SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

Embed Size (px)

Citation preview

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    1/35

    N S T E C H N IC L N O T E

    -e=

    w3

    h

    Y

    n

    3L:

    c

    SIMULATION OF

    BY USE

    F

    DENSE

    PROJECTILES

    METEORQID-VELOCITY IMPACT

    by Robert He M o ~ r ~ ~ o n

    es

    Research

    Center

    Fie

    N A ~ I O N A L € R O N A U ~ I C SN D SPA CE A D ~ I N I S ~ R A T I O N W A S ~ I N ~ T O N ,

    C

    e A P R I L 1 9 7 0

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    2/35

    1. Repor t

    No.

    NASA TN D-5734

    SIMULATION OF METEOROID-VELOCITY IMPACT BY USE OF DENSE

    PROJECTILES

    2.

    Governm en t Ac cess i on

    No.

    7.

    Author(s)

    Robert

    H.

    Morrison

    Per fo rm ing Organ iza t io n Nam e and Add ress

    NASA Ames Research Center

    Moffett Field , Cali f., 94035

    9 .

    19.

    Secu r i t y C lass i f . (o f t h i s repo r t )

    Unclassified

    12.

    Sponso r ing Agency Nam e and Add ress

    National Aeronautics and Space Administration

    Washington, D.C. 20546

    20 Secu r i t y C lass i f . (o f t h i s page )

    21.

    No. o f Pages 22. Pr ice *

    Unclassified $3.00

    34

    115.

    Supplementary Notes

    3.

    Rec ip ien t s Co ta log

    No.

    5 . R ep o r t D a t e

    April 1970

    6.

    Per fo rm ing Organ iza t ion Code

    8.

    Per fo rm ing Organ iza t ion Repo r t

    No.

    A-3315

    I O . Work U n i t No .

    124-09- 15-02-00- 21

    11.

    Con t rac t o r Gran t No.

    13.

    Type o f Repo r t and Pe r iod Cove red

    Technical Note

    14. Sponso r ing Agency Code

    16. A b s t r a c t

    A technique

    is

    describe d for simulating the impacts of semi-infinite t arg ets by low-density, low-fineness rat io cylinders

    at

    meteoroid velocities by impacting high-density, low-velocity projectil es.

    model forming the ba sis of the technique. The feasibility of the technique is experimentally investigated by sim ulat ing the impacts

    of semi-infinite aluminum targ ets by polyethylene plastic cyl inders of various low-fineness ratios and the sa me velocity of

    11.3 km/sec. The penetrations were simulated at lower velocities to within 10 percent by impacting aluminum, steel, nickel, and

    copper projec tiles, but only to within 30 percent by impacting platinum projectiles.

    In application

    of

    the technique, the impac ts of

    semi-infinite aluminum targets by cylinders

    of

    polyethylene and porous aluminum (0.44 g/cmS)

    at

    veloc ities of 15 .2 and 22 km/set

    respectively, were simulated.

    Conditions for simulation are stated and embodied in a

    17. Ke y Words

    Suggested by Author(s)

    Meteoroids

    Hypervelocity Impact

    Projectile

    Simulation

    18.

    Dis t r ibu t ion S ta tem en t

    Unclassified

    -

    Unlimited

    For sa le

    by

    t h e C l e a r i n g h o u s e f o r F e d e r a l S c i e n t i f i c a n d T e c h n i c a l I n f o r m a t i o n

    S p r i n g f i e l d , V i r g i n i a 2 2 1 5 1

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    3/35

    SYMBOLS

    A i

    C

    d

    E

    I

    i

    J

    K

    z

    m

    P

    P

    R

    r

    S

    t

    t l

    t 2

    U

    U

    V

    X

    area o f por t ion i o f i n t e r f a c e

    speed of sound

    diameter of cyl inder

    s p e c i f i c i n t e r n a l e ne rg y

    in te rf ac e between impacting mater ia ls

    por t ion o f in t e r f ace ins id e boundary de f ined by po in t s o f in t e r s ec t ion

    o f c y l i n d e r ' s r a d i a l r a r e f a c t i o n w it h i n t e r f a c e

    impu ls e gi ve n t o t a r g e t ma t e r i a l i n

    time t 2

    by pressures ac t ing a t

    p o r t i o n i o f i n t e r f a c e

    constant

    leng th o f cy l ind er

    mass of cyl inder

    pene t ra t ion

    (maximum depth of crater) measured from undisturbed

    t a r g e t s u r f a c e

    pres s u re

    ra re fa ct io n (head of ra re fa ct io n wave)

    r a d i a l c o o r d i n a t e

    shock wave

    time

    measured from instant of

    impact

    t ime f o r shock wave t o reach r e a r face of impact ing cyl inder

    time a t which ax ia l r a re f ac t ion reaches in te r fac e

    v e l o c i t y of one-dimensional shock wave r e l a t i v e t o und ist urb ed medium

    mass ve lo ci ty behind one-dimensional shock wave re la ti ve t o

    undisturbed medium

    veloc i ty o f cy l inder a t impact

    a x i a l c o o r d i n a t e

    iii

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    4/35

    e

    dimensionless parameter define d by equation

    ( 9 )

    1 - I = r 7 - 1

    P dens i ty

    Subscr ip t s

    Hug on i

    o

    t

    t a t

    e

    i n i t i a l

    s t a t e

    p r o j e c t i l e o r cy l inder mate r ia l

    r a d i a l d i r e c t i o n

    t a r g e t

    mate

    r

    i

    a1

    a x i a l d i r e c t i o n

    impact case of low-density cyl ind er

    impac t case o f s imula t ing p r o j ec t i l e

    i v

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    5/35

    SIMULATION OF METEOROID-VELOCITY

    IMPACT

    BY

    USE

    OF

    DENSE PROJECTILES

    By Ro be rt H . Morrison

    Ames Research Cen te r

    SUMMARY

    A technique i s desc r ibed fo r s imulat ing the impac ts o f sem i- in f in i t e

    ta rg et s by low-density , low-f inenes s-ra t io cyl inders a t meteoroid ve loc i t i e s

    by impact ing high-densi ty , low-veloci ty pro je ct i l es . Condit ions fo r s imula-

    tion are stated and embodied in a model

    forming the bas is of the technique.

    The fe as ib i l i t y o f the t echnique i s exper imenta l ly inv est iga ted by s imulat ing

    the impacts of se mi - in f in i te aluminum ta rg et s by polyethylene p l a s t ic cyl in -

    ders of various low-fineness r a t io s and the same ve lo ci ty of 11.3 km/sec.

    The penetrations were simulated a t lower v e l o c i t i e s t o wi t hi n

    1 0

    percent by

    impacting aluminum, s t e e l , n ic kel , and copper pr oj ec t i le s , but only to wi th in

    30 percent by impacting platinum pr oj ec ti le s.

    In app l ica t ion o f the t ech-

    nique, the impacts of sem i- i nf i n i t e aluminum ta rg et s by cyl inder s of poly-

    ethylene and porous aluminum ( 0 . 44 g/cm3) a t vel oc it ie s of 15.2 and 22 km/sec,

    respect ively , were s imulated .

    INTRODUCTION

    The simu latio n of meteoroid impact has , f o r th e most pa r t , been beyond

    t h e c a p a b i l i t i e s of l igh t -gas-gun f ac i l i t i e s . The h ighe s t impact ve loc i ty

    a t t a i n e d i n t h e s e f a c i l i t i e s , 1 1.3 km/sec, i s j u s t a t the lower end of the

    meteoroid velocity spectrum of

    11

    t o 7 3 km/sec ( re f . 1 ) .

    This v e l o c i t y ( r e f . 2)

    was

    obtained with a low-dens ity , p l as t i c cy l inder

    th a t impac ted an aluminum ta rg e t . Ca lcu la t ions ind ica te th a t the in i t i a l

    p ressure produced i n the t a rg e t ma te r ia l by t h i s impac t

    i s

    l e s s t ha n t h a t

    produced by much slower, h igh er de nsi ty pr oj ec ti le s.

    ges ts t ha t wi th the proper dimensions and ve lo ci t i es , h igher den si ty projec-

    t i l e s cou ld genera te p ressure pu l ses

    in the target mater ia l which would

    approximate th at genera ted by the p l a s t i c c yl ind er impact ing a t a v e l o c i t y

    exceeding 11.3 km/sec, and the pr oj ec ti le s thereby could sim ulate , t o some

    degree, i t s impact damage a t p r e s e n t l y u n a t t a i n a b l e v e l o c i t i e s . In the same

    manner, th e impacts of l ow-densi ty meteoroids a t higher ve loc i t i e s cou ld be

    s imulated .

