30
ORNL is managed by UT-Battelle, LLC for the US Department of Energy Silicon MAPS Readout in ALICE and sPHENIX J. Schambach Oak Ridge National Laboratory (for the ALICE ITS Upgrade & sPHENIX MVTX collaborations) ALICE ITS ALICE Readout Paradigm ALICE ITS Detector ALPIDE Sensor Readout Electronics ALICE CRU & DAQ sPHENIX MVTX MVTX Readout Scheme sPHENIX Backend: FELIX sPHENIX DAQ Architecture

Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Silicon MAPS Readout in ALICE and sPHENIX

J. Schambach

Oak Ridge National Laboratory

(for the ALICE ITS Upgrade & sPHENIX MVTX collaborations)

➢ ALICE ITS

➢ ALICE Readout Paradigm

➢ ALICE ITS Detector

➢ ALPIDE Sensor

➢ Readout Electronics

➢ ALICE CRU & DAQ

➢ sPHENIX MVTX

➢ MVTX Readout Scheme

➢ sPHENIX Backend: FELIX

➢ sPHENIX DAQ Architecture

Page 2: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

22 J. Schambach ([email protected])

The New (Run-3) Computing Model: ALICE O2 in a nutshellData of all interactions shipped from detector to online farm in triggerless, continuous mode

Baseline correction, zero suppression, cluster finderNo event discardedAverage compression factor 6.6

Asynchronous event reconstruction with finalcalibration with a delay of few hours.

HI run 3.4 TByte/s

Data Storage: 1 year of compressed data• Bandwidth: Write 170 GB/s; Read 270 GB/s• Capacity: 60 PB

90 GByte/s

Tier 0 20 GByte/s

Tiers 1 and Analysis Facilities (e.g. ORNL)

Data reduction by massively parallel, on-the-fly, single pass, online tracking. Only reconstructed data go to data storageAverage compression factor 5.5

500 GByte/s

90 GByte/s

Paradigm shift

compared to

Run1 and Run2

Requirements:

• LHC min bias Pb-Pb at 50 kHz ~ 100 x

more data than Run 1 + Run 2

• Measure rare processes, where standard

triggering techniques are very inefficient if

not impossible

• 50 kHz > TPC inherent rate (drift time

~ 100 µs) – requires continuous readout

Page 3: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

33 J. Schambach ([email protected])

New ITS Layout

3 Inner layers

0.3% X0

2 Middle layers

2 Outer layers

▶ 7-layer barrel, based on CMOS MAPS sensors (“ALPIDE”)

▶ Coverage: r 22 – 400 mm, |h| ≤ 1.22

▶ ~24k pixel chips (a 12.5 G pixel camera)

▶ ~10m2 active area

150 cm

27 cm

1% X0

= 192 Staves in Total

Inner Barrel

Outer BarrelMiddle

Layers

Outer

Layers

48 42 30 24 20 16 12

Page 4: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

44 J. Schambach ([email protected])

ALPIDE Sensor Technology

e e

ee

h

h

h

h

PWELL PWELL NWELL

DEEP PWELL

NWELL

DIODE

NMOS

TRANSISTOR

PMOS

TRANSISTOR

Epitaxial Layer P-

Substrate P++

Pixel Sensor CMOS 180 nm Imaging Process (TowerJazz)3 nm thin gate oxide, 6 metal layers

NA ~ 1016 cm-3

NA ~ 1013 cm-3

NA ~ 1018 cm-3

Not to scale

Key Features

29 mm x 27 mm pixel pitch, chip size 30 mm x 15 mm, 50 mm (IB) / 100 mm (OB) thick

Continuously active, ultra-low power front-end (40nW/pixel)

Ultra-low power matrix readout (< 200mW whole chip)

Global shutter: triggered acquisition or continuous readout

High speed output serial link: 1.2 Gbit/s (IB), 400 Mbit/s (OB)

zero

s

uppre

ssio

n

zero

s

uppre

ssio

n

zero

s

uppre

ssio

n

zero

s

uppre

ssio

n

Buffering and Interface

TH

COMPAMP

ALPIDE

51

2 r

ow

s

1024 pixel columns

0.5 MPixel Matrix

Page 5: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

55 J. Schambach ([email protected])

ALPIDE Principle of Operation

STATE

(Latch)

