14
Geometry Geometry Geometry Geometry (Std. (Std. (Std. (Std. X) X) X) X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1, find the length of the third side of the triangle. 2. ABC is an isosceles triangle right-angled at B. Similar triangles ACD and ABE are constructed on sides AC and AB. Find the ratio between the areas of ABE and ACD. 3. P and Q are points on the sides CA and CB respectively of ABC right angled at C. Prove that AQ 2 + BP 2 = AB 2 + PQ 2 . 4. In ABC, If AD BC and AD 2 = BD DC, Prove that BAC = 90 . 5. ABCD is a parallelogram, P is a point on side BC and DP when product meets AB produced at L. Prove that i) BL BL BL BL DC DC DC DC PL PL PL PL DP DP DP DP ii) DC DC DC DC AL AL AL AL DP DP DP DP DL DL DL DL . 6. ABCD is a quadrilateral in which AB = AD. The bisector of BAC and CAD intersect the sides BC and CD at the points E and F respectively. Prove that EF | | BD. 7. ABC is a triangle in which AB = AC and D is a point on AC such that BC 2 = AC CD. Prove that BD = BC. 8. In trapezium ABCD, AB || DC and DC = 2AB. EF drawn parallel to AB cuts AD in F and BC in E such that EC EC EC EC BE BE BE BE = 4 3 . Diagonal DBintersects EF at G. Prove that 7 FE = 10 AB. 9. Through the mid-point M of the side CD of a parallelogram ABCD, the line BM is drawn intersecting AC in L and AD produced in E. Prove that EL = 2 BL. 10. Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle. 11. P and Q are the mid – point of the sides CA and CB respectively of a ABC, right angled at C. Prove that: i) 4 AQ 2 = 4 AC 2 + BC 2 ii) 4 BP 2 =4 BC 2 + AC 2 iii) 4 (AQ 2 + BP 2 ) = 5AB 2 12. A point O in the interior of a rectangle ABCD is joined with each of the vertices A,B, C and D. Prove that OB 2 + OD 2 = OC 2 + OA 2 1 2 A C B D

Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

  • Upload
    others

  • View
    34

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)1111

Sim ilarity And Pythagoras ' Theorem1 . A rig h t trian g le h as h yp oten u se of len g th p cm an d on e s id e len g th q cm . If p q = 1 , fin d th e

len g th of th e th ird s id e of th e trian g le .

2 . ABC is an isos ce les trian g le rig h t- an g led a t B. Sim ila r trian g les ACD an d ABE are con s tru cted on

s id es AC an d AB. Fin d th e ra t io b e tween th e areas of ABE an d ACD.

3 . P an d Q are p o in ts on th e s id es CA an d CB resp ective ly of ABC rig h t an g led a t C.

Prove th a t AQ2 + BP2 = AB2 + PQ2.

4 . In ABC, If AD BC an d AD2 = BD DC, Prove th a t BAC = 9 0 .

5 . ABCD is a p ara lle log ram , P is a p o in t on s id e BC an d DP wh en p rod u ct m eets AB p rod u ced at L.

Prove th a t

i)BLBLBLBLDCDCDCDC

PLPLPLPLDPDPDPDP

ii)DCDCDCDCALALALAL

DPDPDPDPDLDLDLDL

.

6 . ABCD is a q u ad rila te ra l in wh ich AB = AD. Th e b is ecto r of BAC an d CAD in tersect th e s id es BC

an d CD at th e p o in ts E an d F res p ective ly. Prove th a t EF | | BD.

7 . ABC is a trian g le in wh ich AB = AC an d D is a p o in t on AC su ch th a t BC2 = AC CD. Prove th a t BD

= BC.

8 . In trap ez iu m ABCD, AB | | DC an d DC = 2 AB. EF d rawn p ara lle l to AB cu ts AD in F an d BC in E su ch

th a tECECECEC

BEBEBEBE =44443333 . Diag on al DB in tersects EF at G. Prove th a t 7 FE = 1 0 AB.

9 . Th rou g h th e m id - p o in t M of th e s id e CD of a p ara lle log ram ABCD, th e lin e BM is d rawn in tersect in g

AC in L an d AD p rod u ced in E. Prove th a t EL = 2 BL.

