RoyleampNichols2003) potentially introducing noise not represented in our simula-tionsLargersamplingunitspotentiallyoccupiedbymultiple individ-uals would be most prone to such variability so aligning samplingresolutionwithhomerangesizewouldbedesirableevenwithasingle-surveydesign

A single-survey design would require consistently conductingsurveyswhen individuals are readily detectableWith sensitivity ofnestsurvivaltotemperature(Hollenbecketal2011)climatechangemay alter nesting phenology potentially influencing responsivenesstocallbroadcastsSuchchangescouldnecessitateadjustingthetim-ingofsurveyswhichcouldbe informedbytargetedrepeatsurveysas are commonly implemented for birds (Latif Fleming Barrows ampRotenberry2012Rotaetal2009)

Ourresultsindicatechallengesformonitoringtoinferchangesinspeciesrange(coarse-scale)orspaceuse(finerscale)asinyearly-p scenarioshereBydefinitionoccupancyonlydeclineswhenabun-dancedeclinesenoughtoresult in localextirpationso trueoccu-pancydeclines could indicate strongneed for conservationMore

F IGURE 7emspSimulation-basedpowertoobservewhite-headedwoodpeckerregionaloccupancytrends(percentsimulationswith95BCIlt1)Scenariosvariedinnumberoftransectsmonitoringapproach(constant-poryearly-p occupancymodelsorlogisticregression)and trend (λN=exponentialchangeinabundance)Forallscenariostransectsconsistedof10surveypointssurveyedtwice(occupancymodels)oronce(logisticregression)peryearConstant-passumedconstantdetectabilitywhereasyearly-p allowedvariabledetectabilityamongyearsLogisticregressionalloweddoublethenumberoftransectsbyanalyzingsingle-surveydata

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 10: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

10emsp |emsp emspensp LATIF eT AL

intensivesamplinginareasoryearswithlowabundancehowevermay be needed to correctly identify occupancy declinesAt finerscalesspatialheterogeneityindetectabilityarisingfromvariabilityinlocalabundanceandhomerangesthatlackdefinitiveboundariescanlimitaccurateestimationofspaceuse(EffordampDawson2012)Biasesinoccupancyanddetectabilityestimatesobservedherelikelyprimarily reflect theseeffects Includinghabitat relationshipswithoccupancy in analytical models (omitted from simulations) mighthelpbyaccountingsomewhatforspatialheterogeneityinthedatabuteffectsondetectabilityofvaryinglocalabundanceandproxim-itytohomerangesatoccupiedtransectswouldremainEffectivelyestimating species distribution at any scale may require substan-tial spatial or temporal replicationwithin samplingunits (Pavlackyetal2012Valenteetal2017)Givenlikelydemandsonfundingsuch approaches may be feasibly implemented only infrequently(egCruickshankOzgulZumbachampSchmidt2016)Alternativelypredictivemodels (eg Hollenbeck etal 2011 Latif etal 2015WightmanSaabForristalMellen-McLeanampMarkus2010)couldsupplementtrendmonitoringbyidentifyingchangesinhabitat

Nestedsurveys (egpointsalongtransects)can informhierar-chicallystructuredmodelscapableofestimatingpatternsortrendsatmultiplescales(Pavlackyetal2012Rotaetal2009RoyleampKeacutery2007)Multiscaleinferencewouldrequiresufficientsamplingatall scalesof interesthoweverwhichmaybebeyond resources

availableformanymonitoringprograms(Valenteetal2017)Ourinitial attempts found inadequate sampling for meaningful multi-scaleinference(QLatifunpublisheddata)soweabandonedsuchapproacheshere

42emsp|emspSampling extent

Spatiallyextensivesamplingistheoreticallyadvantageouswhenmon-itoringspatiallyheterogeneouspopulations(RhodesampJonzeacuten2011)Inour simulations spatial heterogeneity emerged fromunevendis-tributionofhabitatandrandomvariation in localabundanceamongoccupiedtransectsThebenefitsobservedherewithshortertransectsandsinglesurveyscouldreflectadvantagesofspatiallyextendedsam-pling Panel designs however didnot inherently change the targetofinferenceandsotheirresultsmoredefinitivelydemonstratedpo-tential advantageswith spatially extended sampling In contrast ig-noring heterogeneity inherent in continuously distributed territorialspeciesmayobscureadvantagesofpaneldesigns(Baileyetal2007UrquhartampKincaid1999)

