37
Think Lean – Create Value Computational Optimization of Magnetically Enhanced CCP Plasma Uniformity for Disk Etch Applications Vladimir Kudriavtsev, Wenli Collison Huong Nguyen, Pat Ward, Michael Barnes, Mark Kushner 62 nd Annual Gaseous Electronics Plasma Conference GEC 09 - American Physical Society October, 2009

Simulation of Magnetically Confined Plasma for Etch Applications

  • Upload
    vvk0

  • View
    370

  • Download
    0

Embed Size (px)

DESCRIPTION

Simulation of Magnetically Confined Plasma for HDD Etch Applications, DTR Magnetic Media

Citation preview

Think Lean – Create Value

Computational Optimization of

Magnetically Enhanced CCP Plasma

Uniformity for Disk Etch Applications

Vladimir Kudriavtsev, Wenli Collison

Huong Nguyen, Pat Ward, Michael Barnes,

Mark Kushner

62nd Annual Gaseous Electronics Plasma Conference

GEC 09 - American Physical Society

October, 2009

Think Lean – Create Value

Summary

Think Lean – Create Value

Magnetic Field Line Uniformity Analogy

-improve magnetic line angle uniformity and desired cross-section and you will improveplasma uniformity

-best way to do it to increase magnet to substrate distance, however that weakens corresponding magnetic field

Think Lean – Create Value

Two Configurations

Initial Optimized – Rev1

HM H

HM H

HM=62.5…125 mm, H=50 mmMagnet moves up/down

HM=125 mm, H=113 mmPlasma gap increases, ground to electrode area increased

Think Lean – Create Value

CF4 Chemistry Model (HPEM)

Think Lean – Create Value

K Pole Magscans

Close Distance 62.5 mm away

View from bottom

Magnetic steel enclosure

Magnets

Think Lean – Create Value

Magnetized CCP

• 2-dimensional HPEM Hybrid Model of Ar Plasma

• Electron energy equation for bulk electrons

• Continuity, Momentum and Energy (temperature) equations

for all neutral and ion species.

• Poisson equation for electrostatic potential

•Gas phase reactions:

AR + E > AR* + E

AR + E > AR* + E

AR + E > AR^ + E + E

AR* + E > AR^ + E + E

AR* + AR* > AR^ + AR + E

AR* + E > AR + E

AR^ + AR > AR + AR^

•Surface reactions:

Ar* > Ar

Ar^ > Ar

Ar^-ion

Think Lean – Create Value

ELECTRON ENERGY TRANSPORT

S(Te) = Power deposition from electric fields

L(Te) = Electron power loss due to collisions

ΦΦΦΦ = Electron flux

κκκκ(Te) = Electron thermal conductivity tensor

SEB = Power source source from beam electrons

( ) ( ) ( )

eee

EBeeeeeee

nDEqn

STTkT2

5TLTStkTn

2

3

∇⋅−⋅=Φ

+

∇⋅−Φ⋅∇−−=∂

µ

κ/

( )isotropicA

mq

i

BBBBBBB

BBBBBBB

BBBBBBB

Bq

mAA

om

zzrzr

zrrz

zrrzr

mo

=+

=

++−+−

+++−

+−++

+

=

,/

1

22

22

22

22

νωα

ααα

ααα

ααα

αα

ν

θθ

θθθ

θθ

r

• All transport coefficients are tensors:

B field affected transport

Think Lean – Create Value

PLASMA CHEMISTRY, TRANSPORT AND ELECTROSTATICS

• Continuity, momentum and energy equations are solved for each species

(with jump conditions at boundaries)

• Implicit solution of Poisson’s equation

( ) ( )