1 0 . Prove th a t th ree t im es th e su m of th e sq u are s of th e s id es of a trian g le is eq u al to fou r t im es th e

su m of th e sq u are s of th e m ed ian s of th e trian g le .

1 1 . P an d Q are th e m id – p oin t of th e s id es CA an d CB resp ective ly of a ABC, rig h t an g led a t C. Prove

th a t : i) 4 AQ2 = 4 AC2 + BC2 ii) 4 BP2 = 4 BC2 + AC2

iii) 4 (AQ2 + BP2) = 5 AB2

1 2 . A p oin t O in th e in te rio r of a rectan g le ABCD is jo in ed with each of th e vert ice s A,B, C an d D. Prove

th a t OB2 + OD2 = OC2 + OA2

1 2

A

CB D

Page 2: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)2222

1 3 . ABC is a rig h t trian g le rig h t- an g led a t C an d AC = 3 BC. Prove th a t ABC = 6 0 .

1 4 . In ABC, D an d E trisect BC an d B- D- E- C. Prove th a t 8 AE2 = 3 AC2 + 5 AD2.

1 5 . In fig ., two ch ord s AB an d CD in tersect each o th er a t th e p o in t P. Prove th a t :

i) APC ~ DPB ii) AP.PB = CP.DP

1 6 . In a rig h t trian g le ABC rig h t- an g led a t C, P an d Q are th e p o in ts on th e s id es CA an d CB

resp ective ly, wh ich d ivid e th ese s id es in th e ra t io 2 :1 . Prove th a t

(i) 9 AQ2 = 9 AC2 + 4 BC2 (ii) 9 BP2 = 9 BC2 + 4 AC2 (iii) 9 (AQ2 + BP2) = 1 3 AB2 .

1 7 . If A b e th e area of a rig h t trian g le an d b e on e of th e s id es con ta in in g th e rig h t an g le , p rove th a t

th e len g th of th e a lt itu d e on th e h yp oten u se is22224444 AAAA4444bbbb

AbAbAbAb2222

.

1 8 . In an eq u ila te ra l trian g le ABC th e s id e BC is trisected a t D. Prove th a t 9 AD2 = 7 AB2 .

1 9 . D is a p o in t on s id e BC of ABC su ch th a tCDCDCDCDBDBDBDBD =

ACACACACABABABAB . Prove th a t AD is th e b is ecto r of BAC.

2 0 . If two s id es an d a m ed ian b isect in g th e th ird s id e of a trian g le are res p ective ly p rop ort ion a l to th e

corresp on d in g s id es an d th e m ed ian of an o th er trian g le , th en p rove th a t th e two trian g les are

s im ila r.

2 1 . Th e areas of two s im ila r trian g les are 3 6 cm 2 an d 2 5 cm 2 res p ective ly. If th e on e s id e of th e secon dtrian g le is 3 cm lon g , fin d th e len g th of th e corresp on d in g s id e of th e firs t t rian g le .

2 2 . If th e areas of two s im ila r trian g les are eq u al, p rove th a t th ey are con g ru en t .

2 3 . In th e g iven fig u re , DE | | AB an d EF | | BD, p rove th a t CD2 = AC × CF.

2 4 . ABC is a trian g le . PQ is a lin e seg m en t in te rsect in g AB in P an d AC in Q su ch th a t PQ | | BC an dd ivid es ABC in to two p arts eq u al in area . Fin d

ABBP .

2 5 . Prove th a t th e area of eq u ila te ra l trian g le d es crib ed on th e s id e of a sq u are is h a lf th e area of th eeq u ila te ra l trian g le d es crib ed on its d iag on al.

2 6 . In th e g iven fig u re , DE | | BC an d32

DBAD

. Ca lcu la te : (i))ABC(A)ADE(A (ii)

)ABC(A)DECB(A

D

B

A

C

P

Page 3: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)3333

2 7 . In th e g iven fig u re , ABC is a trian g le with EDB = ACB. Prove th a t ABC ~ EBD. If BE = 6 cm ,EC = 4 cm , BD = 5 cm an d area of BED = 9 cm 2 , ca lcu la te :(i) Len g th of AB. (ii) Area of ABC.

