37
component degradation simulation tool A. Keating, S. Joyce, A. Zadeh, M. Pimenta, E.Daly, P.Gonçalves ESA Project: 18121/04/NL/CH Simulation of Single Event Effects and rate prediction. CODES an ESA tool Heliosphere image courtesy of the Cosmic and Heliosphere Learning Centre

Simulation of Single Event Effects and rate prediction ... · component degradation simulation tool A. Keating, S. Joyce, ... Which answers can GEANT4 Give? ... stand. statistical

Embed Size (px)

Citation preview

component degradation simulation tool

A. Keating, S. Joyce, A. Zadeh, M. Pimenta,

E.Daly, P.Gonçalves

ESA Project:

18121/04/NL/CH

Simulation of Single Event Effects and rate

prediction. CODES an ESA tool

Heliosphere image courtesy of the Cosmic and Heliosphere Learning Centre

23/05/2013 2SPENVIS SUW

2013

Outline

• Simulation of SEE effects

– Environment thru shielding and processing layers

– Energy deposition distribution at SV

• Sensitive Volume Fit (SVFIT) Module

• CODES: the top level integrated tool

• Additional Models developed to be included later

• Conclusions

23/05/2013 3SPENVIS SUW

2013

Radiation Environment

23/05/2013 4SPENVIS SUW

2013

Single Event Effects

• A transient phenomenon : Decaying with time

• e-h pair generation threshold in the target material (3.6eV Si)

23/05/2013 5SPENVIS SUW

2013

SEE Mechanisms:

Stopping power and nuclear Reactions

• Keating et al. (2012). Modelling the effects of low-LET cosmic rays on electronic

components, Radiat Environ Biophys, DOI 10.1007/s00411-012-0412-2.

• Stopping power

• σ[X(a, b)y] nuclear cross section

• ηc(x) is the charge collection yield

• Z and A

23/05/2013 6SPENVIS SUW

2013

Drift & Diffusion in the semiconductor

• Electron-hole pairs are separated and transported by the electric field

(drift) and by diffusion

Ji= q ni µi Ε + q Di grad(ni);

drift diffusion i=e,h

• Drift: t~0.5ns d<10µm

• Diffusion: t>0.5ns d>10µm

• Part may recombine

(function of injection level, Ma 1989)

• Charges collected by electrodes may propagate

thru the circuit: Transient “ionocurrent”

23/05/2013 7SPENVIS SUW

2013

Drift & Funnelling

• Drift charge : prompt charge collection (~0.5ns)

• Before the ion the Electrical field, E, is limited to the depletion region

• The ion track (or the e-h pair plasma) extends E far down into bulk Si

C. M. Hsieh, P. C. Murley, 1981

23/05/2013 8SPENVIS SUW

2013

Device Response

• The device behaviour depends on the field (ξ), Incoming particle (βγ

∼P/M) and on the angle of incidence (θ)

• The critical charge depends on the node capacitance, voltage and the

response time of the device

eeeee

eeeee

eeee

N4

Word Select line

N1

1

P1

0

N2

P2

1

0N3

eeeee

eeeee

eeee

N4

Word Select line

N1

1

P1

0

N2

P2

1

0N3 N4N4

Word Select line

N1

1

P1

0

N1

1

P1P1

0

N2

P2

1

0

N2

P2

1

P2

1

0N3N3N3

restoreswitch nodenodecrit .I V . C Q τ+=

( ) critcollected Q, , f Q >= θλξ

23/05/2013 9SPENVIS SUW

2013

Which answers can GEANT4 Give?

• Particle physics simulation tool, for particle transport and

interaction with matter used for simulating:

– Shielding

– Packaging Layers

– Sensitive Volume

23/05/2013 10SPENVIS SUW

2013

What are the remaining questions?

• How does the energy/charge deposited is transported

in the device:

– Crystal Lattice?

– Electric fields?

– Time dependent effects?

• What is the electronic behaviour?

• How to get those answers?

23/05/2013 11SPENVIS SUW

2013

How ?

• Experimental data

– Device Response function

– Function of field effects

– Cristal lattice effects

– Experimental conditions

• SVFIT:

– Fits device sensitivity to adjust experimental device response

function

23/05/2013 12SPENVIS SUW

2013

SVFIT: Web interface

• SVFIT_V. 1.5.7

• Meta Information

• SV geometry

• Email account

• Efficiency matrix: No of SV

• Library

• Non Active layers

• Guideline SV dimensions

• Depth uncertainty ->

Interactive Fit

• Experimental Cocktail

• No. Events

• Credits

• Run SVFIT

23/05/2013 13SPENVIS SUW

2013

Detailed SVFIT: Published papers

• RADECS 2011

• 106 evts

23/05/2013 14SPENVIS SUW

2013

Engineering tool: ISSI1 SEU XS Reconstruction

<- 103 evts

106evts ->

23/05/2013 15SPENVIS SUW

2013

From Ion data to proton prediction

• Using SVFIT with the Ion test data

• The same SV geometries and Critical Energies

• Proton with energies used in experimental testing were simulated

23/05/2013 16SPENVIS SUW

2013

SVFIT working for different devices

• Tests have been made for the Reference SEU Monitor

and SEL monitor devices

y = 6.12E-05x + 1.18

y = 8.11E-05x + 1.35

y = 1.01E-04x + 1.51

0

2

4

6

8

10

12

14

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

No. Events per ion

Run Time [mm:ss]