Notall spatialextensions tosamplingwerebeneficialGivenarepeat-surveydesignwegainednothingbyreducingrepeatsurveystomonitormoretransectsSuchstrategiesrequirehighdetectability(MacKenzieampRoyle 2005) likely uncharacteristic of sparsely andcontinuously distributed territorial species (see above) The lack

F IGURE 8emspCorrespondenceofestimatedoccupancytrends(λψ) with true abundance(λN)andoccupancy(λψ) trends Trendswereestimatedwithrepeat-surveyconstant- p(a)andyearly-p(b)occupancymodelsandlogisticregressionanalyzingsingle-surveydata(c)RedandbluedotsmarkperfectcorrespondencewithactualabundanceandoccupancytrendsrespectivelyRootmeansquarederrorquantifiestheoverallestimationerrorwithrespecttoabundance(RMSEN) and occupancy(RMSEψ) trends

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 11: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

emspensp emsp | emsp11LATIF eT AL

ofbenefitwith50panelsmayreflectsitefidelity fixedat100inoursimulationsBymonitoringdifferent transects insuccessiveyears the number and distribution of individuals along surveyedtransectsvariedinterannuallypotentiallyobscuringtrendsWhite-headed woodpecker do exhibit site fidelity (Garrett etal 1996)sopaneldesignbenefitscouldtrade-offwithbenefitsofsamplingthesamesetsofindividualsinsuccessiveyearsInrealityhoweverpopulation processes (eg dispersal and turnover) could also ob-scuretrendsTheextentofpanelingneededtobenefitpowerwouldthereforedependonlevelsofspatialversustemporalheterogeneityinpopulation trends (RhodesampJonzeacuten2011) the latterofwhichwas omitted from simulations here Additionally panel designscould limitstudyofprocessesunderlyingoccupancydynamicsforexamplecolonizationandpersistence(Baileyetal2007)

43emsp|emspStudy limitations

Our simulations did not include spatial or temporal stochasticity inpopulationdynamicsindividualmovementbetweenyearsorbehav-ioralinteractionsbetweenneighborsallofwhichcouldmodulateoc-cupancyestimatesortrends(ReynoldsWiensJoyampSalafsky2005SauerFallonampJohnson2003WarrenVeechWeckerlyOrsquoDonnellampOtt2013)Bynotaccountingfortheserealitiespowerestimatesmaybe liberal and thereforeprobablybestused to informa lowerboundforsamplesizeAccordinglywerecommendge120orge90tran-sectswithsingle-surveyorrepeat-surveymonitoringrespectivelyofwhite-headedwoodpeckersacrossourstudyregion

Our treatmentofsite fidelityhowever isconservativeForsim-plicitywesimulatedpopulationswith100sitefidelityandzeroim-migrationorrecruitmentandtoavoidartifactsoftheseassumptionsanalysis models assumed occupancy varied independently amongyears Inrealitymodelscorrectlyspecifyinguncertaintyarisingfromadditionalpopulationprocesses (egRoyleampKeacutery2007)could im-prove power to observe trends (althoughwith likely increased datademands)Modelsthatcorrectlyspecifyhabitatrelationshipswithoc-cupancycouldalsohelpGiventhepotentiallycounteractingfeaturesofsimulationsweexpectpowerestimatesweresufficientlyinforma-tivetocomparealternativestudydesigns

Simulations ignoredspatialvariationinhomerangesizewhichcan confound interpretation of occupancy estimates and trendsdrawnfromrepeatsurveys(EffordampDawson2012)Simulationsin-cludingsuchrealitiescouldfurtherinformrepeat-surveymonitoringAlternativelysingle-surveymonitoringwouldavoidthis issueandcouldbecomplementedwithfocusedstudyofspaceusedynamics

Ourtreatmentofsurveycostdidnotfullyaccountfortraveltimeamong transectsWe expect little difference in cost of repeating asurvey versus surveying a new transect but travel time could limittransectnumbermore than lengthTo fully informstudydesignbi-ologistswouldneed toattachcosts to scenariosexploredhereForwhite-headedwoodpeckersclusteringtransectswithsufficientspac-ingforstatistical independence(eg2ndash5kmassuminghomerangesle1kmradius)couldreducetraveltimealthoughpotentiallyraisingtheneedtoaccountforspatialheterogeneityatcoarserscales(egamongsub-regions)