2 8 . In th e g iven fig u re , DE | | BC an d CD | | EF. Prove th a t AD2 = AB × AF

2 9 . Let X b e an y p oin t on th e s id e BC of a ABC. XM, XN are d rawn p ara lle l to BA an d CA m eetin g CA, BAin M, N res p ective ly; MN m ee ts BC p rod u ced in T. Prove th a t TX2 = TB × TC

3 0 . In th e g iven fig u re , AD an d CE are m ed ian s of ABC. DF is d rawn p ara lle l to CE. Prove th a t(i) EF = FB(ii) AG : GD = 2 : 1

3 1 . In th e g iven fig u re , ABD = CDB = PQB = 9 0 °. If AB = x u n its , CD = y u n its an d PQ = z u n its ,

p rove th a t z =yx

xy

.

Page 4: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)4444

3 2 . ABCD is a trap ez iu m in wh ich AB | | CD an d AB = 2 CD. Th e d iag on als AC an d BD in tersect each o th era t O. If a r( AOB) = 8 4 cm 2, fin d ar( COD).

3 3 . Eq u ila te ra l trian g les are d rawn on th e s id es of a rig h tan g led trian g le . Sh ow th at th e area of th etrian g le on th e h yp oten u se is eq u al to su m of areas of o th er two trian g les d rawn on th e rem ain in gtwo s id es .

�������

Circle

1 . In fig ., XP an d XQ are tan g en ts from X to th e circle with cen tre O. R is a p o in t on th e circle . Proveth a t , XA + AR = XB + BR.

2 . In ., fig ., th e in circle of ABC tou ch es th e s id es BC, CA an d AB at D, E an d F res p ective ly. Sh ow th at

AF + BD + CE = AE + BF + CD =2222

1111 (Perim eter of ABC)

3 . ABCD is a q u ad rila te ra l su ch th a t D = 9 0 . A circle C(O, r) tou ch es th e s id es AB, BC, CD an d DA at P,

Q, R an d S res p ective ly. If BC = 3 8 cm , CD = 2 5 cm an d BP = 2 7 cm , fin d r.

Q

RX

A

B

P

B

E

D

F

C

A

S

R

O

P

C

Q

D

B

A

Page 5: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)5555

4 . In fig ., l an d m are two p ara lle l tan g en ts a t A an d B. Th e tan g en t a t C m akes an in te rcep t DE b etween l

an d m . Prove th a t DFE = 9 0 .

5. Th e rad iu s of th e in circle of a trian g le is 4 cm an d th e seg m en ts in to wh ich on e s id e is d ivid ed b y th e

p oin t o f con tact a re 6 cm an d 8 cm . Determ in e th e o th er two s id es of th e trian g le .

6 . PQ is a ch ord of len g th 8 cm of a circle of rad iu s 5 cm . Th e tan g en ts a t P an d Q in tersect a t a p o in t T.

fin d th e len g th TP.

7 . In th e g iven fig u re , O is th e cen tre of th e circle . Fin d th e valu e of x.

D

m

l

C

E

F

B

A

4 cm

y

5 cm

x

R

P

O

Q

T4 cm

5 cm

C

N

A

M

L

I

B

6 cm

8 cmX cm

X cm

Page 6: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)6666

8 . In th e g iven fig u re , ACE = 4 3 ° an d CAF = 6 2 °. If AEC = x, fin d th e va lu es of a, b an d c.

9 . In th e g iven fig u re , ABCD is a cyclic q u ad rila te ra l. If fin d th e va lu e of x, y an d z.

1 0 . In a cyclic q u ad rila te ra l, if on e p air o f op p o s ite s id es is eq u al, th e o th er p a ir is p ara lle l. Prove it .

1 1 . ABCD is a cyclic q u ad rila te ra l in wh ich DAC = 2 7 °, DBA = 5 0 ° an d ADB = 3 3 °. Calcu la te :(i) DBC (ii) DCB (iii) CAB

1 2 . In th e g iven fig u re , PQ an d RS are two s tra ig h t lin es th rou g h th e cen tre O of a circle . If POR = 8 0 °an d RSK = 4 0 °, fin d th e n u m b er of d eg rees in

(i) SRK (ii) PQR

Page 7: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)7777

1 3 . In th e g iven fig u re , O is th e cen tre of th e circle , BAD = 7 5 ° an d ch ord BC = ch ord CD.Fin d : (i) BCD (ii) OBD (iii) BOC

1 4 . In th e g iven fig u re , AB = AC = CD. If ADC = 3 8 °, ca lcu la te :(i) ABC (ii) BCE

1 5 . In trian g le PQR, PQ = 2 4 cm , QR = 7 cm an d PQR = 9 0 °.Fin d th e rad iu s of th e in scrib ed circle .