    This observation sug-

    A s

    a s t e p t oward t h i s g o a l, d es ig n c r i t e r i a a r e h e r e i n pr op os ed f o r t h e

    dimensions and ve lo ci t i es of dense pr oj ec t i le s t o s imu late the impacts of

    low-density, low- fine ness -rati o c yli nde rs a t meteoroid ve lo ci t i es . The model

    i n

    which these c r i t e r i a are g iven and the re su l t s of experiments designed to

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    6/35

    t e s t the t echn ique a re p resen ted .

    t i ve ly se mi -i nf in it e 2024-T351 aluminum tar ge ts impacted by aluminum, s t e e l ,

    ni ck el , copper, and platinum cylin ders

    a t

    veloci t ies ranging f rom 4.41 to

    8 . 3 5 km/sec.

    P e n e t r a ti o n d a t a

    are

    inc luded fo r e f fec -

    THEORETICAL

    CONSIDERATIONS

    Early Stages of Hypervelocity Impact

    During the ear ly s tages of hyperveloci ty impact ,

    much of th e pr oc es s

    one-dimensional flowan be analyzed i n terms of h igh ly s im pl i f ie d f lows:

    behind a normal shock and expansion-wave heads propagating from free surfaces

    through mater ia l

    a t

    uniform pressure.

    t a r ge t occurs dur ing th i s s imple .pa r t

    o f

    the f low, , i t should be poss ib le

    t o def ine condi t ions f o r impact ,equivalence between pr oj ec t i le s of widely

    d i f f e r e n t p h y s i c a l p r o p e r t i e s .

    I f enough of the impulse g iven to the

    .

    The axisymmetric, hypervelocity impact of a s e mi - i n f i n i t e , t a r g e t b y a low-

    f i n e n e s s - r a t i o c y l i n d e r i s depic ted

    a t

    t h e i n s t a n t o f impact i n f i g u r e

    1.

    The

    cy l in der ' s ve loc i ty v , d iamete r d , l ength 2 and i n i t i a l d e n si t y

    p o p ,

    I

    which in the genera l case i s d i f f e re n t ' f r o m ~ t h e n i t i a l d en s it y of t h e t a r g e t ,

    pot , ar e ind ica ted . The orthogonal coordinate system

    x

    - r i s f i x e d i n t h e

    ta r ge t wi th the x axis coinciding with th e axi s of th e cyl ind er. From th e

    in s t an t o f impac t, the mate r ia l s o f bo th the cy l inder and the t a r ge t w i l l b e

    compressed t o very high pre ssu res by shock waves.

    exceeding the s t rengths of both mater ia ls , w i l l s t a r t a nonsteady, three-

    dimensional compressible flow.

    These p ressures , g re a t l y

    The sa l i en t f ea t ure s of t h i s compress ib le f low at two ear l y t imes a f t e r

    impact

    are shown .in figure 2 , f o r a case where the speed of sound a t the

    i n i t i a l impact (Hugonio t) p ressure i n the cy l inder mate r ia l i s l e s s t h a n t h a t

    of the t a rg e t ma te r ia l . , .

    In f i gure 2 (a ) the wave pa t te rn o f t h i s f low i n

    a

    cross - sec t iona l p lane

    through the

    x l

    axis has been es t imated for a time soon af.t-er imp act. The

    shock waves

    between the mate r ia ls of the cy l inde r and ta rg et ,

    compressing these respec-

    t i v e m a t e r i a l s .

    o f t h e r a d i a l r a r e -

    fa ct io n waves, which s t a r t inward

    a t

    the ins tant of impact f rom the surface

    of the cy l inder .

    t h e r a d i a l r a r e f a c t i o n i n t h i s m a t e r i al p re ce de s t h a t i n t h e c y l i nd e r

    material

    along the in te rf ac e . Because pres sure waves are t rans mit t ed across the 1

    in te rf ac e, expansion Mach waves ar e formed i n th e cy li nd er nla ter ial . However,

    i n f i g u r e 2 , t h e c y l i n d e r' s r a d i a l r a r e f a ct i o n

    i s

    shown

    as

    though i t s propa-

    gati on were unaff ected by thes e expansions.

    impact i s gr ea te r i n th e cy lin der ma te ri al , Mach waves

    a re genera ted in the

    ta rg et mater i a l ins t ead . ( In s i mi la r mat er i a ls , no such waves are formed.)

    A

    r a d i a l ra re fa ct io n and th e ass oci ate d Mach waves form a boundary, in si d e o f

    which the flow

    i s

    s t i l l one-dimensional and the two shock waves and the

    Sp and S t . are shown prop agat ing away from the i nt er fa ce

    I

    Also shown a re th e hea ds. Rrp and R r t

    Since the speed of sound in t he t ar ge t m ater i a l i s g r e a t e r ,

    When the speed of sound a t

    2

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    7/35

    i n t e r f a c e

    are

    pl an ar . Outside t h i s boulqdary , the f low i s three-dimensional

    and the shock waves and interface

    are

    curved.

    >

    A t

    a l a t e r t i m e , the shock

    Sp

    wi l l \ h a v e r e f l e c t e d from t h e c y l i n d e r ' s

    r e a r f a c e as

    a

    ra re fa ct io n: The wave ,pat 'ter n .at t h i s t i me i s e s t ima t ed i n

    f igure , Z ( b ) . Shown ,again

    are

    , t h e r a d i a l r a r e f a c

    s

    i n t h e t a r g e t m a t e r i a l,

    which by t h i s t ime ar e , approaching the ing ge ne tm te d pos t of

    the one-dimepsional flo.w,. Ins ide the r e . b y the ra di al expansion.

    system, the ax ia l r a r e f a c t i o n ,h ea d , Rxp

    The mate r ia l and wave motions o ccurr ing a long the , x , axis dur ing thesk

    ea rl y stag es of the impact ar e b e t t e r shown in t he waye diagram .of f i gp re 3 . .

    The shock wave prop agat es through th e cy li nd er and, upon enco unte ring

    t h e c y l i n d e r ' s r e a r f a c e

    a t

    time t l i s r e f l e c t e d a s t h e a x i a l r a r e f a c t i o n

    Rxp, which s t a r t s the i sen t ro p ic r e le ase o f th e mate r ia l from the Hugonio t

    pressure. Subsequently, a t time

    t 2 5

    t h e a x i a l r a r e f a c t i o n o v e r t a k e s t h e

    i n t e r f a c e I .

    F o r

    the f ineness ra t i os be ing conside red , th e ax ia l r a re fac -

    t i o n a r r i v e s a t t h i s p o i n t b e fo r e e i t h e r o f t h e r a d i a l r a r e f a ct i o n s .

    remains planar.

    I t

    Sp

    'The cy l inder ve loc i ty v the wave, a r r i va l t imes

    t l -

    nd

    t2.

    may

    a l l be r e la ted t o the impa\ct ing

    flow paramet ers (se e appendix A). These paramete rs a r e th e speeds U and u,

    r e l a t i v e ' t o t h e u n di s tu r be d medium,, of t h e s hock wave and t he - compressed

    ma te ri al , respe+c$ively, and the sp ee d of sound CH, i n this compressed mate-

    r i a l a t p r es su re

    p ~ . . hese parameters, may be

    calc ulat ed. for. various:. mate-,

    r i a l s and any given press ure

    a r e

    l i n d e r . ' ~dimensions. and t h e one-dimensional

    p ~ , - a s n d i c a t e d

    i n

    appendix B .

    The

    v = u p + u t (1)

    where

    . .

    = U/( U -

    u)

    nv

    The flow para met ers u, U , and CH must be eva lua ted fo r the mate r ia l s o f the

    cyl in der (sub scr ip t p) and the ta rg et (subs cr ip t t ) a t th e same Hugoniot

    pressure .

    : . ,

    3 .