⋅∇⋅∆+=∆+Φ∇⋅∇ ∑∑

i

iqt-- i

i

iis Nqtt φρεr

EBiiii SSvN

t

N++⋅−∇= )(

r

( ) ( ) ( ) ( ) ii

i

iiiiiii

i

ii BvEm

NqvvNTkN

mt

vNµ

∂⋅∇−×++⋅∇−∇=

rrrrrr

1

( ) ijjij

j

i

mm

jvvNN

m

ji

νrr

−−∑+

( ) 2

22

2

)()U(UQ E

m

qNNP

t

N

ii

iiiiiiiii

ii

ων

νε

ε∂

+=⋅∇+⋅∇+⋅∇+

∑∑ ±−+

++j

jBijji

j

ijBijji

ji

ij

s

ii

ii TkRNNTTkRNNmm

mE

m

qN3)(32

2

ν

Think Lean – Create Value

Initial Configuration

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Magnet direction: Horizontal right. 125mm distance from substrate to magnet.

� Electron density.

R (cm)

Z(c

m)

-10 -5 0 5 10

-10

-5

0

5

10

E

2.6E+102.3E+102.0E+101.7E+10

1.4E+101.1E+108.0E+095.0E+09

2.0E+09

R (cm)

E

1.5 2 2.5 31E+10

1.5E+10

2E+10

2.5E+10

3E+10

3.5E+10

4E+10

E

1cm above the substrate

Think Lean – Create Value

Initial Configuration

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Magnet direction: Horizontal right. 125mm distance from substrate to magnet.

� F radical density.

R (cm)

Z(c

m)

-10 -5 0 5 10

-10

-5

0

5

10

F

1.1E+13

1E+13

9E+12

8E+12

7E+12

6E+12

5E+12

4E+12

3E+12

2E+12

1E+12

Think Lean – Create Value

Initial Configuration

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Magnet direction: Horizontal right. 125mm distance from substrate to magnet.

� Plasma potential.

R (cm)

Z(c

m)

-10 -5 0 5 10

-10

-5

0

5

10

P-POT

60

46

31

17

3

-11

-26

-40

Think Lean – Create Value

Optimal Rev1

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap in plasma zone.

� Electron Density.

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

5.5E+105.0E+10

4.5E+104.0E+103.5E+103.0E+10

2.5E+102.0E+101.5E+101.0E+10

5.0E+09

1cm below the substrateR (cm)

E

1.5 2 2.5 32E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

5.5E+10

6E+10

E

Think Lean – Create Value

Optimal Rev1

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap in plasma zone.

� CF and CF2 densities.

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

CF2

2.4E+13

2.2E+13

2.0E+13

1.8E+131.6E+13

1.4E+13

1.2E+13

1.0E+13

8.0E+12

6.0E+124.0E+12

2.0E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

CF

2.0E+13

1.8E+13

1.6E+13

1.4E+13

1.2E+131.0E+13

8.0E+12

6.0E+12

4.0E+12

2.0E+12

Think Lean – Create Value

Optimal Rev1

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Magnet: Horizontal right. 125mm from substrate to magnet, 113mm gap in plasma zone.

� F radical density and plasma potential.

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

F

9.0E+12

8.0E+12

7.0E+12

6.0E+12

5.0E+124.0E+12

3.0E+12

2.0E+12

1.0E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

P-POT

2010

0-10

-20-30

-40-50

-60-70

Think Lean – Create Value

Comparison – Plasma Density Ne

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Decreasing the distance from magnet to substrate, while keep 113mm gap in plasma zone.