1 6 . In th e g iven fig u re , q u ad rila te ra l ABCD is circum s crib ed an d AD DC. Fin d x, if rad iu s of th e in circleis 1 0 cm .

Page 8: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)8888

1 7 . In th e g iven fig u re , two circles tou ch each oth er ex te rn a lly a t a p o in t P. AB is th e d irect com m ontan g en t of th ese circles . Prove th a t :

(i) APB = 9 0 ° (ii) tan g en t a t p o in t P b is ects AB

1 8 . In th e g iven fig u re , p rove th a t : AP + BQ + CR = BP + CQ + AR

1 9 . Th ree circles tou ch each oth er ex te rn a lly. A trian g le is fo rm ed b y jo in in g th e cen tres of th ese th ree

circles . Fin d th e rad ii o f th e circles , if th e s id es of th e trian g le form ed are 6 cm , 8 cm an d 9 cm .

�������

Co-OrdinateCo-OrdinateCo-OrdinateCo-Ordinate GeometryGeometryGeometryGeometry1 . Wh at p o in t on th e x- ax is is eq u id is tan t from (7 , 6 ) an d (– 3 , 4 )?

2 . Th e cen tre of a circle is (2 – 1 , 7 ) an d it p ass es th rou g h th e p oin t (– 3 , –1 ). If th e d iam ete r of th ecircle is 2 0 u n its , th en fin d th e valu e of .

3 . Th e p oin t R d ivid es th e lin e seg m en t AB wh ere A(–4 , 0 ), B(0 , 6 ) are su ch th a t 4 AR = 3 AB. Fin d th ecoord in a te s of R.

4 . If A(4 , – 8 ), B(3 , 6 ) an d C(5 , –4 ) are th e vert ices of ABC, D is th e m id p oin t o f BC an d P is a p o in t onAD jo in ed su ch th a t AP = 2 PD, fin d th e coord in a tes of P.

5 . If C is a p o in t lyin g on th e lin e seg m en t AB jo in in g A(1 , 1 ) an d B(2 , – 3 ) su ch th a t 3 AC = CB, th enfin d th e coord in a tes of C.

6 . If two vert ices of a p ara lle log ram are (3 , 2 ), (– 1 , 0 ) an d th e d iag on als cu t a t (2 , – 5 ), find th e o th ervert ice s of th e p ara lle log ram .

7 . In wh at ra t io d oes th e lin e x – y – 2 = 0 d ivid e th e lin e seg m en t jo in in g (3 , –1 ) an d (8 , 9 )?

8 . Th e p oin ts (p, q); (m, n) an d (p – m, q – n) a re co llin ear, sh ow th a t pn = qm.

9 . If th e p o in t (x, y) b e eq u id is tan t from th e p oin ts (a + b, b – a) an d (a – b, a + b), p rove th a t bx = ay.

1 0 .Fin d th e len g th s of th e m ed ian s of ABC h avin g vert ices a t A(5 , 1 ), B(1 , 5 ) an d C(– 3 , – 1 ).

1 1 .If R(x, y) is a p o in t on th e lin e seg m en t jo in in g th e p o in ts P(a, b) an d Q(b, a), th en p rove th a t x + y= a + b.

Page 9: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)9999

Trigonom etry

1 . If tan (A + B) = 3 an d tan (A B) =3

1 ; 0 < A + B 9 0 ; A > B, fin d A an d B.

2 . If cos (4 0 + x) = s in 3 0 , Fin d x .3 . If tan 2 A = cot(A 1 8 ), wh ere 2 A is an acu te an g le , fin d th e va lu e of A.4 . If tan A = cot B, Prove th a t A + B = 9 0 .

5 . If l (AD) = 1 0 cm , fin d l (CD)

6 . If A, B, C are in te rn a l an g les of a trian g le ABC, th en sh ow th at s in

2

CB = cos2A .

7 . Prove : 0Bs inAs inBcosAcos

BcosAcosBs inAs in

8 . If s in + cos = p an d sec + cosec = q , sh ow th a t q (p 2 – 1 ) = 2 p .