    Simulation Model

    I t

    i s

    pos tu la ted th a t th.e in i t i a l pa r t .of the p ressure pu l se genera ted

    i n a s e mi -i n fi n it e t a r ge t by a e hypq rvel ocit y'im pact of a low-den sity, low-

    f in ene ss- ra t io cyl i nder can be s imulated and tha t t h i s impact can thereby be

    simulated with the impact of a

    s l o we r , h i g h e r d e n s i t y c y l i n d r i c a l p r o j e c t i l e

    i f the followin g con dit ion s ar e met. The Hugoniot pr es su re p and the

    H

    3

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    8/35

    a r r i v a l time t 2 o f t h e a x i a l r a r e f a c t i o n a t t h e i n t e r f a c e

    are

    t o be t h e

    same f o r b ot h cases. Furthermore, the

    same

    impulse J i s t o b e gi ve n t o

    t h e t a r g e t

    material

    i n t h i s time by pressures ac t ing a t t h e p o r t i o n

    i

    of

    the in te r fac e in s id e the boundary th a t i s d e l i n e a te d by t h e p o i n t s o f i n t e r -

    s e c t i o n o f t h e c y l i n d e r ' s r a d i a l r a r e f a c t i o n wi t h t h i s i n t e r f a c e . To d e l i n -

    ea te t h i s boundary, th e assumptions are made t h a t t he precedence of a t a r g e t ' s

    r a d i a l r a r e f a c t i o n c au se s

    a

    n e g l i g i b l e r e d uc t i on i n t h e p r e ss u r e

    a t

    t h e i n t e r -

    face

    from the Hugoniot pr es su re

    ra d i a l r a r e fac t ion , and tha t t h i s p recedence the re fo re has a n e g l i g i b l e

    ef fec t

    on the l a t t e r wave's propagation . Thus, the por tio n

    i

    o f t h e i n t e r f a c e i s

    approximately planar and a t a cons tan t p ressure

    The above cond it io ns f o r

    s imulat ion may be wr i t t en , res pec t iv ely ,

    as

    pH

    b e f o r e t h e a r r i v a l

    of

    t h e c y l i n d e r ' s

    PH.

    t 2 u = t2l.l

    J = J

    U

    1 I

    where the subscr ip ts 1 1 and

    u

    denote the impact cases of the lower density

    c y l i n d e r and t h e s i mu la t i ng p r o j e c t i l e , r e s p e c t i v e l y .

    The preceding conditions and assumptions are s u f f i c i e n t t o s p e c i fy t h e

    v e l o c i t y ,

    l eng th , and f ineness ra t i o o f a s i mu l at in g p r o j e c t i l e i n terms o f

    these same qu an t i t i es f o r the low-density cyl i nder and the one-dimensional

    flow parameters. The ve lo ci ty of t h i s p r o j e c t i l e i s der ived by subs t i t u t i ng

    equa t ion (1) in to th e equat ion

    u = u

    t u

    t u

    which

    i s

    in pl ie d by th e condi t ion of equat ion

    ( 4 ) .

    obta ined

    i s

    The veloci ty thus

    v = v + u - u

    U 1 I

    PCJ P1-I

    The length

    o f

    t h i s p r o j e c t i l e

    i s

    obt ain ed from equa tion s (Sa) and 3)

    as

    I t s

    f i n e n e s s r a t i o

    i s

    der ive d from equat ion (6a) by

    f i r s t

    developing an

    express ion fo r the impulse J

    as

    fo l lows. I f A i i s the area o f t h e p o r t i o n

    i o f the in te r fa ce , the impulse J may be expressed

    as

    t 2

    J =

    pH i. d t

    =

    p H 1 2

    i

    d t

    0

    However, the area

    Ai

    is given by

    4

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    9/35

    Ai

    =

    7

    (d - 2 c ~ ~ t )

    S u b s t i t u t i n g t h i s e x p r e s s i o n f o r A i in to the one f o r J , performing the

    in teg ra t io n , and rea r rang ing the res u l ta n t express ion y ie ld s

    R

    J

    =

    - p

    t3

    6

    4

    H 2 p

    where

    6 i s

    a dimensionless parameter defined

    as

    r 1 2

    1

    + -

    e = l., l/up + 1/11HPCHP)(w) j

    (9)

    I f the l a t t e r express ion f o r

    t i o n s (4) and (Sa) a re applied, equation (6a) becomes

    J

    i s subs t i tu ted and the cond i t ions of equa-

    By use of th e id en ti ty of equat ion

    (9), t h e p r o j e c t i l e ' s f in en es s r a t i o i s

    where

    equat ion (6b) .

    i s re la te d t o the low-dens ity cy l inder ' s p rope r t i e s by

    In summary, th e vel oci ty , length , and f inen ess ra t i o

    of

    a

    c y l i n d r i c a l

    p r o j e c t i l e t o s i mul a t e t h e impact o f a low-densi ty , low-f ineness-ra t io

    cy l inder are given,

    respec t ive ly , by the equa t ions

    v = v + u - u

    l

    PO PlJ

    c - .

    5

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    10/35

    and

    1 .

    GH =

    U / U -

    u)

    I .

    . ,

    EXPERIMENTS

    The experimental inv es ti ga ti on .consisted of two parts . , F i r s t , t h e

    app l ic ab i l i t y o f the p receding s imula t ion re la t ionsh ips was determined by

    simulat ing th e impact of th e previously mentioned pl a s t i c cyl inder of r e f -

    erence 2 .

    f i n en e s s r a t i o o f 1/3. . T examine somewhat-more gen era lly th e ap pl ic ab il i t y

    of the s imulat ion techniqde, t h e impacts

    of polyethylene cyl inder s wi th lower

    fi ne ne ss r a t i o s and th e same ve lo ci ty (1'1.3 km/s'ec) were al so sim ulat ed. In

    the second pa r t of th e exper imenta l in ves t ig at i on, an impact of th e 1 /3-

    f ineness-ra t i io polyethylene cyl inder was s imulated a t

    a higher. vel .ocity of

    15.2

    k m / s e c .

    For

    each s i f iu la t ioh ; the*per fe t ra t ion ( t a rg e t -c r a te r dep th )

    so

    obta ined was compared with that estimated from

    The cylinder was polyethylene with a den sit y 'of 0 . 9 5 g/cm3 and a

    1 / 4 v ~ 2 / 3

    P/d = 0.34(Z/d)

    ( r e f . 3 ) , kh i c h i s app l icab le t o t he hyperve loc i ty impact of '2024-TZ51 alumi-

    num by polyethylen e cyl ind ers with f i nen ess r a t i o s from 1/6 t o 1 .

    To simula te the impact s i n t h e f i r s € pa r t o f th e exper imenta l inves t iga -

    t i o n , t h e f ol lo w in g p r o j e c t i l e

    mater ia l s

    were us ed : 2024-T351 aluminum, AIS1

    1018 s t e e l , pure n ic ke l, OFHC-copper, and pur e platinu m.

    only OFHC copper was used. The ve lo ci t i es of the vari ous simulat ing proj ec-

    t i l e s f o r yi el di ng Hugoniot pres sur es of 1.05 and 1.70 megabars and thus

    simulat 'ing polyethylene impactin'g a t 11.3 and 15 ,2 :km/see, res peg tiv eIy , ' a re

    l i s t e d i n & a bl e

    1.

    equat ion (7b) by su bs t i tu t i ng th e ve lo ci ty of polyethylene f o r v and tliie

    va lues ca lcu la ted

    as

    indic ated i n appendix B f o r u and u .

    . - _

    For the second pa r t ,

    The ve lo ci t i es were c a lc ula ted f o r each press ure from

    P

    PO PV

    P r o j e c t i l e s o f t h e s e

    materials

    were machined with diameters near 5

    mm

    and var iou s low-fineness r a t i o s . The diamete rs and leng ths were measured t o

    within 0 .06 and 0 .6 perce nt , re sp ec t i ve ly . ' The pr oj ec t i le s were then

    launched, sabot-mounted,

    a t

    t h e r e q u ir e d v el o c it i e s. i n t h e b a l l i s t i c ra ng es

    employed i n th e in ves t ig at i ons o f re fe rences 2 and 4.

    these ranges were

    equipped with r i f l e ba rr e l s , which impar ted spin t o the

    pr o j ec t i l e s t o ensure a t t i tu de nea r ze ro ang le of a t t ack and separa t ion o f

    th e segmented s a b o p . Spark shadowgraphs take n a t ,numerous stations on these

    ranges provided okthogonal viewst of t h

    gave condi t ion and a t t i tu de data .

    and therefore

    were

    i n th e range found in re fer enc e 3, f o r which any anomalies

    due t o angles. of a t t ack ar e outweighed by th e inh erent va r i a t io n i n c r a t e r

    fo rm at io n. These shadowgraphs , toge the r wi th th e measprements f o r i n t e r v a l s

    st an c? ; between th e s ta ti on s, - made poss$b41e i n each case a

    of the impac t ve l oc i ty t o wi th in pe rceb t . I '

    The l i g h t gas guns of

    r o j e c t i l e s i n f l i g h t and th er eb y

    The angles of at ta ck did no t exceed 5'

    e _

    I

    .