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

5.5E+105.0E+10

4.5E+10

4.0E+103.5E+10

3.0E+102.5E+10

2.0E+10

1.5E+101.0E+10

5.0E+09

125mm

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

5.50E+105.08E+10

4.67E+104.25E+10

3.83E+103.42E+10

3.00E+102.58E+102.17E+10

1.75E+101.33E+10

9.17E+095.00E+09

74mm92.5mm

113mm

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

5.50E+10

5.00E+104.50E+10

4.00E+10

3.50E+103.00E+10

2.50E+10

2.00E+10

1.50E+101.00E+10

5.00E+09

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

5.50E+10

5.05E+10

4.59E+104.14E+10

3.68E+10

3.23E+10

2.77E+102.32E+10

1.86E+10

1.41E+10

9.55E+095.00E+09

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

5.5E+10

4.7E+10

3.8E+10

3.0E+10

2.2E+101.3E+10

5.0E+09

136mm

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

4.5E+10

4E+10

3.5E+10

3E+10

2.5E+10

2E+10

1.5E+10

1E+10

5E+09

No magnet, 92.5mm

Rev.1 Config

Think Lean – Create Value

Comparison – F radical number density

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Decreasing the distance from magnet to substrate, while keep 113mm gap in plasma zone.

125mm

74mm92.5mm

113mm136mm

No magnet, 92.5mm

Rev.1 Config

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

F

1.5E+13

1.4E+13

1.3E+13

1.2E+13

1.1E+13

1E+13

9E+12

8E+12

7E+12

6E+12

5E+12

4E+123E+12

2E+12

1E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

F

1.20E+13

1.10E+131.00E+13

9.00E+12

8.00E+127.00E+12

6.00E+12

5.00E+124.00E+12

3.00E+12

2.00E+121.00E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

F

9.0E+12

8.0E+127.0E+126.0E+12

5.0E+124.0E+12

3.0E+122.0E+121.0E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

F

1.1E+13

1E+13

9E+12

8E+12

7E+126E+12

5E+12

4E+12

3E+12

2E+12

1E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

F

1E+13

9E+12

8E+127E+12

6E+125E+12

4E+12

3E+122E+12

1E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

20

F

1.1E+131E+13

9E+128E+12

7E+126E+12

5E+124E+12

3E+122E+12

1E+12

Think Lean – Create Value

Comparison – CF2 polymer number density

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Decreasing the distance from magnet to substrate, while keep 113mm gap in plasma zone.

125mm

74mm92.5mm

113mm136mm

No magnet, 92.5mm

Rev.1 Config

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

CF2

2.6E+132.4E+132.2E+132E+131.8E+131.6E+13

1.4E+131.2E+131E+138E+126E+124E+12

2E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

20

CF2

2.6E+13

2.4E+132.2E+13

2E+131.8E+13

1.6E+131.4E+13

1.2E+13

1E+138E+12

6E+124E+12

2E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

CF2

2.4E+132.2E+13

2E+131.8E+13

1.6E+131.4E+13

1.2E+131E+138E+12

6E+124E+12

2E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

CF2

2.4E+13

2.2E+13

2E+13

1.8E+13

1.6E+13

1.4E+13

1.2E+13

1E+13

8E+12

6E+12

4E+12

2E+12

R (cm)Z

(cm

)-10 -5 0 5 10

0

5

10

15

CF2

2.4E+132.2E+13

2.0E+131.8E+13

1.6E+131.4E+131.2E+13

1.0E+138.0E+12

6.0E+124.0E+122.0E+12

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

CF2

2.40E+132.20E+13

2.00E+131.80E+13

1.60E+131.40E+13

1.20E+13

1.00E+138.00E+12

6.00E+124.00E+12

2.00E+12

Think Lean – Create Value

Comparison- Radial Profiles

� CF4 gas 50sccm, 100mTorr, 100W CCP power.

� Decreasing the distance from magnet to substrate while keep 113mm gap in plasma zone.

� Electron density at 1cm below the substrate. R is from inner radius of substrate to outer radius of substrate.