9 . Prove th a t : 9 sec2 5 tan 2 = 5 + 4 sec 2

1 0 . Prove th a t : (s in + cosec )2 + (cos + sec )2 = 7 + tan 2 + cot 2 .

1 1 . Prove th a t : If cos + s in = 2 cos , p rove th a t cos s in = 2 s in .

1 2 . In an acu te an g led trian g le ABC, if tan (A + B C) = 1 an d , sec (B + C A) = 2 , fin d th e va lu e of A,

B, an d C.

1 3 . Prove th a t :1sectan1sectan

=

coss in1

1 4 . If

coscos = m an d

s incos = n sh ow th at (m 2 + n 2) cos 2 = n 2

1 5 . If x = r s in A cos C, y = r s in A s in C an d z = r cos A, p rove th a t r2 = x 2 + y2 + z 2 .

1 6 . If tan A = n tan B an d s in A = m sin B, p rove th a t cos 2 A =1n1m

2

2

1 7 . Prove th a t : 2 (s in 6 + cos 6 ) 3 (s in 4 + cos 4 ) + 1 = 0

1 8 . Prove th a t : s in 6 + cos 6 + 3 s in 2 cos 2 = 1 .

1 9 . Prove th a t : sec 2 (1 s in 4) 2 tan 2 = 1 .

2 0 . If sec = x +x4

1 , p rove th a t : sec + tan = 2 x or,x2

1 .

4 5 DB

3 0

A

C

Page 10: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)10101010

2 1 . Prove :AsinAsin

1Acot

11Atan

11 4222

2 2 . Prove : AcotAeccos.AsecAcos1

AtanAcos1

Asin

2 3 . Prove : cos 4 A – cos 2 A = sin 4 A – s in 2 A

2 4 . Prove: If x = a sec , y = b tan , p rove th a t 1yb

xa

2

2

2

2

.

2 5 . If a cos – b s in = x an d a s in + b cos = y. Prove th a t a2 + b2 = x2 + y2 .

2 6 . Prove: Asec2AcosAsin1

Asin1Acos

2 7 . Prove:Acos1

AsinAsinAcos1

2 8 . Prove:AcotAeccos

1Asin1

Asin1

AcotAeccos1

2 9 . Prove: Acot.Aeccos21Asec

11Asec

1

3 0 . If tan + s in = m an d tan – s in = n, sh ow th a t m2 – n2 = mn4

3 1 . If sec + tan = p, p rove th a t s in =1p1p

2

2

3 2 . Prove :

sec2

sin1sin1

sin1sin1

3 3 . If sec + tan = p, fin d th e va lu e of cosec .

3 4 . A vert ica l tower s tan d s on a h oriz on ta l p lan e an d is su rm ou n ted b y a vert ica l flag – s ta ff o f h e ig h t

h . At a p o in t on th e p lan e , th e an g les of e leva tion of th e b o ttom an d th e top of th e flag – s ta ff a re

an d res p ective ly. Prove th a t th e h e ig h t of th e tower is

tantantantantantantantan

tantantantanhhhh .

3 5 . Th e an g les of e leva tion of th e top of a tower from two p oin ts a t d is tan ces a an d b m etres from th e

b ase an d in th e sam e s tra ig h t lin e with it a re com p lem en tary. Prove th a t th e h e ig h t of th e tower is

ab m eters .

3 6 . Two s ta t io n s d u e sou th of a lean in g tower wh ich lean s toward s th e n orth are a t d is tan ces a an d b

from its foo t . If , b e th e e leva tion s of th e top of th e tower from th ese s ta t io n s , p rove th a t its

in clin a t ion to th e h oriz on ta l is g iven b y co t =ab

cotaco tb

Page 11: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)11111111

3 7 . Th e an g le of e leva tion of a je t p lan e from a p oin t A on th e g rou n d is 6 0 . Afte r a flig h t of 1 5

secon d s , th e an g le of e leva tio n ch an g es to 3 0 . If th e je t p lan e is flyin g a t a con s tan t h e ig h t of

1 5 0 0 3 m . fin d th e sp eed of th e je t p lan e .

3 8 . A rou n d b alloo n of rad iu s r su b ten d s an an g le a t th e eye of th e ob se rver wh ile th e an g le of

e leva tion of it ’s cen tre is . Prove th a t th e h e ig h t of th e cen tre of th e b a lloon is r s in cosec / 2 .