    6

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    11/35

    The targets w e r e of the same

    material

    (2024-T351 aluminum) and s i z e

    (10

    x

    10

    x

    5 . 1 cm) as those o f ' r e fe rences 2 and 3. The dep ths

    of

    t h e r e s u l -

    t a n t c ra te r s were measured r e l a t i ve t o t h e u n d is t ur b ed t a r g e t f a c e t o wi t h i n

    0 .6 percen t by an espec ia l ly adap ted d i a l ind ica to r .

    RESULTS AND DISCUSSION

    The per t i nen t da ta and the re su l t s o f the s imula t ion ' t e s t s a re g i v e n i n

    t a b l e s 2 and 3, respectively.

    (P/d), , corresponding t o th e ve lo ci ty

    w,,

    t o g e t h e r wi t h t h e d e n s i t y

    length Z and fine nes s r a t i o [Z/d),,

    i s

    l i s t e d

    f o r

    each s imulzt ing projac-

    t i l e . The ve lo ci ty v,,, lengt h

    Z

    and f inen ess r a t i o (Z/d) of the poly-

    ethylene cy lin der whose pen etr ati on P,

    was

    simulated by

    eact

    p r o j e c t i l e a n d

    t h e p e n e t r a ti o n of t h i s , p r o j ec t i l e normal ized wi th respec t t o tha t e s t ima ted

    f o r the corresponding polyethylene cyl i nder

    ti on , t h e maximum dev iat ion o f th e dimensionless pene tra tio n

    'P/d'

    f o r e ac h p r o j e c t i l e from

    a

    curve descri bed by'a n equation of t he form

    P/d

    =

    Kv2i3

    re la t ion between penetra t ion and impact veloci ty was shown t o apply fo r

    hyperveloci ty impact up t o th e

    11.3

    km/sec i n ref ere nce 2 ,

    dev ia t ion o f

    were ob ta ined , shows th a t th i s r e la t i on adequa te ly descr ibes the d a t a

    over.

    t h e

    ve loc i ty range t e s ted . In each case , the equa t ion

    was

    used t o est i mat e (P/d),

    a t th e s imu lht i ng ve lo ci ty v,. The length

    Z

    and (Z/d),, were c a l c u l a t e d

    by means of equa tio ns' (5b) and ( l o ) , r es pe ct iv el y; whereas th e normalized

    ) \

    pene t ra t ion was calcu la ted from the- equat ion

    In ta bl e 3 , the d imensionlkss pene ' t ra t ion

    p o q

    P,/P; .

    are

    a l s o l i s t e d : ' In addi-

    i s given

    This

    A

    nd f i t t e d to the d a ta by th e method o f

    l e a s t

    squares .

    The, maximum

    P/d, wi th in 3 percent f o r each case where sever a l data -p oi nt s

    ..

    which is der ived by su bs t i tu t i ng equa t ions (5b) and ' (11) in to the iden t i ty

    - ,

    P,

    (P/d), (Z/d),, 2

    _ -

    p, (P/d), (Z/d). z . ,

    In using equati on (12) f o r t h e smallest f inen ess r a t i o aluminum pro ' je c t i le

    and i t s corresponding 0 .11 8-f in eness ' ra t i o polyethylene cyl in der , i t was

    assumed t h a t th e Z/d re la t i on of equa tion (11)

    s t i l l

    h e l d ,

    ? ,

    F o r each s imula t ing p r o j ec t i l e , the normalized pene t ra t io n P,/Pb i s

    p l o t t e d v er su s t h e f i n en e s s r a t i o

    (Z/d),

    c y l in d e r i n f i g u r e 4 .

    Thi s fi g ur e and t a b l e 3 show t h a t th e 'aluminum, s teel , '

    nicke l , and copper p r o j ec t i l e s , having f ineness

    r a t i o s

    'from 0,0816 t o

    0 . 2 2 4 ,

    s imulated wi th good accuracy ( t o wi th in 10 percent) th e penet ra t ib ns 'of t h e i r

    corresponding polyethylene cyl in ders , having f inene ss ra t i os from 0.118 t o

    of th e correspmdi ng .polyethylene

    7

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    12/35

    0.313.

    s in ce the pene tra t i ons were deeper than those of t h e i r corresponding

    polyethylene cylinders by as much as 30 percent.

    However, poor r es ul ts were obta ined with t he p la t inum pr oj ec t i le s ,

    The intpacts of th e st e e l , n ic ke l , copper, and platinum simula ting pro-

    je c t i l e s cor respond to the p revious ly d i scussed case o f f i gur e

    2 ,

    where the

    speed of sound

    i n

    t h e t a r g e t

    material a t

    high pressure

    i s

    g r e a t e r t ha n t h a t

    o f the cy l inder

    material ,

    and t h e r e f o r e t h e r a d i a l r a r e f a c t i o n i n t h e t a r g e t

    p re ce de s t h a t i n t h e c y l i n d e r a lo ng t h e i n t e r f a c e .

    corresponding polyethylene cyl ind ers , the opposi te i s t r ue . The finen ess

    r a t i o o f e ach s i mu la t i ng p r o j e c t i l e and i t s corresponding polyethylene cyl-

    inder, however, was suf f ic ien t ly low tha t the ax ia l r a re fac t ion reached the

    point on the axis

    a t

    t h e i n t e r f a c e be f or e e i t h e r of t h e r a d i a l r a r e f a c t i o n s .

    For

    the impacts of the

    The poor res u l t s ob tained wi th the pla tinum pro je c t i l e s canno t be a t t r ib -

    u ted so le l y t o experimental e r ro r s s ince these e r r o rs were no l a r ge r than

    t h os e f o r t h e smallest f ine ness r a t i o aluminum pr oj ec t i le , which s imulated

    cl os el y the polyethylen e impact. Nor

    i s

    t h e v a r i a t io n i n c r a t e r d ep th s,

    as

    represented by the

    m a x i m u m

    devia t ion of P/d from the f i t t e d curve , la rge

    enough t o account fo r th e 20 t o 30 percent deeper pene tra t i on of p lat inum

    s i n c e t h i s d e v i a t i o n was only

    1

    percent. Although a di f fe ren t equa t ion o f

    s t a t e was used in c a lc ula t in g the one-dimensional f low parameters f o r p la t i -

    num

    (see appendix B ) , i t s

    u s e a l s o i s not thought t o be so le l y respons ib le

    f o r the much deeper pen etr ati ons .

    Ra the r, the poor re su l t s ob tained wi th the pla tinum pr o j ec t i l e s a re

    probably due t o the r ad i a l and ax i a l expansions o f p ro je c t i l e ma te r ia l be ing

    much slower i n each of t hes e cas es subsequent t o time

    expansion

    i s

    evident f rom table 4 where

    it i s

    shown th a t , desp i te se l ec t ion

    of f ineness r a t i o and leng th t o dup l ica te the impulse

    J

    of the impact of

    the 1 /3 - f ineness - ra t io po lye thylene cy l inder , the a rea

    of

    the one-dimensional

    flow

    a t

    time t 2 i s much la rg er than in th e poly ethy lene ca se , The same

    i s

    t r u e f o r sim ulat ion with copper and aluminum, but t o a le ss er ext ent , The

    slower ax ia l expansion, on the ot he r hand, i s evident i f one considers the

    re f l ec t i on o f the a x ia l r a re fa c t ion from the in te r fac e , which must occur f o r

    impacts of d is s i mi la r mater ia l s because of the acous t ic mismatch prese nt

    the re .

    nega t ive re f lec t io n o f the ax i a l r a re fac t ion , which , i n tu rn , causes the in i -

    t i a l

    pressure decay a t the por t ion

    f o r th e polyethylene case where a pos i t ive re f lec t io n occurs . The p ressure

    decay

    i s

    al so slower f o r simu latio ns with copper and aluminum, but again t o a

    le ss er ex te nt . The much slower ra di al and ax ia l expansions i n the platinum

    cause the shock pres sure in the aluminum ta rg et t o

    be

    s u s ta i n ed t o g r e a t e r

    depths, thus producing gr ea te r pen etr ati ons . This suggests th e inadequacy of

    t h e s im pl e c r i t e r i a f o r pr oj ec t i le d imensions when the physical prop er t ies of

    the p r o j ec t i l e ma t e r ia l s d i f f e r vas t l y from those of the low-densi ty cy l in der ,

    However, the use o f such p r o j ec t i l e ma te r ia l s i n s imula t ing a c tua l me teoroid

    impacts t o develop

    a

    des ign c r i t e r io n would r es u l t i n an overes t imat ion o f

    meteoro id pene t ra t ion a b i l i ty and, the re fo re , l ead t o a conservat ive des ign

    fo r meteoro id p ro tec t ion .

    t 2 .