STROBE

OUT_D

OUT_A

Particle hit

PIX_IN 6 µs~2 us Peaking time Particle hit

ΔV = Q/C : ~ 10 ns

Reset : ~1 ms

t1 t2

SUB

Collection

electrode

PIX_IN

VPULSE_*

Cinj

160 aF

Amp Comp MemoryOUT_A OUT_D STATE

STROBE

Pixel analog

Front end

Reset

Input stage Multi event

buffer

Threshold

V

t

Front-end acts as delay line

• Sensor and front-end continuously active

• Upon particle hit front-end forms a pulse with ~1-2ms peaking time (“analog delay”)

• Threshold is applied to form binary pulse

• Hit is latched into memory if strobe is applied during binary pulse

ultra low-power front-end circuit

40nW / pixel

Cdet~2.5 fF @ -6 VbbCin~1.6fF

Page 6: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

66 J. Schambach ([email protected])

Triggered and Continuous Mode Operations• The ITS plans to operate in two modes:

Triggered mode: Pixels are latched with a short strobe window, followed by read out, based on an external trigger.

Continuous mode: Pixels are latched using long, periodic strobe windows with short inter-strobe periods (≈100 ns) to initiate read out.

Strobe 1 Strobe 2 Strobe 3

Strobe n-1 Strobe n Strobe n+1 Strobe n+2 Strobe n+…

Page 7: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

77 J. Schambach ([email protected])

Matrix Readout

Prio

rity

en

co

de

r

Pix

el fr

on

t-e

nd

512

512

STATE

RESET

512

512

STATE

RESET

0 511

10

VA

LID

SE

LE

CT

AD

DR

10

VA

LID

SE

LE

CT

AD

DR

Periphery

DataBias Clock Control

+ triggerPulser

Pix

el fr

on

t-e

nd

Prio

rity

en

co

de

r

Pix

el fr

on

t-e

nd

512

512

STATE

RESET

512

512

STATE

RESET

Pix

el fr

on

t-e

nd

low-power matrix readout ~ 2mW

Pixel Matrix - Hit driven architecture

• Priority encoder sequentially provides addresses of all hit pixels present in double column

• No activity if no hit (no free running clock) ➔ low power

Cin ≈ 5 fF

collection

electrode

2 x 2

pixel

volume

0.3 pJ / bit

Qin (MIP) ≈ 1300 e V ≈ 40mV

Page 8: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

88 J. Schambach ([email protected])

Stave Module Configurations

(4+4+4+4) data, (1+1+1+1) clock, (1+1+1+1) control

(7+7+7+7) data, (1+1+1+1) clock, (1+1+1+1) control

Middle Layer Stave

Outer Layer Stave

16 data pairs,400 Mb/s each

28 data pairs,400 Mb/s each

RU

9 data lines, 1 clock, 1 control9 data pairs,

1.2 Gb/s each

READOUT UNITInner Layer Stave

POWER BOARD

PB

PB

RU

POWERREGULATED POWER

POWER

POWER

PB

PB

RU9 data pairs,

1.2 Gb/s each8.6 Gbps payload

16 data pairs,400 Mb/s each

5.1 Gbps payload

28 data pairs,400 Mb/s each

8.9 Gbps payload

DATA OUTPUT:

Page 9: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

99 J. Schambach ([email protected])

ITS Readout Hierarchy

One READOUT UNIT

for each STAVE

IL

9×960 Mb/s

ML

16×320 Mb/s

OL

28×320 Mb/s

RU

CRU

11× FLP

EPN

8× RU/CRU

24× LINKS

3× GBT LINKS/RU

RAM

NIC

3200Mb/s110 Gb/s

110 Gb/s

110 Gb/s

100 Gb/s

<40 GB/s

DETECTOR

LINKS

GBT

LINKS

CRU to

FLP

FLP to

EPN

LTU / CTPALICE Timing and Trigger

LHC Bunch Clock (40.08 MHz)

Timing and Trigger messages

Page 10: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1010 J. Schambach ([email protected])

Readout Unit – Top Level Diagram

Main SRAMFPGA

FLASHFPGA

FLASHMemory

GBTSCA

3 × GBTx

CANBus

USB3.0

4 × I2C

Sensors

Rad

-har

d b

y d

esig

n

Rad-hard CRAM(but SEFI possible)

Low cross section per bit (not zero!)