3 9 . Th e an g le of e leva tion of a cliff from a fixed p oin t is . Afte r g o in g u p a d is tan ce of k m e ters

toward s th e top th e cliff a t an an g le of , it is fou n d th a t th e an g le of e leva tion is . Sh ow th a t th e

h e ig h t of th e cliff is

cotcotcotcotcotcotcotcotcotcotcotcotsinsinsinsincoscoscoscoskkkk m etres .

4 0 . Th e an g le of e leva tion of th e top of a tower a t a d is tan ce of 1 2 0 m from a p oin t A on th e g rou n d is4 5 °. If th e an g le of e leva tio n of th e top of a flag s ta ff fixed a t th e top of th e tower, from A is 6 0 °,th en fin d th e h eig h t of th e flag s ta ff. [Use = 1 .7 3 ]

4 1 . Th e an g le of e leva tion of a je t fig h ter from a p oin t A on th e g rou n d is 6 0 °. Afte r a flig h t of 1 5secon d s , th e an g le of e leva tio n ch an g es to 3 0 °. If th e je t is flyin g a t a sp eed of 7 2 0 km / h r, find th econ s tan t h e ig h t . ( 3 = 1 .7 3 2 ).

4 2 . From th e top of a b u ild in g 6 0 m h ig h , th e an g les of d ep res s io n of th e top an d b otto m of a vert ica llam p p os t are ob s erved to b e 3 0 ° an d 6 0 ° res p ective ly. Fin d(i) Th e h oriz on ta l d is tan ce b etween th e b u ild in g an d th e lam p p os t .(ii) Th e h eig h t of th e lam p p os t , 3 = 1 .7 3 2

4 3 . Th e an g le of e leva tion of an aerop lan e from a p oin t A on th e g rou n d is 6 0 °. Afte r a flig h t of 3 0secon d s , th e an g le of e leva tio n ch an g es to 3 0 °. If th e p lan e is flyin g a t a con s tan t h e ig h t of3 6 0 0 3m , fin d th e sp eed in km / h r of th e p lan e .

4 4 . Th e an g les of e leva tion an d d ep res s io n of th e top an d b otto m of a lig h t- h ou se from th e top of a 6 0m h ig h b u ild in g are 3 0 ° an d 6 0 ° resp ective ly. Fin d(i) th e d iffe ren ce b etween th e h eig h ts of th e lig h t- h ou se an d th e b u ild in g .(ii) th e d is tan ce b etween th e lig h t- h ou se an d th e b u ild in g .

4 5 . Fro m th e to p of a b u ild in g 1 5 m h ig h , th e an g le of e leva t ion of th e to p of a to wer is fou n d to b e 3 0 °.From th e b ottom of th e sam e b u ild in g , th e an g le of e leva tio n of th e top of th e tower is fou n d to b e4 5 °. Dete rm in e th e h e ig h t of th e tower an d th e d is tan ce b etween th e tower an d th e b u ild in g .

4 6 . At a p o in t A, 2 0 m e tres ab ove th e leve l of water in a lake , th e an g le of e leva tion of a clou d is 3 0 °.Th e an g le of d ep ress ion of th e reflect ion of th e clou d in th e lake , a t A is 6 0 °. Fin d th e d is tan ce ofth e clou d from A.

4 7 . Two p ole s of eq u al h e ig h ts are s tan d in g op p os ite to each o th er on eith er s id e of th e road wh ich is8 0 m wid e . From a p oin t P b etween th em on th e road , th e an g le of e leva tion of th e top of a p o le is6 0 ° an d th e an g le of d ep ress ion from th e top of an o th er p o le a t p o in t P is 3 0 °. Fin d th e h eig h ts ofth e p o le s an d th e d is tan ce of th e p o in t P from th e p ole s .

Page 12: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)12121212

Mensura tion1 . A p en d u lu m swin g s th rou g h an an g le of 3 0 an d d es crib es an arc 8 .8 cm in len g th . Fin d th e len g th

of th e p en d u lu m . [Use = 2 2 / 7 ].2 . Th e m in u te h an d of a clock is 1 0 cm lon g . Fin d th e area of th e face of th e clock d es crib ed b y th e

m in u te h an d b etween 9 A.M. an d 9 .3 5 A.M.