    The s lower radia l

    The much g re at er ac ou st ic impedance of th e platinum causes a l a rge

    i

    of the in te rf ac e to be much s lower than

    8

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    13/35

    P r o f i l e s of t h e cra ters produced by the s im ulat i ng pr oj ec t i le s impacting

    a t Hugoniot pr es su re s ne ar 1.05 megabar are d e p ic t e d i n f i g u r e 5 .

    seen from the photographs, th e cra t e r shapes ar e more con ica l t han hemispher-

    ica l , which

    was

    t h e r e s u l t o b ta in e d i n r e f e r e nc e

    2

    f o r the impact of th e h igh

    speed po lye thylene cy l inder ( see f i g . 6 ) . However, i n comp'arison, t h e cra-

    ters made by the p la t inum pr o j ec t i l e s have re la t i ve ly f l a t bo t toms.

    cr a t er s f o r the aluminum, copper, and pla t inum pr oj ec t i le s of f in eness ra t i os

    0 .224, 0 .151, and 0 .122, res pec t iv ely , (see f ig s . 5( a) , (d) , and (e)) nea r ly

    s imulate the impact of the 1 /3-f i nene ss-ra t io polyethylene cyl in der of re f -

    erence 2 . Their p r o f i l e s are compared in f i gu re 7 . Except fo r t he p la t inum

    impact cra te r , t h e s e c r a t e r s are

    very s im i l a r t o t ha t p roduced by the po ly -

    e thy lene cy l inder .

    A s

    can be

    The

    The resul ts of t h e t e s t s ind ica te t he fe as ib i l i t y o f us ing s lower moving

    bu t more dense p r o j ec t i l e s t o s imula te the impac ts o f sem i- in f in i t e t a r ge t s

    by low-density , low -f ineness-ra t i o c yl in ders

    a t

    met eo ro id v e l o c i t i e s . I t i s

    emphasized that the technique i s r e s t r i c t e d t o impa cts on s e mi - i n f i n i t e

    t a r -

    ge ts , but an analogous trea tmen t of th in -t ar ge t impact might prove us ef ul .

    I n p a r t i c u l a r ,

    th e techniq ue can be used f o r simu lat ing th e impacts of low-

    fi ne ne ss -r at io cyl ind ers of polyethylen e and porous aluminum

    a t

    p r e s e n t l y

    w a t t a i n a b l e met eo ro id v e l o c i t i e s .

    I n t h i s a p p l i c a t i o n o f t h e t e c hn i qu e ,

    th e impact of a 1/3- f ineness - ra t io

    poly ethy lene cy li nd er a t 15.2 km/sec was

    s imula ted by a copper p r o j ec t i l e .

    The r e s u l t s a r e g iv en i n t a b l e 3 and f igure

    8.

    The s im ulated penetra t ion

    agrees wi th th at e s t imated by equat ion (11) t o the same accuracy as t h a t

    obta ined f o r the lower ve lo ci ty s imu lat io n. This agreement impl ies tha t the

    vel oci ty exponent of t h i s equat ion appl ies t o impacts of polyethylene a t

    ve lo ci t i es up t o 15 km/sec.

    impact c r a t e r i n f i g u r e

    8

    i s more hemispherical than conical, which

    i s

    a

    r e s u l t j u s t o p p os i t e t o t h a t o b t a i ne d f o r t h e l ower v e l o c i t y s imu l a ti o n .

    I t i s

    i n t e r e s t i n g t h a t t h e s ha pe o f t h e s imu la t ed

    A s a fu r t he r appl i ca t ion of th e technique, th e impacts of porous a lumi-

    num cyli nde rs with de nsi ty of 0.44 g/cm3 t h a t are s imulated by (1) the h igh-

    ve loc i ty po lye thylene cy l inder o f r e f e rence 2 and (2) t he h ighe st ve lo ci ty

    c o p p e r p r o j e c t i l e o f t a b l e

    3

    were determined. The impacts of p a r t i c le s with

    th i s dens i ty a re o f in te re s t s i nce va r ious as tronomers have sugges ted dens i -

    t i e s of about th i s value f o r cometary meteoroids ( r e f . 5) which a re though t to

    be porous.

    l eng th

    and the ra t io o f t he pene t ra t ion t o the cube roo t o f th e

    mass

    (P/m1/3),, for

    th e sim ulat ed porous aluminum cy li nd er s. These q u a n t i t i e s were c a l c u l a t e d

    from the da ta fo r th e s imula t ing p r o j ec t i l e s by us ing the va lues o f t he one-

    dimensional flow para met ers f o r th e porous aluminum as obtained from the

    appendixes of re fe re nc es and 7 . Also l i s t ed i n t a b l e 5 f o r comparison i s

    the ratio (P/m1/3),,

    for the impact of semi-infinite aluminum by an aluminum

    cyl in der wi th the same por osi ty and vel oc i t y as th e s imula ted cy l inders , bu t

    wi th a f i n e n e s s r a t i o o f u n i t y . The r a t i o i n t h i s case was determined from

    t h e t h e o r e t i c a l r e s u l t s o f r e f e re n c e 6 .

    The resu l t s are given in table 5 , which l i s t s t h e v e l o c i t y

    v,,,

    2,

    ,

    f ineness ra t io (Z /d ) ,,

    ,

    th e d imensionless penetra t ion (P/d)

    1 1

    ,

    9

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    14/35

    The ve lo ci t i es of t he porous aluminum pro je ct i l es , th e impacts of which

    were s imulated by the referenced polyethylene cyl in der and t he copper proje c-

    t i l e ,

    repre sent gains of 59 and 95 perce nt , respe ct ive ly , over th e vel oci ty

    of the refer enced cyli nde r. However, t he pen etr ati on simulated by copper

    probably overest imates t h a t which would a ct ua ll y be produced by th e porous

    aluminum cyl in der s in ce t he phys ical pro per t ie s of thes e two materials d i f f e r

    v a s t l y . I n

    f ac t ,

    th e pene tra t i on s imulated by copper

    i s

    about 10 per cen t

    g re a te r than th a t p re d ic ted by ex t rapo la t in g from

    t e

    pene t ra t ion s imula ted

    these s imula ted pene t ra t ions i n de te rmin ing requ i red meteoro id p ro tec t ion fo r

    spacecra f t shou ld l ead to a conservat ive des ign.

    by polyethylene according t o th e re la t i on P/d

    :

    v2 3. Never theless , us ing

    The ratios (P/m1/3),

    f o r th e simulated porous aluminum c yli nde rs do

    n o t n e c e s s a r i l y a pp ly t o i mp ac ts o f c y l i n d e rs o f o t h e r f i n e n e s s r a t i o s , b u t

    t h e s e r a t i o s do a g r ee r a t h e r

    well

    wi t h t h os e o bt a in e d t h e o r e t i c a l l y f o r t h e

    un it -f in en es s- ra ti o cy lin der s. The maximum di ff er en ce i s only about 10 per-

    cent, which was obta ined f o r th e impact s imulated by copper ,

    I f ,

    f o r t h e

    porous aluminum cylinders, (P/m1/3),

    r a t i o , t h en t h e r e

    i s

    no shape

    e f f e c t

    f o r t h e s e c y l i n de r s

    similar

    t o t h a t

    found f o r the impacts of polyethylene cyl inde rs i n reference

    3.

    i s indeed not a func t ion of f inen ess

    CONCLUSIONS

    The re su l t s o f the t e s t s i n d i c a t e t h a t t h e pe n e tr a ti o n s i n t o

    semi-

    inf in i te a luminum targets by polyethylene cyl inders of var ious low-f ineness

    r a t i o s

    impacting a t 11.3 km/sec were simulate d t o within 10 perce nt by t he

    impacts a t lower ve lo ci t i es o f aluminum, s t e e l , n ick el , and copper projec-

    t i l e s ,

    but on ly - t o wi th in 30 percen t by th e impac ts o f p la tinum pro je c t i l e s .

