15
Simulation studies of core heat transport in JT-60U plasmas with different toroidal rotation profiles E. Narita 1 , M. Honda 2 , N. Hayashi 2 , H. Urano 2 , S. Ide 2 , T. Fukuda 1 1 Osaka Univ., 2 JAEA 19 th Numerical Experiment of Tokamak (NEXT) Meeting Kyoto Univ., Japan 29-30 August 2013 This work was carried out using the HELIOS supercomputer system at International Fusion Energy Research Centre, Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA.

Simulation studies of core heat transport in JT-60U

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Simulation studies of core heat transport in JT-60U plasmas with different toroidal rotation profiles

E. Narita1, M. Honda2, N. Hayashi2, H. Urano2, S. Ide2, T. Fukuda1

1Osaka Univ., 2JAEA

19th Numerical Experiment of Tokamak (NEXT) Meeting Kyoto Univ., Japan

29-30 August 2013

This work was carried out using the HELIOS supercomputer system at International Fusion Energy Research Centre, Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA.

Improved confinement related to toroidal rotation

• The improved confinement mode with internal transport barriers (ITBs) has been observed in plasmas with the strong Er shear.

●co-NB □bal-NBI ▼ctr-NBI

[H. Shirai NF1999]

[H. Urano NF2008]

Introduction

Does toroidal rotation have little influence on core hear transport without the strong change in Er shear?

A) The pedestal temperature increases with co-toroidal rotation and profile stiffness.

B) Identical core temperature profiles have been observed for co- and counter- rotating plasmas with identical pedestal temperature.

Box type ITB

Conventional H-mode A) B)

1/14

-20

-15

-10

-5

0

5

0 0.2 0.4 0.6 0.8 1

Er_s46861_t09000_002

Er [kV/m]

E r [

kV/m

]

-20

-15

-10

-5

0

5

0 0.2 0.4 0.6 0.8 1

Er_s46861_t15000_002

Er [kV/m]

CoCtr

Influence of co-toroidal rotation on Te-ITB

[N. Oyama NF2007]

Parabolic type ITB

A) The slight difference in the core ne profile

B) Similar power deposition profiles

C) With a change in the toroidal rotation profile

– Pe increases larger in the core region

– Pi increases larger in the pedestal region and is maintained with similar profile

Points of these plasmas

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CDIF1_glf_exb_ibscop3_irotstab0_calden

ne [10^19 m^-3]

n e [10

19 m

-3]

Co46861 t9.0

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CDIF1_glf_exb_ibscop3_irotstab0_calden

ne [10^19 m^-3]

Ctr46861 t15.0

CoCtr

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

steady_s46861_t09000_002

SNBIE0 [MWm^-3]SNBIE1 [MWm^-3]

QN

B [

MW

m-3

]

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

steady_s46861_t15000_002

SNBIE0 [MWm^-3]SNBIE1 [MWm^-3]

ionco: 4.0517MWctr: 3.9127MW

electronco: 2.5248MW, ctr: 2.6829MW

Co46861 t9.0

Ctr46861 t15.0

CoCtr

0

10

20

30

0 0.2 0.4 0.6 0.8 1

steady_s46861_t09000_002

PRE0 [kPa]PRE1 [kPa]

P [k

Pa]

0

10

20

30

0 0.2 0.4 0.6 0.8 1

steady_s46861_t15000_002

PRE0 [kPa]PRE1 [kPa]

ion

electron

Co46861 t9.0

Ctr46861 t15.0

CoCtr

• The better Te-ITB with co-toroidal rotation has been observed.

• The difference in Er shear is small.

ne[1019m-3]

Er[kV/m]

QNB[MWm-3]

P[kPa]

Co

Bal

Ctr

Co

Ctr

2/14

A)

B) C)

Investigation of toroidal rotation effects on core heat transport

Investigate effects of toroidal rotation on core heat transport in conventional H-mode and parabolic type ITB plasmas using

• Transport models implemented in the transport code TOPICS

• The flux-tube gyrokinetic code GS2

Parallel flow Toroidal flow

Including radial electric field effects

Focus on ExB shear representing toroidal rotation in this study

First order equilibrium flows in Tokamaks

objective 3/14

TOkamak Prediction and Interpretation Code System [N. Hayashi PoP2010]

- 1D transport & 2D MHD equilibrium

- Time-dependent / Steady-state analysis of JT-60U experiment

- Simulation with transport model

Neoclassical : MI method or NCLASS, Anomalous : CDBM, GLF23, BgB, MMM95

- Development of toroidal momentum eq. solver consistent with Er (M. Honda)

- Tuning of CDBM model to LH transition (M. Yagi, PET2011)

Components

- NB & High energy particle : 1D or 2D FP, 3D MC (F3D-OFMC)