F IGURE 9emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-poccupancymodelunderalternativesamplingallocationstrategies Error is calculated relative to theactualabundancetrendλN=098(RMSE=RMSEN)Strategiesdepictedinvolvemonitoringrotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransectsParentheticvaluesindicatethetotalnumberoftransectsmonitoredoverthe20-yearstudyperiod

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 12: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

12emsp |emsp emspensp LATIF eT AL

F IGURE 10emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)forthesingle-surveylogisticregressionunderalternativesamplingallocationstrategiesErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Strategiesdepictedinvolvemonitoringarotatingsubsetsoftransectseachyear(barcolor)orfewerpointspertransect(x-axis)inexchangeformonitoringmoretransects Parenthetic values indicate the totalnumberoftransectsmonitoredoverthe20-yearstudyperiod

F IGURE 11emspStatisticalpower(percentsimulationswith95BCIlt1)andtrendestimationerror(RMSE)fortherepeat-surveyconstant-pmodelforscenariosthatvarytheproportionoftransectssurveyedasecondtimeeachyearinexchangeformonitoringmoretransectsErroriscalculatedrelativetotheactualabundancetrendλN=098(RMSE=RMSEN) Parenthetic values indicate the total numberoftransectsmonitoredoverthe20-yearstudyperiod

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 13: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

emspensp emsp | emsp13LATIF eT AL

44emsp|emspAdditional considerations and broader implications

Agencybiologistsoftenconduct repeatsurveys toestimatedetect-abilityandtherebyimprovecredibilityoftrendestimatesThisstrat-egy potentially implies an overly rigid allocation of effort betweensamplingtoinformoccupancyversusdetectabilityRepeatsurveysofmobilespeciesmayunwittinglyfocusefforttowardtrackingdistribu-tionalshiftswhichcanbehardertoobserveandnotnecessarilymorerelevant to conservation than changes in abundance Additionallypractitionersoftendiscountthepotentialfordetectabilitytochangewithchangingabundance(egAhumadaHurtadoampLizcano2013vanStrienvanSwaayampTermaat2013Zielinskietal2013)whichmaylimitexplicitinferenceofabundancetrendsversusrangedynam-icsfromoccupancy-basedtrendestimatesEstimatingdetectabilityisonlyuseful ifdoingso improves inferenceofunderlyingpopulationprocesses or accounts for interannual variability in observer errorTheformerrequiresconsideringwhichprocessescanbemorereadilyinferred by accounting for detectability at the scale it ismeasuredIf instead biologists are solely concernedwith controlling observererrormonitoring of population indicesmay bemore cost-effectivewhileprovidingequivalentorstrongerinferenceofpopulationchange(Hutto2016Johnson2008Welshetal2013)

Despite growing sophistication of occupancy models (BaileyMacKenzieampNichols2014)heterogeneityarisingfromlocallyvary-ingabundanceandpoorlydefinedhomerangeboundaries(EffordampDawson 2012)will continue to challengemonitoring efforts espe-ciallywhere fundingconstrainsdataandconsequentlymodelcom-plexitySimulationscanhelpexploreourcapacityfor inferencewithmodels necessarilymisspecifieddue to limiteddataGeneral powerformulasavailableforoccupancymodelsignorespatialheterogeneity(Guillera-ArroitaampLahoz-Monfort2012MacKenzieampRoyle2005)Spatiallyexplicitsimulationsthereforecomplementthesetoolsfortai-loringsamplingdesignstoparticularstudysystems

Information on regional trends should be combined with in-formation on various population parameters measured at differ-ent scales to fully inform species conservation status (Nichols ampWilliams 2006) For example other studies currently underwayexamine forestmanagement effects onwhite-headedwoodpeckernestdensitiesnestsurvivalandhabitatuse(Mellen-McLeanetal2015)Statisticalmodelscannowintegratemultiplesourcesofdatatobetterinformparameterestimation(Dorazio2014Nicholsetal2008)Simulationsthatexplicitlyanddistinctlydescribepopulationfromobservationprocessescouldinformsamplingdesigntosupporttheseapproaches

ACKNOWLEDGMENTS

Region6oftheUSForestServiceprimarilyfundedtheinitialregionalmonitoring effort including this study Rocky Mountain ResearchStation andMontana State University also supported this work JDudleyhelpedwithsomedatamanagementWethank fieldcrewsspecifically crew leaders E Johnson S Mellmann-Brown and A

WoodrowWethankBBirdJTuckerCAmundsonJHinesandtwoanonymousreviewersforfeedbackoninitialdraftsTKogutpro-videdtheFigure1photo