125mm

distance from magnet to substrate

74mm92.5mm113mm

R (cm)

E

1.5 2 2.5 32E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

E

R (cm)

E

1.5 2 2.5 32E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

E

R (cm)

E

1.5 2 2.5 32E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

E

R (cm)

E

1.5 2 2.5 32E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

E

R (cm)

E

1.5 2 2.5 32E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

E

136mm

74mm92.5mm113mm

R (cm)

E

0 0.5 1 1.5 2 2.5 3 3.5 40

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

E

R (cm)

E

0 1 2 3 40

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

E

R (cm)

E

0 1 2 3 40

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

E

R (cm)

E

0 1 2 3 40

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

E

125mm136mm

R (cm)

E

0 0.5 1 1.5 2 2.5 3 3.5 40

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

3E+11

E

Think Lean – Create Value

Uniformity Initial Configuration

Initial

AR

Uniformity

� R range: from inner edge of the substrate to the outer edge of the substrate.

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Kpole_CF4 with magnet, 62.5mm distance,

50mm gap, 50sccm, 100mTorr, 100W, 300G 1.59E+10 2.37E+10 2.02E+10 13.6 19.3

Kpole_CF4 with magnet, 125mm distance,

50mm gap, 50sccm, 100mTorr, 100W, 35G 1.44E+10 3.64E+10 2.65E+10 26.1 41.5

Kpole_CF4 with magnet, 92.5mm distance,

80mm gap, 50sccm, 100mTorr, 100W, 90G . 3.24E+10 4.71E+10 3.90E+10 12.2 18.8

Kpole_CF4 with magnet, 125mm distance,

113mm gap, 50sccm, 100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3

Kpole_Ar with magnet, 62.5mm distance,

50mm gap, 30sccm, 5mTorr, 200W, 300G 8.63E+10 9.76E+10 9.32E+10 4.16 6.02

Kpole_Ar with magnet, 125mm distance,

50mm gap, 30sccm, 5mTorr, 200W, 35G 9.61E+10 1.11E+11 1.06E+11 4.68 7.00

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 5mTorr, 200W, 35G 7.74E+10 1.008E+11 9.071E+10 8.28 12.89

AR

AR

Distance to magnet increased, uniformity gets worse

If gap is increased, uniformity gets better

If gap is increased & distance, uniformity gets betterR.1Opt

Think Lean – Create Value

Uniformity Initial Configuration

� R range: from inner edge of the substrate to the outer edge of the substrate.

Initial

AR

Uniformity

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Kpole_CF4, no magent, 125mm from magnet

to substrate, 50mm gap in plasma zone. 1.70E+10 2.41E+10 2.05E+10 10.4 17.3

Kpole_CF4 with magnet, 125mm from magnet

to substrate, 50mm gap in plasma zone. 1.44E+10 3.64E+10 2.65E+10 26.1 41.5

Kpole_CF4 with magnet, 125mm from magnet

to substrate, 113mm gap in plasma zone. 3.65E+10 4.58E+10 4.13E+10 6.96 11.3

Kpole_CF4 with magnet, 62.5mm from magnet

to substrate, 50mm gap in plasma zone. 1.59E+10 2.37E+10 2.02E+10 13.6 19.3

Kpole_Ar with magnet, 125mm from magnet to

substrate, 50mm gap in plasma zone. 1.35E+11 1.61E+11 1.54E+11 5.4 8.4

� 50sccm, 100mTorr, 100W CCP power.

No Mag

Think Lean – Create Value

Uniformity – Rev 1 (CF4)

� R range: from inner edge of the substrate to the outer edge of the substrate.

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Kpole_CF4 with magnet, 136mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 26G . 3.45E+10 3.76E+10 3.66E+10 2.73 4.3

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3

Kpole_CF4 with magnet, 113mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 50G 3.44E+10 4.54E+10 4.02E+10 8.13 13.7

Kpole_CF4 with magnet, 92.5mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 90G 3.18E+10 4.23E+10 3.60E+10 9.17 14.6

Kpole_CF4 with magnet, 74mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 190G 2.62E+10 4.04E+10 3.24E+10 13.6 21.9

Kpole_CF4 without magnet,

92.5mm distance, 113mm gap,

50sccm, 100mTorr, 100W 4.47E+10 4.89E+10 4.74E+10 2.94 4.5

Rev.1 Opt

No Magnet

Think Lean – Create Value

Uniformity Rev 1 (CF4)

� R range: from 0 to the outer edge of the powered electrode.