- EC : Ray tracing & Relativistic FP (EC-Hamamatsu)

- IC : Full wave analysis (TASK/WM), LH : Bonoli module in ACCOME

- MHD stability : Kink / Ballooning / Peeling (MARG2D)

- Impurity : 1D transport (IMPACT)

- Neutral : 2D MC

- Radiation : Impurity line radiation model (Coronal eq.), Synchrotron (CYTRAN)

- SOL / Div. : Five-point model (D5PM), 2D Fluid & MC (SONIC)

- Pellet : Ablated Pellet with ExB drift (APLEX)

Integrated suite of codes TOPICS

・・・used in this study *

4/14

Transport models implemented in TOPICS

• Current Diffusive Ballooning Mode (CDBM) [e.g. A. Fukuyama PPCF1995]

• GLF23 [R. E. Waltz PoP1997, J. E. Kinsey PoP2005]

• Bohm/gyro-Bohm (BgB) [modified from M. Erba PPCF1997]

Given: The MHD equilibrium, the q profile, the density profile

Calculate: ion and electron temperatures in < 0.85

The anomalous heat diffusivity is given by following transport models.

Thermal pressure

− Mixing length formula is used to obtain the heat diffusivity with 10 wavenumbers for ion temperature gradient(ITG) and trapped electron mode(TEM) and 10 wavenumbers for electron temperature gradient(ETG) mode.

− ITG/TEM is stabilized by the effect of ExB shear.

5/14

-40

-30

-20

-10

0

10

20

0 0.2 0.4 0.6 0.8 1

Er_s46303_t07900_008_givenq

Er [kV/m]

E r [kV

/m]

-40

-30

-20

-10

0

10

20

0 0.2 0.4 0.6 0.8 1

Er_s46301_t07000_003_givenq

Er [kV/m]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_t07900_exp_plot

Te [keV]

T [k

eV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_t07900_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1

Te [keV]Ti [keV]

E46303, t=7.9s

electron

ion

CDBMExp.Exp. fit

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_t07000_exp_plot

Te [keV]

T [k

eV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_t07000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1

Te [keV]Ti [keV]

E46301, t=7.0s

electron

ion

CDBMExp.Exp. fit

Calculations with CDBM for H-mode shots

Co Ip =1.16MA Bt=2.56T H=1.074 We=0.7705MJ Wi=0.5778MJ

Co H=0.8518

Ctr Ip=1.16MA Bt=2.56T H=1.049 We=0.6741MJ Wi=0.4551MJ

Ctr H=0.8587

Test of transport models against JT-60U plasmas

We=0.5593MJ

Wi=0.5111MJ

We=0.5027MJ

Wi=0.4219MJ

ne[1019m-3] q

Er[kV/m]

CDBM model

Ion Ti similar to exp. for > 0.3

Electron Te lower than exp. with high ce

Comparisons between co and ctr Little difference

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

steady_s46303_t07900_008

ne [10^19 m^-3]

ne [

10

19 m

-3]

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

steady_s46301_t07000_003

ne [10^-19 m^-3]

Co46303 t7.9

Ctr46301 t7.0

CoCtr

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46303_QQT-BP

QQT

q

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46301_QQT-BP

QQT

Co46303 t7.9

Ctr46301 t7.0

CoCtr

6/14

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

CKAIAN0 CKAIAN1

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46303_chiano

chie_neochii_neo

can

o [

m2/s

]

E46303, t=7.9s

electron

ion

cCDBM

cexp

- cneo

ionelectron

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

CKAIAN0 CKAIAN1

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46301_chiano

chie_anochii_ano

can

o [

m2/s

]

E46301, t=7.0s

electron

ion

cCDBM

cexp

- cneo

ionelectron

Calculations with GLF23 for H-mode shots

Ion similar Ti profile to exp. for > 0.2 Better agreement for ctr case

Electron lower Te than exp., especially for < 0.5

Comparisons between co and ctr

• Predicted ci for co rotation is larger than that for ctr rotation.

• However, the difference in ci is not caused by ExB shear effect.

Co H=0.8533 Ctr H=0.9307

We=0.5712MJ

Wi=0.5004MJ

We=0.5448MJ

Wi=0.4554MJ

Test of transport models against JT-60U plasmas

Co Ctr Calculations w/o ExB shear effects

7/14

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

E46301, t=7.0s

electron

ion

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

electron

ion

E46303, t=7.9s0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

Te [keV]Ti [keV]

T [k

eV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_t07900_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_t07900_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0

Te [keV]Ti [keV]

electron

ion GLF23 w ExBExp.Exp. fit

46303

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

Te [keV]Ti [keV]

T [k

eV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_t07000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_t07000_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0

Te [keV]Ti [keV]

electron

ion GLF23 w ExBExp.Exp. fit

46301

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_glf_noexb_ibscop3_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