Hardware includes:

• Xilinx Kintex Ultrascale KCU060 FPGA (main programmable logic device)

• MicroSemi ProAsic3 FPGA A3PE600L (for Ultrascale scrubbing & configuration)

• 4 Rad Hard GBT Fiber Optic Transmitters (3.2 Gb/s each)

• 2 Rad Hard GBT Fiber Optic Receivers (3.2 Gb/s each)

• Rad Hard Slow Controls Adapter (GBT-SCA) for monitoring and control

• 12 channel twinax copper interconnects to stave

• Mezzanine to allow different stave configurations (“transition board”)

• Power board control interface via mezzanine

• CANbus interface as power board interface in case GBT is not available

Page 11: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1111 J. Schambach ([email protected])

ITS Readout Unit

Kintex

Ultrascale

Pro

ASIC3

GBTx

GBTx

GBTx

Fla

sh

Tra

nsi

tio

n B

oa

rdI/

F t

o s

en

sors

Page 12: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1212 J. Schambach ([email protected])

Hardware & Firmware Radiation Protection Measures

• Radiation hard components from the LHC “Radiation Hard Optical Link Project” for communication with the control room at Gigabit speed (3.2 Gbps payload):

– “GBTx” (Transceiver) ASIC, “VTRx” opto electronics, “Slow Controls Adapter” (SCA) ASIC

• Triplication of FPGA I/O’s at the hardware level for important signals

• “Scrubbing” (periodic refresh of FPGA CRAM) via a flash-based FPGA

• SRAM based FPGAs are sensitive to Single-Event Upsets (SEUs)

• Combine scrubbing with Triple Modular Redundancy (TMR)

– TMR with majority voters of firmware modules and FSM states

– ECC protection of memories / FIFOs (1-bit correction, multi-bit detection)

• Expecting improvement of Mean-Time Between Failure > 3 orders of magnitude vs unprotected designs

Page 13: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1313 J. Schambach ([email protected])

ALICE Common Readout Unit (CRU) v2

• Altera Arria 10 FPGA

• Custom designed cooling

• Avago Minipods:

• 4x 12 TX

• 4x 12 RX

• 48 optical outputs (MTP), 48 optical inputs (MTP)

• USB Blaster II

• X16, Gen3 PCIe (CFM rev 3.0); 128 Gb/s

Page 14: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1414 J. Schambach ([email protected])

Server/GPU Farms for Data Acquisition and Online Processing

Data Acquisition Servers & Electronics

• 11 “First level Processors” (FLP)

2 CRUs & 8TB of local storage each

• Storage Farm for commissioning:

200 TB local disk server + 500 TB cloud

storage

• Event Processing Nodes (GPU Farms)

Page 15: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1515 J. Schambach ([email protected])

sPHENIX - MVTX

MVTX parameters: L = 271 mm

3-layer sensor barrel equivalent to ITS IB

- 48 staves, 432 chips

MVTX Readout Units, PUs

& other services

Proposal Document: sPH-HF-2018-001

https://indico.bnl.gov/event/4072/

Located Outside Magnet on Platform:

Much lower Radiation than ITS

• sPHENIX cost-effectively reuses the ITS electronics as built,

replacing the ALICE CRU with the ATLAS FELIX backend

• Modified ALICE ITS mechanics to fit it into sPHENIX

Page 16: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1616 J. Schambach ([email protected])

MVTX Readout System

Power Board

Data (9x1.2Gbps), Clock,

Control/Trigger

Regulated power

Readout Unit

Front End

FELIX

Back End

Data (3x4.8 Gbps)

Control

Trigger

ALPIDE

Sensors

FPC

Cold Plate

5-10 m twinaxGBT Optical Links

9-sensor stave

Po

we

r su

pp

lies

Power

Clo

ck/T

rigge

r

Interaction Region Experimental Hall Counting House

DA

Q a

nd

Slo

w

Co

ntr

ol

PC

Ie

sP

HE

NIX

GT

M

Page 17: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1717 J. Schambach ([email protected])

sPHENIX “BackEnd”: ATLAS FELIX

sPHENIX Timing

Mezzanine

Architecture Highlights:

• Xilinx Kintex Ultrascale KU115 FPGA

• 48 bi-directional GBT links

• 16 lane Gen 3 PCIe

• Mezzanine site for sPHENIX timing system card

Performance:

• PCIe Tx > 100Gb/s

Page 18: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1818 J. Schambach ([email protected])

sPHENIX DAQ Architecture

DCMDCMDCMDCM2SEB

SEB

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Rack Room

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM

Event Builder

SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX

Network

Switch

ATP

ATP

ATP

ATP

ATP

ATP

ATP

ATP

ATP

ATP

ATP

ATPBuffer Box

Buffer Box

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

To the RACF/HPSS

Calorimeters, INTT, MBD

TPC

Acronyms:FEE Front End ElectronicsFELIX Front End LInk eXchangeEBDC Event Buffer and Data CompressorATP Assembly and Trigger ProcessorsBuffer Box Interim storageFEM Front End ModuleDCM2 Data Collection ModuleSEB Sub-Event Buffer

MVTX

MVTX Hardware:

48 Staves

48 FEE (Readout Units v2.0)

6 FELIX v2.0

6 EBDC servers

Page 19: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

1919 J. Schambach ([email protected])

Outlook towards the EIC

• Silicon MAPS is recognized as a leading technology for EIC detector applications

• High granularity, low power, fast, radiation tolerant readout is essential

• Highly parallel, untriggered, continuous readout avoids deadtime and biases due to standard triggering techniques

• We have actively developed two such applications (readout for ALICE ITS upgrade and sPHENIX MVTX).

• ORNL will actively participate in the upcoming EIC EOI process with strong continued interest in this area.

Page 20: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2020 J. Schambach ([email protected])

BACKUP

Page 21: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2121 J. Schambach ([email protected])

ALICE UpgradesCurrently being installed in ALICE

ALICE Central Barrel Tracking from very low (100 MeV/c) to very high pt (100 GeV/c)

• Silicon: r = 22 – 400 mm

• Gas (TPC, TRD): r = 88 – 368 cm

➔ large BL2 (bending power), comparable to CMS

Page 22: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2222 J. Schambach ([email protected])

O2 System Overview

LTU

CTP

↑TTS-FTL & ↓busy(MCH, MID, ITS, MFT, TPC,

ZDC, TRD)

FIT

TPC

ITS

MCH

MID

MFT

TOF

TPC

ACO

CPV

EMC

HMP

TRD

ZDC

20180307

PHS

front-endlinks (GBT)

→data & ←trigger &←configuration

PCIe bus in FLP→data &

←configuration

O2

&

DCS

CRU

FIT, ITS , MCH, MFT, MID, TOF, TPC, TRD , ZDC

LTULTU

FIT ZDC ACO TOF EMC PHS

↑TTS & ↓busy TTC (ACO,EMC,HMP,PHS)

↑TTS (ITS, MFT unidirectional no busy)

↑TTC & ↓busy (TRD)CRU.. Common Read-out UnitCTP.. Central Trigger Processor

DCS.. Detector Control SystemFLP.. First level processorFTL .. Fast Trigger Links

GBT.. Gigabit TransceiverLTU.. Local Trigger Unit

O2.. Online and Offline Computing SystemTTS.. Trigger and Timing Distribution System

front-end links→data &

←configuration

DDL ACO , EMC HMP, PHS

DDL1 or 2→data &

←configuration O2

&

DCS

←trigger

←trigger (ITS/MFT/TRD)

Buffe

r

PC

Ie

Pro

c.

TTS interface

Continuous & triggered read-out

Triggered read-out

GBT

data links

(9215)

Trigger links

(4039)

PON

TTS links

(500)

GBT & TTC

(192 + 80) &1

PCIe

Page 23: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2323 J. Schambach ([email protected])

ITS Integration into O2 and Trigger System

CRU

CTP

ITS FEE

O2 - DCSGBT optical

CAN bus

PCIe

DCS

Page 24: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2424 J. Schambach ([email protected])

ALPIDE Architecture including TMR

16 double columns

32 readout regions

Region Readout (1)

128x24b DPRAM

RR (2) RR (3) RR (32)

Top Readout Unit

Data Management Unit

Readout Sequencing

Control Bus Logic

ConfigurationRegisters

Pixels Config8b DACs

11b ADC

Differential Control Port(40 Mbps)

Bandgap +Temp Sens

Data Transmission Unit

DriverPLL Serializer

Serial Out Port(1200 Mbps / 600 Mbps/ 400 Mbps)

24b×40MHz

24b×40MHz

8b/10b

30b×40MHz

32:1 DATA MUX

Triggers

ALPIDE elements potentially SEU sensitive1. Pixel Logic: mask and pulse registers (not protected)Mitigation : Refresh pixel mask bits in background 2. Periphery logic: state machine, FIFO pointers, counters and configuration registers with TMR3. Top readout unit and data management unit FIFO with Hamming protection4. Region Readout DPRAM partially protected

format protectedhit data not protected

5. Data Transmission Unit: PLL and Serializer with TMR

1

2

3

4

5

RESET_VALUE

FF

0

OUT

FF

1

FF

2

VO

TIN

G

LO

GIC

SEU_ERROR

IN

AUTO CORRECTION

Basic Triple Modular Redundancy register cell

Page 25: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2525 J. Schambach ([email protected])