CONFLICT OF INTEREST

Nonedeclared

AUTHOR CONTRIBUTIONS

QLatif implementedsimulationsanddataanalysisanddraftedthemanuscriptMEllisVSaabandKMellen-McLeanprovidedsubstan-tivefeedbackduringconceptualframingsimulationdesignandimple-mentationandmanuscriptpreparation

DATA ACCESSIBILITY

R scripts for initiating simulations using the rSPACE package andBUGS code defining data analysismodels are provided online sup-portinginformation

ORCID

Quresh S Latif httporcidorg0000-0003-2925-5042

REFERENCES

AhumadaJAHurtadoJamp LizcanoD (2013)Monitoring the statusand trendsof tropical forest terrestrialvertebrate communities fromcameratrapdataAtoolforconservationPLoS One8e73707httpsdoiorg101371journalpone0073707

AmundsonCLRoyleJAampHandelCM(2014)AhierarchicalmodelcombiningdistancesamplingandtimeremovaltoestimatedetectionprobabilityduringavianpointcountsAuk131476ndash494httpsdoiorg101642AUK-14-111

BaileyLLHinesJENicholsJDampMacKenzieDI(2007)Samplingdesign trade-offs in occupancy studies with imperfect detectionExamplesandsoftwareEcological Applications17281ndash290httpsdoiorg1018901051-0761(2007)017[0281SDTIOS]20CO2

Bailey L LMacKenzieD IampNicholsJD (2014)Advancesandap-plications of occupancymodelsMethods in Ecology and Evolution51269ndash1279httpsdoiorg1011112041-210X12100

ClareJDJAndersonEMampMacFarlandDM(2015)Predictingbob-catabundanceatalandscapescaleandevaluatingoccupancyasaden-sityindexincentralWisconsinThe Journal of Wildlife Management79469ndash480httpsdoiorg101002jwmg844

Cruickshank S S Ozgul A Zumbach S amp Schmidt B R (2016)Quantifying population declines based on presence-only records forred-listassessmentsConservation Biology301112ndash1121httpsdoiorg101111cobi12688

Dorazio R M (2014) Accounting for imperfect detection and surveybias in statistical analysis of presence-only dataGlobal Ecology and Biogeography231472ndash1484httpsdoiorg101111geb12216

EffordMGampDawsonDK (2012)OccupancyincontinuoushabitatEcosphere31ndash15article32

EllisMM IvanJSampSchwartzMK (2014)Spatiallyexplicitpoweranalyses for occupancy-based monitoring of wolverine in the USRocky Mountains Conservation Biology 28 52ndash62 httpsdoiorg101111cobi12139

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 14: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

14emsp |emsp emspensp LATIF eT AL

EllisMMIvanJSTuckerJMampSchwartzMK(2015)rSPACESpatiallybasedpoweranalysisforconservationandecologyMethods in Ecology and Evolution6621ndash625httpsdoiorg1011112041-210X12369

GarrettKLRaphaelMGampDixonRD(1996)White-headed wood-pecker (Picoides albolarvatus) Birds of North America Cornell Lab ofOrnithologyIssue252

GotelliNJ(2001)A primer of ecologySunderlandMASinauerAssociatesInc

Guillera-ArroitaGampLahoz-MonfortJJ(2012)Designingstudiestode-tectdifferencesinspeciesoccupancyPoweranalysisunderimperfectdetection Methods in Ecology and Evolution3 860ndash869 httpsdoiorg101111j2041-210X201200225x

HessburgPFAgeeJKampFranklinJF(2005)Dryforestsandwildlandfiresofthe inlandNorthwestUSAContrasting landscapeecologyofthepre-settlementandmodernerasForest Ecology and Management211117ndash139httpsdoiorg101016jforeco200502016

HollenbeckJ P SaabVAampFrenzelRW (2011)Habitat suitabilityandnestsurvivalofWhite-headedWoodpeckersinunburnedforestsofOregonJournal of Wildlife Management751061ndash1071httpsdoiorg101002jwmg146

HuttoRL(2016)Shouldscientistsberequiredtouseamodel-basedsolu-tiontoadjustforpossibledistance-baseddetectabilitybiasEcological Applications261287ndash1294httpsdoiorg101002eap1385

HuttoRLampBeloteRT(2013)DistinguishingfourtypesofmonitoringbasedonthequestionstheyaddressForest Ecology and Management289183ndash189httpsdoiorg101016jforeco201210005