3 ions cocktail

4 ions cocktail

5 ions cocktail

Linear (3 ions

0

10

20

30

40

50

60

70

80

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

No. Events per ionAccuracy [%]

3 ions Cocktail

5 ions Cocktail

23/05/2013 17SPENVIS SUW

2013

Top Level CODES

23/05/2013 18SPENVIS SUW

2013

Geometrical acceptance

Normalization

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Primary Fe Energy [MeV]

Flu

x

Integral Flux [/cm2/sr/s]

Differential Flux[/cm2/MeV/sr/s]

Primary Integral Flux Normalization

Theta Max

Total Flux Norm. = PrimFlxuNorm * GeomAccept * SolidAnglNorm

Angular normalization

According to the ICR

• Normalization is based on dMEREM/MARSREM normalization methods

23/05/2013 19SPENVIS SUW

2013

Full spectrum simulation

• CODES pre-processor takes inputs for several ions’

energy spectra in SPENVIS format and others

• Computes individual contributions for SEE rates

• Outputs the total rate prediction

23/05/2013 20SPENVIS SUW

2013

CODES Performance

• The framework is working properly under :– Windows Internet Explorer

– Google Chrome

– Firefox

y = 6.12E-05x + 1.18

y = 8.11E-05x + 1.35

y = 1.01E-04x + 1.51

00:00:00

00:28:48

00:57:36

01:26:24

01:55:12

02:24:00

02:52:48

03:21:36

03:50:24

04:19:12

04:48:00

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

No. Events per ion

Run Time [hh:mm:ss]

30 ion species environemnt

60 ion species environment

92 ion species environment

Linear (30 ion species

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0 10 20 30 40 50Charge Number [Z]

Accuracy [%]

1E3 Evts

1E4 Evts

1E5 Evts

x10

x 5

x 3

x 130

Additional models developed: that might be

implemented

With SVFIT

23/05/2013 22SPENVIS SUW

2013

Area increment above LET knee: Model & Results

• Results published at RADECS 2011

• Doi: 10.1109/RADECS.2011.6131414

23/05/2013 23SPENVIS SUW

2013

Efficiency matrix from Laser maps

• The model of defining acomplex efficiency matrix was developed for

SVFIT

• Objective : robust module for extraction from laser maps the charge

collection efficiency

• SVFIT and CODES : benefit from the inclusion under the user-friendly

interface

Images from of Isabel Lopez

23/05/2013 24SPENVIS SUW

2013

Conclusion

• CODES modules: top level user friendly tool, with a web-interface

• Tests show the robustness of the tool: consistency, accuracy & run time

• Results show :

– Very good reconstruction of device response function (3-5 ion cocktails):

excellent SVFIT

– Accuracy statistics independent (5 ion cocktails)

– Run time : SV shape fit : (3 to 5 ions) - 2 geometries : btw 2-10 min

statistics

– Run time : SV shape and depth fir: (5 ions) - 6 geometries : ~ 30 minutes

– mCODES higher independence from user definitions: stand. statistical

methods and sCODES

23/05/2013 25SPENVIS SUW

2013

– Distribution of the tool

– Inclusion of ready-to-use developed models

– Incrementation of the Device Library

– Further models investigated: TRL needs to be increased

Further Work

Thank you

Additional slides

23/05/2013 28SPENVIS SUW

2013

23/05/2013 29SPENVIS SUW

2013

Non-active Layers

23/05/2013 30SPENVIS SUW

2013

Non-active Layers

23/05/2013 31SPENVIS SUW

2013

User defined NAL

Pre-processor:

� Verification of the total weight percentage in the material is = 1

� Send error messages

� Compute total density

� Compute layer positions in relation to device structure

� Write NALFile.txt with NAL table

� All have been verified

23/05/2013 32SPENVIS SUW

2013

SV Volume definition

23/05/2013 33SPENVIS SUW

2013

Radiation Input File

23/05/2013 34SPENVIS SUW

2013

Device Response Function

ID Plateaux With Exp Thres.

n 3.53E-14 4 1 10

p 3.53E-14 4 1 10

hi 1.50E-07 65 1.4

7

1.2

SEU = No. Event * NormF

23/05/2013 35SPENVIS SUW

2013

SEU calculation with mCODES

SEU Rate = No Evts (Edep > Ec)/NGen * Total Flux * Active Area

23/05/2013 36SPENVIS SUW

2013

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1E-06 0.0001 0.01 1 100

LET @ SV [MeV.cm2/mg]

To

tal F

lux

[/c

m2

/s]

Differencial

Cumulative

SEU calculation with sCODES

SEU Rate = No Evts (LET> Th)/NGen * Total Flux * <SEU_XS>

2

23/05/2013 37SPENVIS SUW

2013

SVFIT automatic/iterative

• Modular iterative tool

• Microdosimetry Monte-Carlo technique

• Device sensitive volume: charge deposited contributes entirely to prompt charge

collection.

• Input parameters:

– Ion cocktails description

– Irradiation test data

• SEU threshold definition

• SV shape modulation

• Output:

– best SV shape to fit ion test data

– Threshold Energy loss for SEE

– Reconstructed SEE XS curve

N

Ne

Si

Ar

Kr