Modules (HICs) with ALPIDE Chips

Clock + Control + Trigger

ITS Inner Barrel Module – 9 chips, common clock and control, independent data lines

ITS Outer Barrel Module – 2 groups of chips, Master + 6 Slaves

Only the Master interfaces to the external world and bridges control and data

transfer

Serial Outputs (1200 Mbps)

Clock, Control, Local Data

Clock, Control, Local Data

Clock + Control + Trigger

Serial Out (400 Mbps)

Serial Out (400 Mbps)

Clock + Control + Trigger

ALPIDE Chips

Page 26: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2626 J. Schambach ([email protected])

Main Challenge: Expected Radiation Levels

• Both TID and Fluence levels at the location of the RU are not a concern for modern micro-electronics material degradation and component reliability.

• High energy hadrons are the real concern, as they can cause latch-ups in electronic components and SEU on logic devices.

• Testing showed that latch-ups are not a problem, while proper design is required to mitigate SEU effects.

Position with respect to beam Radiation levels (total)

r z NameTotal Ionizing

Dose (TID)1 MeV neq

fluenceHigh energy hadron flux*

Charged particle flux

[cm] [cm] [krad] [cm-2] [kHz cm-2] [kHz cm-2]

2.2 [-13.5 ÷ 13.5] ITS L0 2734 1.7 × 1013 765 (770) 890 (910)

40 [-73.7 ÷ 73.7] ITS L6 20 8.1 × 1011 3.4 (4.9) 4.5 (6.7)

100 330 RU ≈ 5 ≈ 1.6 × 1011 0.86 1.7

258 [-260 ÷ 260] TPC Out 0.86 1.4 × 1011 0.27 (0.37) 0.2 (0.3)

FEE

Page 27: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2727 J. Schambach ([email protected])

Radiation Validation: Detailed Impact

Failure mode Affected sectionEstimated occurrence in ITS operations (average MTBF)

Corrective actionDowntime per

occurrence

IB OB Whole ITS

Sensor data lane1 sensor for IB

½ module for OB22 - 40 h 4 - 6 h 3 - 5 h Self-repairing < 1 s >

GBT data* 1 full stave 29 h 10 h 7 h30% self repairing, 70% reset

by slow control< 5 s >

Clock resources 1 full stave Negligible Negligible Negligible Reset by slow control < 5 s >

Transceiver settings 1 sensor, IB only > 932 h – – Reset by slow control < 5 s>

Flash memory 1 full stave Negligible Negligible NegligibleFLASH reprogramming (30 s

beam off, 15m beam on)30 s – 15 m

1PA3 1 full stave 172 h 58 h 43 h Reset by slow control < 0 s>

2DCDC power glitch 1 full stave 294 h 98 h 72 h Power cycle < 10 s >

* Data for the non-TMR block, the final version will use a TMR protected block. This failure mode also includes sensor control and clock failures.1 When PA3 gets stuck, the main FPGA is not compromised, and therefore no downtime occurs. TMR of key blocks in PA3 firmware will further improve that.2 Considering 200 RU with 8 DCDC each (20% overestimation)

Page 28: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2828 J. Schambach ([email protected])

ALICE Data Acquisition: First Level Processors with CRUs

O2 FLPCRUReadout UnitSensor

8 RUs per CRU

2 CRUs per FLPUp to 28 Datalines per RU

Up

to

3 G

BT

link

per

R

U (3

.2 G

b/s

eac

h)

FLP architectureCRU architecture

Page 29: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

2929 J. Schambach ([email protected])

Pb-Pb @ 100 kHzAverage data throughput for MASTER sensor for Pb-Pb interaction at 100 kHz average rate, for triggered and continuousmode and for different analogue shaping times. Worst case scenario of noise considered, influent only for the outer layers.

Ou

ter

laye

rs

lim

it

Page 30: Silicon MAPS Readout in ALICE and sPHENIX...ATP Assembly and Trigger Processors Buffer Box Interim storage FEM Front End Module DCM2 Data Collection Module SEB Sub-Event Buffer MVTX

3030 J. Schambach ([email protected])

FELIX Firmware