20

Simplify cos (sin −1 x ) and tan(sin −1 x )

  • Upload
    dixie

  • View
    62

  • Download
    3

Embed Size (px)

DESCRIPTION

To compute the derivatives of the inverse trigonometric functions, we will need to simplify composite expressions such as cos (sin −1 x ) and tan(sec −1 x ). This can be done in two ways: by referring to the appropriate right triangle or by using trigonometric identities. - PowerPoint PPT Presentation

Citation preview

Page 1: Simplify cos (sin −1 x ) and tan(sin −1 x )
Page 2: Simplify cos (sin −1 x ) and tan(sin −1 x )

sin

is not one-to-one

does not have an . inverse

y x

y

*** Our restricted domains will be the largest interval

(containing q

sin with re

uadrant I) in which is strictly monotoni

stricted domain in ,2 2

c.

x

f

x

,12

, 12

1,

2

1,2

1

12

2

x

y

siny x 1

1

y

x2

2

11

y

x

2

2

sin with

restricted domain

y x1siny x

(with the appropriate restricted domaiSine

is one-to-one and does have an in

n)

verse.

3

2

2 3

2

2

Page 3: Simplify cos (sin −1 x ) and tan(sin −1 x )

Restricted : /2 2

1

s

/

i

: 1

n x

D x x

R y y

1sin

: / 1 1

: /2 2

D x x

R y y

x

1sin is the unique in , such that sin2 2

y x y x

1,2

1,2

11

y

x

2

2

1siny x

1. . sin 1 sin 12 2

i e

,12

, 12

1

1

y

x2

2

sin with

restricted domain

y x

Solve for xOur restricted domain of sine

Page 4: Simplify cos (sin −1 x ) and tan(sin −1 x )

x

sin x

0 2 3 4 6 6 4 3 2

1 3

2

2

2

1

2 0

1

2

2

2

3

21

x

1sin x

1 3

2

2

2

1

2 0

1

2

2

2

3

21

2

3

4

6

0

6

4

3

2

,12

, 12

1,

2

1,2

1

12

2

x

ysiny x 1

1

y

x2

2

11

y

x

2

2

sin with

restricted domain

y x1siny x

Page 5: Simplify cos (sin −1 x ) and tan(sin −1 x )

1sin sin ?4

1 5sin

5Expla siin why n .

4 4

1 5in

4s sin

4

4

1 2

2sin

4

If our initial is not in the restricted domain of sine, we must find an

(within the restricted domain) for which sine has an equivalent output.

Page 6: Simplify cos (sin −1 x ) and tan(sin −1 x )

1cos is the unique in 0, such that cosy x y x

To compute the derivatives of the inverse trigonometric functions we simply need to simplify composite expressions, such as cos(sin−1 x) and tan(sec−1 x), by referring to the appropriate right triangle.

, 1

0,1 1,

1,0

1

12

2

x

ycosy x 1

1

y

x2

11

y

xcos with

restricted domain

y x1cosy x

Page 7: Simplify cos (sin −1 x ) and tan(sin −1 x )

cosine of "the whose sine is "xSimplify cos(sin−1 x) and tan(sin−1 x).

-1 2c 1os sin cosx x

-1

2tan sin

1tanx

x

x

2 2 1b x

Page 8: Simplify cos (sin −1 x ) and tan(sin −1 x )

1

2

1

1

1 1si

sin sin

1 1

coscos s 1in

n

dx

f x x f x g x x

xdx x

1

1

2

1 1cos cos

1 1

sinsin

1cos

1cos

f x x f x g x x

dx

dx x x

THEOREM 1 Derivatives of Arcsine and Arccosine

Derivative of an i1

'v rse'

n e g xf g x

CV

1 1

2 2

1 1sin , cos

1 1

d dx x

dx dxx x

I can't use the same ,

but I can use the same right :-)

Derivatives of Arcsine and Arccosine 1g x f x

QED

Right 's THUse and to find thM 2 . e..