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Voltage

drop(V)*

Kpole_CF4 with magnet, 136mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 26G . 2.97E+10 3.91E+10 3.63E+10 6.84 12.9 73.50

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 35G . 3.25E+10 5.69E+10 4.37E+10 16.3 27.9 81.82

Kpole_CF4 with magnet, 113mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 50G 2.84E+10 6.39E+10 4.31E+10 21.5 41.2 81.3

Kpole_CF4 with magnet, 92.5mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 90G 2.74E+10 2.09E+11 5.05E+10 82.6 179.88 83.4

Kpole_CF4 with magnet, 74mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 190G 2.20E+10 2.56E+11 4.89E+10 98.7 238.77 96.4

Kpole_CF4 without magnet,

92.5mm distance, 113mm gap,

50sccm, 100mTorr, 100W 4.08E+10 4.90E+10 4.69E+10 5.22 8.65 61.8

Rev.1 Opt

No Mag

Think Lean – Create Value

� Plasma uniformity improves with increase in plasma gap

(chamber height) while keeping substrate to magnet

distance constant

� Plasma uniformity improves as magnet is moved away from

the substrate (for fixed chamber dimensions)

� Plasma uniformity without magnetic field enhancement is

higher

� Simultaneous increase in plasma chamber height (plasma

volume, ground area) with increase in substrate to magnet

distance produces sharp improvement in plasma uniformity

Summary

Think Lean – Create Value

Phase II Optimization work

� Widen Kpole magnetic steel zone => expand source width

� Remove magnetic steel enclosure, expand magnetic field wider

� Remove powered electrode area in the center, to match disk geometry

Electrode (disk with the hole)

ceramic

Think Lean – Create Value

Rev.1 Opt

++

Further K-Pole Optimization

� R is from inner radius of substrate to outer radius of substrate.

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 50G . Larger

magnetic steel. 3.09E+10 4.84E+10 3.94E+10 13.4 22.2

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 30G . No

Magnetic steel. 3.30E+10 3.85E+10 3.60E+10 4.57 7.7

Kpole_CF4 with magnet, 113mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 50G 3.44E+10 4.54E+10 4.02E+10 8.13 13.7

Kpole_CF4 with magnet, 113mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 42G, no

magnetic steel. 3.50E+10 4.27E+10 3.95E+10 5.75 9.8

+

Think Lean – Create Value

Rev.1 Opt

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 35G . 3.65E+10 4.58E+10 4.13E+10 6.96 11.3

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 16G. Weaker B

field. 2.84E+10 3.40E+10 3.18E+10 6.18 8.9

Kpole_CF4 with magnet, 125mm

distance, 113mm gap, 50sccm,

100mTorr, 100W, 35G. No

powered electrode at the center. 4.59E+10 5.03E+10 4.86E+10 2.46 4.5

+

+++

� R is from inner radius of substrate to outer radius of substrate.

Further Source Optimization

Rev.2 Optimized

Think Lean – Create Value

Angled magnets

Magnet Inclination Influence (different source)

current

Uniformity (Stdev/Mean)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 20 40 60 80 100 120 140 160 180

incline B angle

Uniformity (measure 1cm below substrate from R=0 to R=5cm)

New results for Hybrid ICP/CCP plasma source show significant effect of magnet inclination on plasma uniformity.

Explore effects of adjustable magnet inclination in Kpole source configuration with objective to tune uniformity without sacrificing plasma density

Think Lean – Create Value

Conclusions

� Computational optimization of magnetically enhanced CCP plasma source was conducted, leading to progressive improvement of the source design, with plasma uniformity reduced from 26% down to 2.5%

� Two conceptual source chamber layouts were considered, with second being clearly more beneficial. This layout has increased plasma gap and ratio of ground area to electrode area and considerably weaker magnetic field near substrate.