Johnson D H (2008) In defense of indices The case of bird surveysJournal of Wildlife Management72857ndash868

Joseph L N Field S A Wilcox C amp Possingham H P (2006)Presence-absence versus abundance data for monitoring threat-ened species Conservation Biology 20 1679ndash1687 httpsdoiorg101111j1523-1739200600529x

LatifQ S EllisMMampAmundsonC L (2016)Abroader definitionofoccupancyCommentonHayesandMonfilsThe Journal of Wildlife Management80192ndash194httpsdoiorg101002jwmg1022

LatifQSFlemingKDBarrowsCampRotenberryJT(2012)ModelingseasonaldetectionpatternsforburrowingowlsurveysWildlife Society Bulletin36155ndash160httpsdoiorg101002wsb97

LatifQSSaabVAMellen-McleanKampDudleyJG(2015)Evaluatinghabitat suitability models for nestingwhite-headedwoodpeckers inunburned forest The Journal of Wildlife Management 79 263ndash273httpsdoiorg101002jwmg842

LeleSRMorenoMampBayneE(2012)DealingwithdetectionerrorinsiteoccupancysurveysWhatcanwedowithasinglesurveyJournal of Plant Ecology522ndash31httpsdoiorg101093jpertr042

LindenDWFullerAKRoyleJAampHareMP(2017)Examiningtheoccupancy-densityrelationshipforalowdensitycarnivoreJournal of Applied Ecology542043ndash2052

MacKenzieDINicholsJDLachmanGBDroegeSRoyleJAampLangtimmCA(2002)Estimatingsiteoccupancyrateswhendetec-tionprobabilitiesare less thanoneEcology832248ndash2255httpsdoiorg1018900012-9658(2002)083[2248ESORWD]20CO2

MacKenzieD INicholsJDRoyleJAPollockKHBaily L LampHinesJE(2006)Occupancy estimation and modelingSydneyNSWElsevierInc

MacKenzie D I amp Royle J A (2005) Designing occupancy studiesGeneraladviceandallocatingsurveyeffortJournal of Applied Ecology421105ndash1114httpsdoiorg101111j1365-2664200501098x

MaleTDBeanMJampSchwartzM(2005)MeasuringprogressinUSendangeredspeciesconservationEcology Letters8986ndash992httpsdoiorg101111j1461-0248200500806x

MarshDMampTrenhamPC(2008)CurrenttrendsinplantandanimalpopulationmonitoringConservation Biology22647ndash655httpsdoiorg101111j1523-1739200800927x

Mellen-McLean K Saab V Bresson B Wales A amp VanNorman K(2015) White-headed woodpecker monitoring strategy and protocols for the Pacific Northwest Region (34 pp) v13 PortlandORUS ForestServicePacificNorthwestRegion

Nichols J D Bailey L L OrsquoConnellA F Jr Talancy NW CampbellGrant E H Gilbert A T hellip Hines J E (2008) Multi-scale occu-pancy estimation and modelling using multiple detection meth-ods Journal of Applied Ecology 45 1321ndash1329 httpsdoiorg101111j1365-2664200801509x

Nichols J D amp Williams B K (2006) Monitoring for conservationTrends in Ecology amp Evolution21668ndash673httpsdoiorg101016jtree200608007

Noon B R Bailey L L SiskTD ampMcKelvey K S (2012) Efficientspecies-levelmonitoringatthe landscapescaleConservation Biology26432ndash441httpsdoiorg101111j1523-1739201201855x

PavlackyDCBlakesleyJAWhiteGCHanniDJampLukacsPM(2012)Hierarchicalmulti-scaleoccupancyestimation formonitoringwildlifepopulationsThe Journal of Wildlife Management76154ndash162httpsdoiorg101002jwmg245

RCoreTeam(2015)R A language and environment for statistical comput-ingViennaAustriaRFoundationforStatisticalComputingRetrievedfromhttpswwwR-projectorg

ReynoldsRTWiensJDJoySMampSalafskySR(2005)Samplingconsiderations fordemographicandhabitat studiesofnortherngos-hawksJournal of Raptor Research39274

Rhodes J R amp Jonzeacuten N (2011) Monitoring temporal trends in spa-tiallystructuredpopulationsHowshouldsamplingeffortbeallocatedbetween space and time Ecography 34 1040ndash1048 httpsdoiorg101111j1600-0587201106370x