Page 9: Simplify cos (sin −1 x ) and tan(sin −1 x )

1

2

1sin

1

dx

dx x

If f (x) = arcsin(x2)

1 ' ?

2f

1 2

4

2 1 1sin '

4 4

2 11 116

15

15

1

151

156

d xx f

dx x

or for McNeal...

Page 10: Simplify cos (sin −1 x ) and tan(sin −1 x )

1tan is the unique in , such that tan2 2

y x y x

1cot is the unique in 0, such that coty x y x

Page 11: Simplify cos (sin −1 x ) and tan(sin −1 x )

1sec is the unique in [0, ) ( , ] such that sec2 2

y x y x

secy x

x

y y

1secy x

x

Page 12: Simplify cos (sin −1 x ) and tan(sin −1 x )

1csc is the unique in [ ,0) (0, ] such that csc2 2

y x y x

2

2

1

1

2

2

x

111csc x cscf

y

cscy x

x

y

1cscy xx

Page 13: Simplify cos (sin −1 x ) and tan(sin −1 x )

THEOREM 2 Derivatives of Inverse Trigonometric Functions

1 12 2

1 1

2 2

1 1tan , cot

1 11 1

sec , csc1 1

d dx x

dx x dx xd d

x xdx dxx x x x

122

3

9 6

1 3tan

1 1 23 1

3

dx

dx x x x

Day 2

Page 14: Simplify cos (sin −1 x ) and tan(sin −1 x )

THEOREM 2 Derivatives of Inverse Trigonometric Functions

1 12 2

1 1

2 2

1 1tan , cot

1 11 1

sec , csc1 1

d dx x

dx x dx xd d

x xdx dxx x x x

1

20

0

20 0

1csc 1

1 1 1

1 1 21

1

3

x

x

x xx

ede

dx e e

e

e e

Sorry McNeal...

Page 15: Simplify cos (sin −1 x ) and tan(sin −1 x )

The formulas for the derivatives of the inverse trigonometric functions yield the following integration formulas.

Integral Formulas

1

2

12

1

2

sin1

tan1

sec1

dxx C

xdx

x Cxdx

x Cx x

In this list, we omit the integral formulas corresponding to the derivatives of cos−1 x, cot−1 x, and csc−1 x

... are nothing more than simple transformations

of the antiderivatives shown above.

Page 16: Simplify cos (sin −1 x ) and tan(sin −1 x )

1

2

1

2

1sin

1

sin1

dx

dx xdt

t Ct

We can use these formulas to express the inverse trigonometric functions as definite integrals. For example, because sin−1 0 = 0, we have:

1

20

sin for 1 11

x dtx x

t

Area model, in terms of .x

0C

Page 17: Simplify cos (sin −1 x ) and tan(sin −1 x )

11

0tan

40

4x

1

20

?1

dx

x

Page 18: Simplify cos (sin −1 x ) and tan(sin −1 x )

221

22

1

2

1sec 2 s

12 sec

11

ec 2

2

duu

u u

2 2u x du dx

1

2sec

1

dxx C

x x

Using Substitution1

21/ 2

?4 1

dx

x x

Because of our bounds,

the is not necessary.

Page 19: Simplify cos (sin −1 x ) and tan(sin −1 x )

4 4

3 3u x du dx

222 16 4

9 16 9 1 3 19 3

x xx

0 0

2 21 1

01

1

31443 1 1

1 1sin 0

4 4 2 8

du du

u u

u

Using Substitution

1

2sin

1

dxx C

x

0

23/ 4

?9 16

dx

x

21

dx

x

Page 20: Simplify cos (sin −1 x ) and tan(sin −1 x )

Suggested Problems 2 Days

Day 1: 5,7,17,21,27,29,33,37,41,45

Day 2: 59-107 EOO (Use integration techniques discussed

thus far in the class)