� Further promise is shown due to electrode modification (removing electrode material in the center) and in adaptive adjustment of Kpole magnet angles (currently angle is zero).

Think Lean – Create Value

Supplemental Materials

Ar Plasma Results

Think Lean – Create Value

Experimental & Computational

Superposition (Ar plasma)

AR* speciesB field

Think Lean – Create Value

50 mm top to substrate distance

5 mtorr

100 mtorr

Zone of plasma light collapses towards the electrode (sheath) as P increased

Summary• Ar gas 30sccm, 200W CCP power. 35Gauss under the center of

substrate.

• Magnet: Horizontal right. 125mm from substrate to magnet, 113mmgap in plasma zone.

5mTorr 100mTorr

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

2.2E+11

2E+11

1.8E+111.6E+11

1.4E+11

1.2E+11

1E+118E+10

6E+10

4E+102E+10

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

3E+11

2.8E+112.6E+11

2.4E+112.2E+11

2E+11

1.8E+111.6E+11

1.4E+111.2E+11

1E+118E+10

6E+10

4E+102E+10

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

1.60E+121.48E+121.37E+121.25E+121.14E+12

1.02E+129.08E+117.92E+116.77E+115.62E+114.46E+113.31E+11

2.15E+111.00E+11

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

1.00E+12

9.18E+11

8.36E+11

7.55E+116.73E+11

5.91E+11

5.09E+11

4.27E+11

3.45E+11

2.64E+11

1.82E+11

1.00E+11

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

3E+11

2.8E+11

2.6E+11

2.4E+11

2.2E+11

2E+11

1.8E+11

1.6E+111.4E+11

1.2E+11

1E+11

8E+10

6E+10

4E+10

2E+10

20mTorr

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

7E+11

6.5E+11

6E+115.5E+11

5E+11

4.5E+114E+11

3.5E+113E+11

2.5E+11

2E+111.5E+11

1E+11

5E+10

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

3.8E+11

3.6E+11

3.4E+11

3.2E+11

3E+112.8E+11

2.6E+11

2.4E+11

2.2E+11

2E+111.8E+11

1.6E+11

1.4E+11

1.2E+11

1E+118E+10

6E+10

4E+10

2E+10

50mTorr

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

8E+11

7.5E+117E+11

6.5E+116E+11

5.5E+115E+11

4.5E+114E+113.5E+11

3E+112.5E+11

2E+111.5E+11

1E+115E+10

3mTorr 10mTorr

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

2.00E+11

1.89E+11

1.78E+11

1.66E+11

1.55E+111.44E+11

1.33E+11

1.22E+11

1.11E+11

9.94E+108.82E+10

7.71E+10

6.59E+10

5.47E+10

4.35E+10

3.24E+102.12E+10

1.00E+10

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

7.50E+117.00E+116.50E+116.00E+115.50E+11

5.00E+114.50E+114.00E+113.50E+113.00E+112.50E+11

2.00E+111.50E+111.00E+115.00E+10

R (cm)

Z(c

m)

-10-50510

0

5

10

15

E

2.6E+11

2.4E+11

2.2E+112E+11

1.8E+11

1.6E+111.4E+11

1.2E+11

1E+118E+10

6E+10

4E+102E+10

R (cm)

Z(c

m)

-10-50510

0

5

10

15

AR*

7.5E+11

7E+116.5E+11

6E+11

5.5E+11

5E+114.5E+11

4E+11

3.5E+113E+11

2.5E+11

2E+11

1.5E+111E+11

5E+10

Summary (with magnet vs. no magnet)• Ar gas 30sccm, 200W CCP power. 35Gauss under the center of

substrate.

• Magnet: Horizontal right. 125mm from substrate to magnet, 113mmgap in plasma zone.