RobertsDLTaylorLampJoppaLN(2016)ThreatenedordatadeficientAssessing theconservationstatusofpoorlyknownspeciesDiversity and Distributions22558ndash565httpsdoiorg101111ddi12418

RodriguesASLPilgrimJDLamoreuxJFHoffmannMampBrooksT M (2006) The value of the IUCN Red List for conservationTrends in Ecology amp Evolution 21 71ndash76 httpsdoiorg101016jtree200510010

RotaCTFletcherRJJrDorazioRMampBettsMG(2009)OccupancyestimationandtheclosureassumptionJournal of Applied Ecology461173ndash1181

Royle J A amp Keacutery M (2007) A Bayesian state-space formulation ofdynamic occupancy models Ecology 88 1813ndash1823 httpsdoiorg10189006-06691

RoyleJAampNicholsJD(2003)Estimatingabundancefromrepeatedpresence-absencedataorpointcountsEcology84777ndash790httpsdoiorg1018900012-9658(2003)084[0777EAFRPA]20CO2

Sauer J R Fallon J E amp Johnson R (2003) Use of NorthAmericanBreedingBirdSurveydatatoestimatepopulationchangeforbirdcon-servation regions The Journal of Wildlife Management 67 372ndash389httpsdoiorg1023073802778

SteenwegRWhittingtonJHebblewhiteMForshnerAJohnstonBPetersenDhellipLukacsPM(2016)Camera-basedoccupancymoni-toringatlargescalesPowertodetecttrendsingrizzlybearsacrosstheCanadianRockiesBiological Conservation201 192ndash200httpsdoiorg101016jbiocon201606020

vanStrienAJvanSwaayCAMampTermaatT(2013)Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis-tributiontrendsifanalysedwithoccupancymodelsJournal of Applied Ecology501450ndash1458httpsdoiorg1011111365-266412158

TyreAJTenhumbergBFieldSANiejalkeDParrisKampPossinghamHP (2003) Improvingprecisionand reducingbias inbiological sur-veysEstimatingfalse-negativeerrorratesEcological Applications131790ndash1801httpsdoiorg10189002-5078

Urquhart N S amp Kincaid T M (1999) Designs for detecting trendfromrepeatedsurveysofecological resourcesJournal of Agricultural

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725

Page 15: Simulations inform design of regional occupancy-based ...regional occupancy monitoring study design, using white-headed woodpeckers (Picoides albolvartus),a sparsely distributed, territorial

emspensp emsp | emsp15LATIF eT AL

Biological and Environmental Statistics 4 404ndash414 httpsdoiorg1023071400498

ValenteJJHutchinsonRAampBettsMG(2017)Distinguishingdistri-butiondynamicsfromtemporaryemigrationusingdynamicoccupancymodelsMethods in Ecology and Evolution81707ndash1716

WarrenCCVeechJAWeckerlyFWOrsquoDonnellLampOttJR(2013)Detectionheterogeneityandabundanceestimationinpopulationsofgolden-cheekedwarblers(Setophaga chrysoparia) The Auk130677ndash688httpsdoiorg101525auk201313022

Welsh A H Lindenmayer D B amp Donnelly C F (2013) Fitting andinterpreting occupancy models PLoS One 8 e52015 httpsdoiorg101371journalpone0052015

WightmanCSSaabVAForristalCMellen-McLeanKampMarkusA (2010) White-headed Woodpecker nesting ecology after wild-fire Journal of Wildlife Management 74 1098ndash1106 httpsdoiorg1021932009-174

WisdomMJHolthausenRSWalesBCHargisCDSaabVALeeDChellipEamesMR(2002)Source habitats for terrestrial vertebrates of focus in the interior Columbia basin Broadscale trends and manage-ment implicationsmdashVolume 1 overviewGenTechRepPNW-GTR-485PortlandORUSDepartmentofAgricultureForestServicePacific

Northwest Research Station 3 vol (Quigley ThomasM tech edInterior Columbia Basin Ecosystem Management Project scientificassessment)

ZielinskiW J Baldwin JATruex R LTucker JMamp Flebbe PA(2013) Estimating trend in occupancy for the southern Sierra fisherMartes pennantipopulationJournal of Fish and Wildlife Management43ndash19httpsdoiorg103996012012-JFWM-002

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle

How to cite this articleLatifQSEllisMMSaabVAMellen-McLeanKSimulationsinformdesignofregionaloccupancy-basedmonitoringforasparselydistributedterritorialspeciesEcol Evol 2017001ndash15 httpsdoiorg101002ece33725