3 . A car h as wip ers wh ich d o n ot overlap . Each wip e r h as a b lad e of len g th 2 5 cm sweep in g th rou g h anan g le of 1 1 5 . Fin d th e to ta l a rea clean ed at each sweep of th e b lad es .

4 . To warm sh ip s for u n d erwate r rocks , a lig h t h ou se th rows a red co lou red lig h t over a secto r of 8 0 an g le to a d is tan ce of 1 6 .5 km . Fin d th e area of th e sea over wh ich th e sh ip s area warm ed .[Use = 3 .1 4 ]

5 . Determ in e th e ra t io of th e vo lu m e of a cu b e th a t o f sp h e re wh ich will exactly fit in s id e th e cu b e .6 . Fin d th e m axim u m volu m e of a con e th a t can b e carved ou t of a so lid h em isp h e re of rad iu s r.7 . Th e circu m feren ce of a circle exceed s th e d iam ete r b y 1 6 .8 cm . Fin d th e rad iu s of th e circle .8 . A wire is loop ed in th e form of a circle of rad iu s 2 8 cm . It is re - b en t in to a sq u are form . Dete rm in e

th e len g th of th e s id e of th e sq u are .9 . A race track is in th e form of a rin g wh ose in n er circu m feren ce is 3 5 2 m , an d th e ou ter

circum feren ce is 3 9 6 m . Fin d th e wid th of th e track.1 0 . A wh ee l h as d iam e te r 8 4 cm . Fin d h ow m an y com p le te revo lu t io n s m u s t it take to cover 7 9 2 m ete rs .1 1 . Fin d th e areas of th e sh ad ed reg ion in th e fig .

1 2 . Th e rad ii o f th e b ases of two rig h t circu lar so lid con es of sam e h eig h t are r1 an d r2 resp ective ly. Th econ es are m elted an d recas t in to a so lid sp h ere of rad iu s R. Sh ow th at th e h e ig h ts of each con e is

g iven b e h = 22

21

3

rrR4

.

1 3 . Mayan k m ad e a b ird - b a th for h is g ard en in th e sh ap e of a cylin d er with a h em isp h e rica l d ip re ss ion

a t on e en d as sh own in fig . Th e h eig h t of th e cylin d er is 1 .4 5 m an d its rad iu s is 3 0 cm . Fin d th e

to ta l su rface area of th e b ird - b a th . (Take = 2 2 / 7 ).

1 4 . Two circle tou ch ex tern a lly. Th e su m of th e ir a reas is 1 3 0 sq . cm . an d th e d is tan ce b etween th e ir

cen tres is 1 4 cm . Fin d th e rad ii o f th e circles .

1 5 . A cop p e r wire , wh en b en t in th e form of a sq u are , en closes an area of

1 .4 5 M

3 0 cm

Page 13: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)13131313

4 8 4 cm 2 . If th e sam e wire is b en t in th e form of a circle , fin d th e are en closed b y it .

(Use = 2 2 / 7 ).

1 6 . A car h as wh eels wh ich are 8 0 cm in d iam ete r. How m an y com p le te revo lu t io n s d oes each wh eel

m ake in 1 0 m in u tes wh en th e car is trave lin g a t a sp eed of 6 6 km p er h ou r?

1 7 . In Fig ., d ep icts an arch ery targ e t m arke t with its five scorin g areas from th e cen tre ou tward s as

Gold , Red , Blu e Black an d Wh ite . Th e d iam ete r of th e reg ion rep re sen tin g Gold score is 2 1 cm an d

each of th e o th er b an d s is 1 0 .5 cm wid e . Fin d th e area of each of th e five scorin g reg ion s .

1 8 . PQRS is a d iam ete r of a circle of rad iu s 6 cm . Th e len g th s PQ, QR an d RS are eq u al. Sem i- circles are

d rawn on PQ an d QS as d iam ete rs as sh own in fig ., Fin d th e p erim e ter an d area of th e sh ad ed

reg ion .

1 9 . On a circu lar tab le cover of rad iu s 3 2 cm , a d es ig n is fo rm ed leavin g an eq u ila te ra l trian g le ABC in

th e m id d le as sh own in fig . Fin d th e area of th e d es ig n (sh ad ed reg ion ).