5mTorr 100mTorr

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

2.2E+11

2E+11

1.8E+111.6E+11

1.4E+11

1.2E+11

1E+118E+10

6E+10

4E+102E+10

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

3E+11

2.8E+112.6E+11

2.4E+112.2E+11

2E+11

1.8E+111.6E+11

1.4E+111.2E+11

1E+118E+10

6E+10

4E+102E+10

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

1.60E+12

1.48E+12

1.37E+121.25E+12

1.14E+12

1.02E+129.08E+11

7.92E+11

6.77E+115.62E+11

4.46E+11

3.31E+112.15E+11

1.00E+11

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

1.00E+12

9.18E+11

8.36E+11

7.55E+116.73E+11

5.91E+11

5.09E+11

4.27E+11

3.45E+11

2.64E+11

1.82E+11

1.00E+11

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

3E+11

2.8E+11

2.6E+11

2.4E+11

2.2E+11

2E+11

1.8E+11

1.6E+11

1.4E+11

1.2E+11

1E+11

8E+10

6E+10

4E+10

2E+10

20mTorr

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

7E+11

6.5E+11

6E+11

5.5E+11

5E+11

4.5E+11

4E+11

3.5E+11

3E+112.5E+11

2E+11

1.5E+11

1E+11

5E+10

with magnet no magnet with magnet no magnet with magnet no magnet

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

E

1.1E+111E+11

9E+10

8E+10

7E+10

6E+105E+10

4E+10

3E+10

2E+10

1E+10

R (cm)

Z(c

m)

-10 -5 0 5 10

0

5

10

15

AR*

7.5E+117E+11

6.5E+11

6E+115.5E+11

5E+114.5E+11

4E+11

3.5E+113E+11

2.5E+112E+11

1.5E+11

1E+115E+10

Summary(with magnet vs. no magnet)• Ar gas 30sccm, 200W CCP power. 35Gauss under the center of

substrate.

• Magnet: Horizontal right. 125mm from substrate to magnet, 113mmgap in plasma zone.

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Average

Te(ev)

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 5mTorr, 200W, 35G. 7.74E+10 1.01E+11 9.07E+10 8.28 12.89 3.91

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 5mTorr, 200W, no

magnet. 5.27E+10 5.84E+10 5.58E+10 3.32 5.12 3.96

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 20mTorr, 200W, 35G. 1.24E+11 1.47E+11 1.38E+11 5.51 8.52 3.43

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 20mTorr, 200W, no

magnet. #DIV/0!

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm,100mTorr, 200W, 35G. 1.55E+11 1.92E+11 1.79E+11 6.65 10.48 1.73

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm,100mTorr, 200W, no

magnet. #DIV/0!

Summary(with magnet vs. no magnet)• Ar gas 30sccm, 200W CCP power. 35Gauss under the center of

substrate.

• Magnet: Horizontal right. 125mm from substrate to magnet, 113mmgap in plasma zone.

Min Ne Max Ne Mean Ne

Uniformity%

(Stdev/Mean)

Uniformity%

(Max-Min)/2/Mean

Average

Te(ev)

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 5mTorr, 200W, 35G. 7.74E+10 1.01E+11 9.07E+10 8.28 12.89 3.91

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 5mTorr, 200W, no

magnet. 5.27E+10 5.84E+10 5.58E+10 3.32 5.12 3.96

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 20mTorr, 200W, 35G. 1.24E+11 1.47E+11 1.38E+11 5.51 8.52 3.43

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm, 20mTorr, 200W, no

magnet. #DIV/0!

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm,100mTorr, 200W, 35G. 1.55E+11 1.92E+11 1.79E+11 6.65 10.48 1.73

Kpole_Ar with magnet, 125mm distance,

113mm gap, 30sccm,100mTorr, 200W, no

magnet. #DIV/0!

Think Lean – Create Value

Electrode Voltage Ratio vs Electrode Area ratio for RF diode

xxx