    From thes e re s u l t s

    t

    i s

    concluded that the technique

    i s

    fea s ib le fo r simu-

    la t i ng the impacts of semi - in f in i te ta rg et s by low-densi ty , low-f ineness-

    r a t i o c y li nd e rs

    a t

    me te or oi d v e l o c i t i e s , w i t h in c e r t a i n l i m i t s . The

    p r i n c i p a l l i m i t a t i o n seems t o be t ha t t he sound speed in th e s imula t ing

    p r o j e c t i l e c a n n o t b e t o o small compared t o t he sound speed in th e cyl ind er,

    the impact of which i s t o be s imula ted .

    2024-T351 aluminum t a r g e t s by cy l in d er s of poly et hy le ne and por ous aluminum

    (0.44 g/cm3)

    a t

    ve lo c it ie s of 15.2 km/sec and 2 2 km/sec, re sp ec ti ve ly , were

    s imulated by t h i s technique.

    The impacts of semi-infinite

    Ames Research Center

    National Aeronautics and Space Administration

    Moffe t t F ie ld , C a l i f . , 94035, Nov. 5, 1969

    10

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    15/35

    APPENDIX

    A

    DERIVATIONS

    The ve lo ci ty v can be rel at ed t o the one-dimensional f low parameters i f

    the boundary condi t ions of equal pressur e and vel oci ty are ap pl ied on e i th er

    s i d e of t h e p l a n a r i n t e r f a c e ( s ee f i g . 2 ) . These condit ions are

    and

    v - u p = u t

    The

    f i r s t

    cond i t ion requ i res t ha t the

    mass

    v e l o c i t i e s

    a t the same pressure

    up and u t be evaluated

    pH, and the second yie lds the r e l a t io n

    v = u p + u t

    (A31

    f o r t h e v e l o c i t y .

    The re l a t i ons fo r the a r r iv a l t imes t l and t 2 can be derived in a

    manner

    s imi lar

    t o t h a t i n d i c a t e d i n r e f er e n ce 8 .

    11

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    16/35

    APPENDIX B

    CALCULATION OF ONE-DIMENSIONAL FLOW PARAMETERS

    The parameters of the one-dimensional flow behind

    a

    planar shock

    wave

    are

    obta ined by app l ic a t i on of t he conservat ion laws of

    mass,

    momentum, and

    energy acr oss t h i s wave. By choosing a coord inate sys tem f ix ed i n t he

    un di st ur be d medium, one may de ri ve t h e famil iar Rankine-Hugoniot equations

    where U and u are th e speeds , re la t i ve t o the undis turbed medium, of th e

    shock wave and the shock-compressed

    mater ia l ,

    re sp ec ti ve ly . The symbols

    p , p, and E r e p r e s e n t , r e s p e c t i v e l y , t h e p r e s s u r e, d e n s i t y, and s p e c i f i c

    in t e rn a l ene rgy o f the mater ia l a t t he i n i t i a l s t a t e ( subsc r ip t 0 and a t

    the shocked Hugoniot s t a t e (s ub sc ri pt H). For convenience, Eo may be

    chosen t o be zero; and s in ce f o r hyperveloci ty impact

    two equations may be approximated as

    PH >>

    po,

    t h e l a s t

    where th e def in i t io n of equat ion (Bl) has been subst i tu ted .

    To so lv e f o r t h e f ou r unknowns 'H,

    PH,

    u, and

    U a

    four th equa t ion ,

    the equa t ion-of - s ta te o f the mate r ia l , i s r e q u i r ed . I n t h i s r e p o r t , two

    forms fo r t h i s equat ion were used fo r nonporous ma te ri al s . The f i r s t of

    these

    i s

    the semiempi r ica l equat ion o f T i l l o t s on ( re f . 9) ,

    where

    values of the se constants for var ious mater ia ls a re l i s t e d i n t a bl e 6 , as

    given by o r adapted from references

    9

    and 10.

    a be st -f i t in te rp ol at io n between cal cu la ti on s from Thomas-Fermi-Dirac theor y

    17 = p/po, 1 1 =

    q -

    1, and

    a ,

    b , A, B, and

    Eo

    are constants. The

    This formulat ion represen ts

    1 2

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    17/35

    for very high pressures and exper imenta l data a t low pressures and i s

    es t ima ted t o be accura te t o wi th in 5 perc ent of t he Hugoniot pres sure f o r

    pressures below 5 megabars.

    The second form of the equation of

    s t a t e

    (Enig,

    r e f . 11) i s base d on th e p-u mirror-image approxim ation. This equ ati on,

    ( t h e n o t a t i o n f o r

    S

    i n r e f .

    11

    i s a) makes use of the l inear approximation

    (Co and S are empirical constants) , wh'ich i s app lic abl e f o r many

    materials

    over a l a r ge p ressure range .

    r i a l s and th e range of press ure s f o r which the y

    are

    app l icab le , as obta ined

    from reference 1 2 , a re l i s t e d i n t a b l e 7.

    The values of th ese const ants f o r var io us

    mate-

    The flow parameters may a l l be expressed i n terms o f the Hugoniot pres-

    s u r e PH by equa tio ns, t h e convenience of which i s determined by the

    equat ion of

    s t a t e

    used.

    I f

    T i l l o t s o n ' s e q u a t i o n i s used, t h e most convenien t

    equat ions fo r these parameters are

    where

    sure. The

    f i r s t

    two equations are obta ined by sol vin g equations (Bl) and

    (B2b).

    sound,

    c 2

    = (ap/ap)s , t o equat ion

    (B4)

    and s u b s t i t u t i n g i n t o t h e r e s u l t

    equa tion (B3b) and th e thermodynamic r e l a t i o n ( a E / a p ) s

    =

    p/p2.

    CH

    i s t he spee d of sound i n t h e shocked medium a t the Hugoniot pres-

    The

    l a s t

    equat ion i s found by applying th e de f i n i t i on of t he speed of

    The Hugoniot

    13

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    18/35

    pressure pH i n these equat ions

    i s

    give n by equa tio n (B4) as

    pH

    =

    PH(PH,EH).

    th i s equa tion fo r pH, rl i s o b ta in e d i m p l i c i t l y as nH

    =

    vH(pH). Therefore,

    the f low parameters are ?unctions only of t he Hugoniot pre ssu re

    However,

    i f

    equations (Bl) and (B3b) are s u b s t i tu t e d i n t o

    CH =

    cH(PH) (B9b)

    I f

    Enig 's equat ion i s used, th e most convenient equations f o r thes e parameters

    are

    Equation (B10) i s obt ain ed by sol vi ng equa tio ns (B2b) and (B6), whereas equa-

    tion (B11) i s obta ined by app ly ing th e de f i n i t i on o f

    c

    t o equ ati on (BS) and

    su bs t i tu t i ng in t o the res u l t equa tions (Bl ) and (B10).

    For

    the s imula t ion

    t e s t s ,

    h e one-dimensional flow para met ers were

    cal cul ate d by usin g Til lo ts on 's equa tion f o r poly ethy lene, 2024-T351 aluminum,

    AIS1 1018

    s t e e l ,

    nickel , and OFHC copper and by using Enig 's equation fo r

    pla t inum.

    parameters

    were

    obtained from the appendixes of references

    6

    and 7 .

    of En ig ' s equat ion f o r p la t inum was necessa ry s ince the cons tan t s o f

    T i l l o t s o n ' s e q ua t io n f o r t h i s material were not avai l able . The constants

    used f o r polyethylene were adapted from those

    given i n referen ce 10 for a

    s l i g h t l y l ower d e n s i t y p o ly e th y le n e and a r e l i s t e d i n t a b l e

    6 .