2 0 . If th e d iam ete r of cross - sect ion of a wire is d ecreased b y 5 % h ow m u ch p ercen t will th e len g th b e

in creased so th a t th e vo lu m e rem ain s th e sam e?

2 1 . A cylin d rica l p ip e h as in n er d iam ete r of 7 cm an d water flows th rou g h it a t 1 9 2 .5 lit res p er m in u te .

Fin d th e ra te of flow in kilom e ters p er h ou r.

2 2 . Th e rad ii o f th e in te rn a l an d ex te rn a l su rface of a m e ta llic sp h erica l sh e ll a re 3 cm an d 5 cm

resp ective ly. It is m e lted an d recas t in to a so lid rig h t circu lar cylin d er of h e ig h t321 0 cm . Fin d th e

d iam ete r of th e b ase of th e cylin d er.

2 3 . A con ica l ves se l o f rad iu s 6 cm an d h eig h t 8 cm is com p le te ly filled with water. A sp h e re is

lowered in to th e water an d its s iz e is su ch th a t wh en it tou ch es th e s id es , it is ju s t im m ersed as

sh own in fig ., Wh at fract ion of water over flows?

Page 14: Similarity And Pythagoras' Theorem · Geometry (Std. X) 1 Similarity And Pythagoras' Theorem 1. A right triangle has hypotenuse of length p cm and one side length q cm. If p q = 1,

GeometryGeometryGeometryGeometry (Std.(Std.(Std.(Std. X)X)X)X)14141414

2 4 . ABCD is a fie ld in th e sh ap e of a trap ez iu m . AB | | DC an d ABC = 9 0 , DAB 6 0 . Fou r secto r are

form ed with cen tres A, B, C an d D. Th e rad iu s of each secto r is 1 7 .5 m . Fin d th e

(i) to ta l a rea of th e fou r secto rs .

(ii) a rea of rem ain in g p ort io n g iven th a t AB = 7 5 m

an d CD = 5 0 m .

2 5 . How m an y sp h e rica l b u lle ts can b e m ad e ou t of a so lid cu b e of len d wh ose ed g e m easu res 4 4 cm ,

each b u lle t b e in g 4 cm in d iam ete r.

2 6 . A so lid iron rectan g u lar b lock of d im en s ion s 4 .4 m , 2 .6 m an d 1 m is cas t in to a h o llow cylin d rica l

p ip e of in te rn a l rad iu s 3 0 cm an d th ickness 5 cm . Fin d th e len g th of th e p ip e .

2 7 . A well, wh ose d iam e ter is 7 m , h as b een d u g 2 2 .5 m d eep an d th e earth d u g ou t is u sed to form an

em b an km en t arou n d it . If th e h e ig h t of th e em b an km en t is 1 .5 m , fin d th e wid th of th e

em b an km en t.

2 8 . Water is flowin g at th e ra te of 7 m e tres p er secon d th rou g h a circle p ip e wh ose in te rn a l d iam ete r is

2 cm in to a cylin d rica l tan k th e rad iu s of wh ose b ase is 4 0 cm . Determ in e th e in crease in th e water

leve l in ½ h ou r.

2 9 . A rig h t trian g le , wh ose s id es are 1 5 cm an d 2 0 cm , is m ad e to revo lve ab ou t its h yp oten u se . Fin d

th e Volu m e an d su rface area of th e d ou b le con e so form ed . (Use = 3 .1 4 )

3 0 . An iron p illa r h as som e p art in th e form of a rig h t circu lar cylin d er an d rem ain in g in th e form of a

rig h t circu lar con e . Th e rad iu s of th e b ase of each of con e an d cylin d er is 8 cm . Th e cylin d rica l p art

is 2 4 0 m h ig h an d th e con ica l p art is 3 6 cm h ig h . Fin d th e weig h t of th e p illa r if on e cu b ic cm of

iron weig h s 7 .8 g ram s .

3 1 . A lead p en cil con s is ts o f a cylin d er of wood with a so lid cylin d er of g rap h ite filled in to it . Th ed iam ete r of th e p en cil is 7 m m , th e d iam ete r of th e g rap h ite is 1 m m an d th e len g th of th e p en cil is1 0 cm . Calcu la te th e weig h t of th e wh ole p en cil, if th e sp ecific g ravity of th e wood is 0 .7 g m / cm 3

an d th a t o f th e g rap h ite is 2 .1 g m / cm 3.�������