E46303, t=7.9s

electron

ion

w/o ExB

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_glf_noexb_ibscop3_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

E46301, t=7.0s

electron

ion

w/o ExB

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_bgbc_wF_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_t07900_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_t07900_exp_plot

Te [keV]

T [k

eV]

E46303, t=7.9s

electron

ion

BgBExp.Exp. fit

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_bgbc_wF_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_t07000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_t07000_exp_plot

Te [keV]

T [k

eV]

E46301, t=7.0s

electron

ion

BgBExp.Exp. fit

Calculations with BgB for H-mode shots

Ion overestimated Ti with much smaller ci than exp., especially for 0.4 < < 0.8

Electron Te similar to exp. for > 0.3

Comparisons between co and ctr Little difference

Co H=1.107 Ctr H=1.103

Test of transport models against JT-60U plasmas

We=0.7348MJ

Wi=0.6519MJ

We=0.6495MJ

Wi=0.5324MJ

8/14

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46303_TEM0-CKAIAN1_bgbc_wF_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

E46303, t=7.9s

electron

ion

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46301_TEM0-CKAIAN1_bgbc_wF_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

E46301, t=7.0s

electron

ion

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1

Te [keV]Ti [keV]

T [k

eV]

electron

ion

CDBMExp.Exp. fit

Co46861 t9.0

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1

Te [keV]Ti [keV]

T [k

eV]

electron

ion

CDBMExp.Exp. fit

Ctr46861 t15.0

Calculations with CDBM for parabolic ITB shots

Ion similar to exp. for > 0.3

Electron similar Te for > ITB

lower Te with high ce for > ITB, especially for co case

Co H=0.9352

Co Ip=0.9MA Bt=1.60T H=1.133 We=0.5233MJ Wi=0.3252MJ

Ctr H=0.8642

Ctr Ip=0.9MA Bt=1.59T H=0.9128 We=0.4698MJ Wi=0.2268MJ

Test of transport models against JT-60U plasmas

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CDIF1_glf_exb_ibscop3_irotstab0_calden

ne [10^19 m^-3]

ne [

10

19 m

-3]

Co46861 t9.0

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CDIF1_glf_exb_ibscop3_irotstab0_calden

ne [10^19 m^-3]

Ctr46861 t15.0

CoCtr

ne[1019m-3]

Er[kV/m]

q

We=0.3914MJ

Wi=0.3055MJ

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46861_t09000_QQT-SHA

QQT

q

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

s46861_t15000_QQT-SHA

QQT

Co46861 t9.0

Ctr46861 t15

CoCtr

CDBM model

-20

-15

-10

-5

0

5

0 0.2 0.4 0.6 0.8 1

Er_s46861_t09000_002

Er [kV/m]

E r [

kV/m

]

-20

-15

-10

-5

0

5

0 0.2 0.4 0.6 0.8 1

Er_s46861_t15000_002

Er [kV/m]

CoCtr

We=0.4132MJ

Wi=0.2414MJ

9/14

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

CDBM LH tuned

ion, electron

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46861_t09000_chiano

chie_neochii_neo

ion

electron

cCDBM

cexp

- cneo

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_cdbm_iexbcdbm2_modcdbm1_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

CDBM LH tunedCtr 46861 t15.0

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

s46861_t15000_chiano

chie_neochii_neo

ion,electron

ion

electron

cCDBM

cexp

- cneo

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0

Te [keV]Ti [keV]

T [k

eV]

electron

ion GLF23 w ExBExp.Exp. fit

Co46861 t9.0

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0

Te [keV]Ti [keV]

T [k

eV]

electron

ion GLF23 w ExBExp.Exp. fit

Ctr46861 t15.0

Calculations with GLF23 for parabolic ITB shots

Ion

similar Ti gradient, but overestimated Ti with much smaller ci than exp .

Electron

Co: similar Te for > ITB

Ctr: similar Te

Failure of Te-ITB reproduction may be due to ETG mode

[cf. J. E. Kinsey PoP2005]

Co H=1.212 Ctr H=1.058

Test of transport models against JT-60U plasmas

We=0.4626MJ

Wi=0.4321MJ

We=0.4654MJ

Wi=0.3256MJ

Calculations w/o ExB shear effects

Co Ctr

10/14

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

GLF23 w ExBCo 46861 t9.0

electron

ion0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_glf_exb_ibscop3_irotstab0_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

GLF23 w ExBCtr 46861 t15.0

electron

ion

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_glf_noexb_ibscop3_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

Co 46861 t9.0 w/o ExB

electron

ion

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_glf_noexb_ibscop3_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

Ctr 46861 t15.0

electron

ion

w/o ExB

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_bgbc_wF_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_bgbc_wF

Te [keV]Ti [keV]

T [k

eV]

electron

ion

BgBExp.Exp. fit

Co46861 t9.0

Calculations with BgB for parabolic ITB shots

Ion

Co: similar to exp.