    For

    porous aluminum of de ns it y of 0.44 g/cm3, th e values of t he se

    The use

    I n a d d i t i o n , it

    was

    assumed t h a t t he equations of s t a t e f o r aluminum

    and s t e e l al lo ys could be approximated by thos e f o r pure aluminum and pure

    i ro n, resp ect ive ly . This approximat ion i s good i n t h e cas e of th e aluminum

    a l l o y , s i n c e t h e v a lu e s o f

    pH

    =

    1.000 megabar by us ing Eni g's equa tion

    are

    wi t h i n 2 percent of the cor-

    respond ing va lues ca lcu la ted by us ing bo th th i s equa tion and th a t o f T i l lo t son

    for pure aluminum.

    u , U , and cH c a l c u l at e d f o r t h i s m a t e r i al a t

    Using Enig's

    equation t o ca lc ul at e th e one-dimensional f low parameters

    f o r A l , F e ,

    N i ,

    Cu, and W

    a t

    p~

    =

    1.000 megabar gives values that agree well

    with those ca l cul a te d by us ing Ti l l o t so n ' s equat ion. For each of thes e

    mate-

    r i a l s , th e values of u and th e values of cH, cal cul a te d by us ing the two

    d i f f e r e n t e q u a ti o ns o f s t a t e , a g re e t o wi t h i n

    1 perc ent and 3 per cen t,

    14

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    19/35

    respe ct iv ely . Furthermore , th e values of

    U

    agree t o wi th in 1 percent f o r

    each

    of

    these materials except

    F e ,

    f o r which t he values agree t o wi th in only

    6 percen t .

    The agreement of these va lues provides confidence i n th e values

    of th e parameters f o r P t , f o r which only Enig 's equation was used,

    15

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    20/35

    REFERENCES

    1. Cosby, W i l l i a m A . ; and Lyle, Robert G . : The Meteoroid Environment and

    I t s Effects on

    Materials

    and Equipment. NASA SP-78, 1965.

    2 .

    Denardo,

    B .

    P a t :

    P ene t r a t ion o f P o lye thylene in t o S emi - In f in i t e

    2024-T351 Aluminum up t o Ve l o c i t i e s

    of 37,000 Feet Per Second.

    NASA TN D-3369, 1966.

    3. Denardo, B .

    P a t :

    P ro je c t i l e Shape Effects on Hypervelocity Impact

    C r a te r s i n Aluminum. NASA TN D-4953, 1968.

    4. Nysmith, C . Robert; and Summers, James L . : An Experimental In ve st ig at io n

    of th e Impact Resi stan ce of Double-Sheet St ru ct ur es a t V e l o c i t i e s t o

    24,000

    Feet

    Per Second. NASA TN D-1431, 1962.

    5. Whipple, Fre d L . : On Meteoro ids and Pe ne tr at io n. J . Geophys.

    Res.,

    vo l . 68, no. 17, Sept .

    1 ,

    1963, pp. 4929-4939.

    6. Bjork, R .

    L . ;

    Kreyenhagen,

    K .

    N . ; and Wagner,

    M . H . :

    Analyt ical Study of

    Impact

    Effects

    as App li ed t o t h e Me teo roi d Hazard. NASA CR-757, 1967.

    7 .

    Ro se nb la tt , Ma rti n; Kreyenhagen, Kenneth N . ; and Romine, Dennis

    W . :

    Analytical Study of Debris Clouds Formed by Hypervelocity Impacts on

    Thin

    Pla t es .

    F i n a l Te ch ni ca l Report AFML-TR-68-266, Shock

    Hydrodynamics, Inc., December 1968.

    8. Fowles, G .

    R . :

    At te nu at io n of t h e Shock Wave Produced i n a Solid by a

    Fly ing Pla te . J . Appl. Phys., vo l. 31, no. 4, Ap ri l 1960, pp. 655-661.

    9 . T i l l o t s o n , J . H . : Met a l l ic Equat ions o f S t a t e f o r Hyperve loci ty Impac t.

    GA-3216 (AF29 (601) -47 59) , Gene ra l Atomic Div. o f G en eral Dynamics,

    July 1962.

    10. Walsh, J . M . ; Johnson,

    W

    E . ; Dienes, J . K . ; T i l l o t s o n , J . H . ; and

    Yates , D . R . : The Theory of Hyp erv elo cit y Impa ct. Summary Repo rt

    GA-5119 (DA-04-495-AMC-116

    X ) ) ,

    General Atomic Div. of General Dynamics,

    March 1964.

    11. E nig , Ju l iu s

    W :

    A Complete E , P , V ,

    T ,

    S

    Thermodynamic Description of

    Metals Based on the

    P ,

    U Mirror-Image Approximation. J . Appl. Phys.,

    vol . 34, no. 4 ,

    P t . 1 ,

    April 1963, pp. 746-754.

    1 2 .

    Van Thiel, M . , ed . : Compendium of Shock Wave Data. S ec t ions A - 1 , A - 2 .

    UCRL-50108, v o l s , I and 11, Lawrence Radiation Lab., U . of C a l i f . ,

    Livermore,

    C a l i f . ,

    June 1966.

    16

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    21/35

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    22/35

    TABLE

    2 . -

    SUMMARY OF PERTINENT EXPERIMENTAL DATA

    1

    Round

    I

    aterial

    Polye

    2024-

    E

    r l e n e

    5 1 A 1

    ,IS1

    018 St e e l

    N i

    OFHC Cu

    568

    *

    989

    994

    995

    997

    990

    991

    5-108

    5-117

    5-119

    5-122

    5.-123

    5-124

    5-125

    5-126

    5-127

    5-203

    5-114

    5-115

    5-116

    5-197

    5-213

    5-214

    J-109

    5-110

    5-111

    5 - 1 1 2

    5-259

    5-198

    5-205

    5-206

    SR- 19f

    SR- 19;

    SR- 191

    SR-20(

    5 - 2 1 1

    5-249

    5-251

    5-207

    5-209

    5 - 2 1 0

    P r o j e c t i l e

    Diameter,

    d ,

    mm

    5.702

    5.075

    5.075

    5.072

    5.075

    5.072

    5.075

    5.080

    5.090

    5.085

    5.080

    5.362

    5.080

    5.105

    5.080

    I

    4.821

    i

    4.811

    4.821

    4.811

    5.090

    c

    4.559

    Length,

    z

    mm

    1.8

    .411

    .417

    .417

    .411

    .818

    .826

    1.10

    1.09

    1.09

    1.10

    .20

    .686

    .688

    .691

    .460

    .518

    .533

    .645

    .650

    .655

    .665

    .655

    .729

    .744

    .739

    .732

    .732

    .742

    .726

    .483

    .475

    .485

    .551

    .546

    .554

    Mass,

    m ,

    g

    1.0453

    .0233

    .0233

    .0232

    .0230

    .0467

    .0469

    .0616

    .0611

    .0605

    .0615

    .0613

    .0616

    .0610

    .0610

    .0614

    .0752

    .lo79

    . lo75

    .1209

    .0812

    .0917

    .0953

    . 1 1 2 2

    .1102

    . lo88

    .1123

    .1178

    .1180

    .1208

    .1201

    .1190

    .1181

    .1200

    .1171

    .2098

    .2048

    .2086

    .1923

    .1912

    .1935

    V e l o c i t y

    km/sec

    11.3

    7.40

    5.96

    8.19

    8.35

    7.55

    5.86

    6.56

    6.76

    6.95

    6.75

    6.97

    6.61

    7.27

    7.22

    6.85

    6.70

    5.05

    5.31

    5.06

    5.17

    5.44

    5.56

    5.80

    6.03

    5.85

    5.28

    6.06

    5.42

    5.56

    5.74

    6.89

    7.20

    7.63

    7.82

    4.72

    4.62

    4.70

    5.37

    4.41

    4.69

    V,

    Pe n e t r a t i o n ,

    p ,

    mm

    7.54

    5.23

    4.57

    5.56

    5.69

    6.50

    5.44

    6.38

    6.55

    6.81

    6.68

    6.73

    6.40

    6.96

    6.83

    6.66

    6.88

    7.11

    7.29

    7.49

    6.30

    6.83

    7.14

    7.87

    7.98

    7.75

    7.24

    8.28

    7.75

    7.92

    8.08

    9.27

    9.52

    9.88

    9.88

    9.35

    9.02

    9.27

    9.12

    9.42

    10.2

    P r o j e c t i l e

    Mean

    finenes

    r a t i o

    18

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    23/35

    a c

    N rl

    rl c a

    ,+ rda

    rd k \

    E + J b

    k a,

    o c

    za

    0 0 0 0 d d 0 0 0 r l N M r l

    r l d r l r l d d d d r l r l r l d d

    . . . . . . . . . . . . .

    m m N M N d L n r l W d d d d

    d N O d r . r . m N u 3 d m d N

    d N M M N N d N N M N M M

    0

    . . . . . . . . . . . .

    co a d

    N b d

    N

    d \ D

    . .

    N

    d r

    rl

    * L n

    d N r l

    N l n N

    N

    r l r l

    . .

    e D P

    m u 3 m r . o ~ m r . w ~ ~ u 3 +

    N M v) L n N d u3 m

    0 0

    . . . . . . . . . . . .

    r l r l d d d d r l d r l r l r l N N

    b

    O N

    b m e

    . .

    . . . . . . . . . .

    N

    c o d

    N

    s'

    M G E

    c -

    e

    4

    19

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    24/35

    TABLE

    5 . -

    SI MULATED I MPACTS

    OF

    POROUS ALUM NUM

     0.44 g/cm3)

    CYLI NDERS

    Vel oci ty,

    vu

    kmsec

    18

    22

    Si mul at i ng proj ecti l e

    Pol yeth-

    yl ene

    Length, Fi neness D mensi onl ess p/m/ 3)p, P/m1’3)p f or,

    Z rat i o, penetrat i on, (z/d),, = 1,

    cm g1/ 3

    m Z/d),, P/d),

    2. 5 0. 47

    1.4

    2.6 2.6a

    2. 6 . 47 1. 8 3. 3 3. 0a

    cmgi r

    Fromtheoret i cal resul ts of reference 6

    TABLE 6 . CONSTANTS

    FOR

    TI LLOTSON’ S EQUATI ON OF STATE

    Pol yethyl ene

    w

    cu

    Fe

    A1

    Be

    Ti

    N

    M O

    a

    0 6

    . 5

    .5

    .5

    .5

    . 55

    . 5

    .5

    .5

    . 4

    .6

     

    B,

    Mb

    0 .02

    2. 50

    1. 10

    1.05

    . 65

    . 55

    . 50

    1.50

    1. 65

    . 50

    .002

    EO

    a- cm3/ g

    0.07

    . 225

    . 325

    . 095

    . OS0

    . 175

    . 070

    . 090

    . 045

    . 025

    . 07

    Vormal densi ty,

    P,, g/ cm3

    0.92

    19. 17

    8. 90

    7. 86

    2.70

    1.85

    4.51

    8. 86

    10. 20

    11. 68

    . 95

    Sources

    Referene

    9 and 1C

    Assume

    TABLE

    7. -

    EMPI RI CAL CONSTANTS

    I N THE EQUATI ON

    U = Co +

    SU

    [From ref. 1 2 1

    Materi al

    A1 2024

    i ormal densi ty,

    p0, g/ cm3

    19. 17

    8. 90

    7.86

    2. 71

    2.785

    8. 86

    21. 43

    Co, kmsec

    4.005

    3.958

    3.768

    5.38

    5.355

    4.646

    3.646

    Appl i cabl e pressure range,

    Mb

    1.268 0.395 - 2.074

    1.497 .883 - 1.444

    1. 655 . 43 - 1967

    - 693- 1.972

    1.345 .015 - 1.022

    1.445 1. 009

    -

    1.491

    1.535 . 322 - 2.718

    1.35

    20

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    25/35

    E-

    Figure l.- Axisymmetric, hypervelocity impact of semi-infinite target

    by

    low-

    fineness-ratio cylinder of dissimilar material.

    2 1

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    26/35

    (a) At time soon after impact.

    Figure 2.- Estimated wave pattern for axisymmetric, hypervelocity impact of

    semi-infinite target by low-fineness-ratio cylinder (dissimilar material).

    2 2

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    27/35

     b)

    At time soon after reflection of

    shock

    wave

    Sp

    from cylinder s rear face.

    Figure 2.- Concluded.

    2 3

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    28/35

    t

    X

    Note: Not to scale

    Figure 3 . - Wave diagram for material and wave motions occurring along

    x a x i s .

    24

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    29/35

    2.0

    I . 8

    I . 6

    I . 4

    1.2

    1.0

    . 8

    pcr

    PP

    . 6

    . 4

    . 2

    0

    - Simulating

    projecti le

    material

    -

    2024-T351

    A I

    -

    AIS1

    1018

    Steel

    A

    N i

    OFHC

    Cu

    b P t

    -

    Velocity,

    V U ,

    km sec

    7.40

    5 64

    5.39

    5.48

    4.67

    .I

    .2 .3

    .4

    .5

    (Z/dlp

    Figure 4. Normalized penetration of simulating projectile versus fineness

    ratio

    of

    corresponding polyethylene cylinder impacting at 11.3 km/sec.

    25

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    30/35

    z / d

    = 0.081 0.161

    v =

    7.40

    km/sec

    ..

    0.2

    I6

    7.55

    0.224

    7.27

    6.70

    ~ (a) 2024-T35I A I

    5.31

    (b) AIS1 1018 Steel

    5.06

    C ) N i

    Figu re 5.- Impact

    craters

    i n 2024-T351 aluminum t a r g e ts produced by sim ula tin g

    p r o j e c t i l e s a t Hugoniot pressures near 1.05 megabars.

    26

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    31/35

    z / d

    = 0.0905

    0.102

    v

    =

    5. I7

    km/sec 5.44

    0.131 0.151

    5.42

    ( d ) OFHC

    Cu

    0.0933 0.122

    4.70

    4.69

    e ) Pt

    Figure

    5.-

    Concluded.

    2 7

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    32/35

    Figure

    6.-

    Plaster replica (from ref.

    2)

    of impact crater in 2024-T351

    aluminum target produced by 1/3-fineness-ratio polyethylene cylinder

    at 11.3 km/sec.

    28

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    33/35

    1 d 0.224

    ( a

    1 2 0 2 4 - T 3 5 1 A I

    ( b )

    OFHC

    Cu

    v

    = 6.70 km/sec

    0.151

    5.42

    0.122

    4.69

    Simulating projec ti e

    High -speed polyethylene cyl inder of ref. 2

    ---

    Figure

    7.-

    Comparison of crater profiles.

    29

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    34/35

    30

    I / d = 0.151

    v

    =

    7 02

    km/sec

    Figure 8.- Impact crater i n 2024- T351 aluminum target produced by copper

    s i mu l a t i n g p r o j e c t i l e a t Hugoniot pressure near 1.70 megabars.

    NASA-Langley, 1970 2

    A-3

    3

    15

  • 8/9/2019 SIMULATION OF METEORQID-VELOCITY IMPACT BY USE F DENSE PROJECTILE

    35/35

    ERONAUTICSN D S P A C E ADMINISTRATION

    WASHINGTON,. C.

    20546

    OFFICIAL BUSINESS

    FIRST CLASS MAIL

    POSTAGE A N D FEES PA

    NATI O NAL AERO NAUTI CS

    SPACE ADM INISTRATIO

    POSTMASTER: If Undeliverable Sectio n

    Postal Manual) Do

    Not

    R

    “T he aeronautical and space activities of the Uni ted States shall be

    condzuted so as t o contribute .

    ,

    . t o the expaizsion

    of

    human knoaul

    edge of phenomena

    n

    the n tn~osphere nd space. T h e Adni in is t rat ion

    shall provide f o r the widest prdcticable diad appropriate dissemination

    of

    information concerning its activities and the resdts thereof.’’

    -NATIONALAERONAUTICSN D SPACE ACT

    OF

    1958

    NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

    TECH NICAL REPO RTS: Scientific and

    technical information considered important,

    complete, and a lasting contributio n to existing

    knowledge.

    TECH NICA L NOT ES: Information less broad

    in scope but nevertheless of importan ce as

    a

    contrib ution to existing knowledge.

    TECHNICAL MEMORANDUMS :

    Information receiving limited distribution

    because of pre liminary data, security classifica-

    tion, or other reasons.

    CONTRACTOR REPORTS: Scientific and

    technical information generated under

    a

    NASA

    contract or grant and considered an important

    contr ibution to existing knowledge.

    TECHNICAL TRANSLATIONS: Information

    published in a foreign language considered

    to mer it NAS A distribution in English.

    SPECIAL PUBLICATIONS : Information

    derived from or of value to NASA activities.

    Publications include conference proceedings,

    monographs, data compilations, handbooks,

    sourcebooks, and special bibliographies.

    TECHNOLOGY UTILIZATION

    PUBLICATIONS: Information on technology

    used by NASA that may be of particular

    interest in commercial and oth er non-aerospace

    applications. Publications include Tech Briefs,

    Technology Utilization Reports a nd Notes,

    and Technology Surveys.

    Details on the availabil i ty

    of

    these publ icat ions may be obta ined f rom:

    SCIENTIFIC AND TECHNICAL INFORMATION DIVISION