Ctr: overestimated

Electron

similar to exp. for ctr case, but no gradient like exp. for both co and ctr cases

Co H=1.202 Ctr H=1.120

Test of transport models against JT-60U plasmas

We=0.5139MJ

Wi=0.3803MJ

We=0.5413MJ

Wi=0.3044MJ

11/14

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t09000_TEM0-CKAIAN1_bgbc_wF_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

BgB w F

ion

electron

Co 46861 t9.0

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_bgbc_wF_itorminit-3

Te [keV]Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_exp_plot

Te [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_exp_plot

Ti [keV]

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_bgbc_wF

Te [keV]Ti [keV]

T [k

eV]

electron

ion

BgBExp.Exp. fit

Ctr46861 t15.0

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

s46861_t15000_TEM0-CKAIAN1_bgbc_wF_itorminit-3

CKAIAN0 CKAIAN1

can

o [

m2/s

]

BgB w F

ion

electron

Ctr 46861 t15.0

GS2 code

GS2 code [M. Kotschenreuther CPC1995, W. Dorland PRL2000] is

• the local flux-tube gyrokinetic code

• solving the gyrokinetic equations for the perturbed distribution functions df

• able to carry out linear and nonlinear

• able to calculate both electrostatic and electromagnetic cases, including nonadiabatic (kinetic) electrons

• calculating initial value problems using the Lorentz collision operator

• able to work with s-a model equilibrium, Miller equilibrium and the equilibrium obtained experiments(G EQDSK)

• incorporating effects of sheared flow by forcing radial wavenumber kx to depend linearly on time

Toroidal angular velocity

: Parallel flow shear

12/14

Effects of the flow shear

• Cyclone base case

• ITG mode is stabilized by increasing gE for 0 < gE < 0.3.

• ITG and parallel velocity gradient (PVG) drive for 0.3 < gE < gE

(c).

10-6

0.0001

0.01

1

100

0 10 20 30 40 50 60 70

gs2-case391_heatflux

heat fluxes:

Q/(n

iTiv

th

i2/R

2)

t/(R/vth

)

gE/(v

th/R) = 0.0

10-6

0.0001

0.01

1

100

0 10 20 30 40 50 60 70

gs2-case391_heatflux

heat fluxes:

y = 1.5901e-7 * e^(0.31236x) R= 0.99981

g*/(vth

/R) = 0.1560

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8

gs2-case391-397_barnes2011PRL

gamma*_cs

g*/(c s/R

)

gE/(v

th/R)

Barnes PRL2011 Fig.1R/L

T = 6.9

[Barnes PRL 2011]

GS2

• The effects of the flow shear are confirmed.

• The growth rate is estimated by time dependence of the heat flux at linear phase. [C. M. Roach PPCF2009]

gE =0.0 gE =0.2 gE =0.5 10

-6

10-5

0.0001

0.001

0.01

0.1

1

0 100 200 300

gs2-case393_heatflux

heat fluxes:

Q/(n

iTiv

th

i2/R

2)

t/(R/vth

)

10-6

10-5

0.0001

0.001

0.01

0.1

1

0 100 200 300

gs2-case393_heatflux

heat fluxes:

gE/(v

th/R) = 0.2

g*/(vth

/R) = 0.0173

y = 4.1473e-6 * e^(0.034452x) R= 0.97233

10-6

10-5

0.0001

0.001

0.01

0.1

1

10

0 50 100 150 200

gs2-case396_heatflux

heat fluxes:

Q/(n

iTiv

th

i2/R

2)

t/(R/vth

)

10-6

10-5

0.0001

0.001

0.01

0.1

1

10

0 50 100 150 200

gs2-case396_heatflux

heat fluxes:

y = 1.2287e-6 * e^(0.077493x) R= 0.99127

gE/(v

th/R) = 0.5

g*/(vth

/R) = 0.0387

13/14

Conclusions and future works

• Estimated Ti using CDBM and GLF23 is similar to exp.

• CDBM and BgB predict little differences between co and ctr cases.

Conventional H-mode

• CDBM and GLF23 predict similar Te and Ti for > ITB .

• CDBM, GLF23 and BgB do not show the difference in Te profile between co and ctr cases observed in the experiment.

Parabolic ITB

Future works

Calculations using GS2 with the equilibrium obtained experiments

Estimation of ExB shear effects using the transport model TGLF [G. M. Staebler PoP2005, PoP2007, J. E. Kinsey PoP2008]

14/14

Transport models

Gyrokinetic code GS2

• ExB shear stabilization and PVG destabilization are able to investigate with GS2