25
6/1/2018 © 2003, JH McClellan & RW Schafer 1 Signal Processing First Chapter 11 Continuous-Time Fourier Transform

Signal Processing First - Konkukkonkuk.ac.kr/~cyim/dsp/Chapter11.pdf · 6/1/2018 © 2003, JH McClellan & RW Schafer 1 Signal Processing First Chapter 11 Continuous-Time Fourier Transform

  • Upload
    buidan

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

6/1/2018 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Chapter 11Continuous-TimeFourier Transform

6/1/2018 © 2003, JH McClellan & RW Schafer 2

License Info for SPFirst Slides

This work released under a Creative Commons Licensewith the following terms:

Attribution The licensor permits others to copy, distribute, display, and perform

the work. In return, licensees must give the original authors credit.

Non-Commercial The licensor permits others to copy, distribute, display, and perform

the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

Share Alike The licensor permits others to distribute derivative works only under

a license identical to the one that governs the licensor's work. Full Text of the License This (hidden) page should be kept with the presentation

6/1/2018 © 2003, JH McClellan & RW Schafer 3

LECTURE OBJECTIVES Review Frequency Response Fourier Series

Definition of Fourier transform

Relation to Fourier Series Examples of Fourier transform pairs

dtetxjX tj )()(

6/1/2018 © 2003, JH McClellan & RW Schafer 4

11.1 Definition of Fourier Transform

Forward Fourier transform

Inverse Fourier transform

dtetxjX tj )()(

dejXtx tj)()( 21

6/1/2018 © 2003, JH McClellan & RW Schafer 5

11.2 Fourier Transform and the Spectrum

Everything = Sum of sinusoids (?) One Square Pulse = Sum of Sinusoids (?)

Finite Length Not Periodic Limit of Square Wave as Period infinity

6/1/2018 © 2003, JH McClellan & RW Schafer 6

Fourier Series: Periodic x(t)x(t) x(t T0 )

T02T0 T0 2T00 t

x(t) akej 0k t

k

ak 1T0

x(t)e j0ktdtT0/ 2

T0 / 2

Fundamental Freq.0 2 / T0 2f0

Fourier Synthesis

Fourier Analysis

6/1/2018 © 2003, JH McClellan & RW Schafer 7

Square wave signal

ak e j0kt

j0kT0 T0 /4

T0 / 4

e jk / 2 ejk / 2

j2k

sin(k / 2)k

x(t) x(t T0 )

T02T0 T0 2T00 t

4/

4/0

0

0

0)1(1 T

T

tkjk dte

Ta

6/1/2018 © 2003, JH McClellan & RW Schafer 8

Spectrum from Fourier Series

,4,20

,3,1,00)2/sin(k

k

kkak

6/1/2018 © 2003, JH McClellan & RW Schafer 9

What if x(t) is not periodic?

Sum of Sinusoids? Non-harmonically related sinusoids Would not be periodic, but would probably be

non-zero for all t. Fourier transform gives a “sum” (actually an integral) that

involves ALL frequencies

6/1/2018 © 2003, JH McClellan & RW Schafer 10

Limiting Behavior of FS

T0=2T

T0=4T

T0=8T

6/1/2018 © 2003, JH McClellan & RW Schafer 11

Limiting Behavior of Spectrum

T0=2T

T0=4T

T0=8T

)(Plot

0 kaT

6/1/2018 © 2003, JH McClellan & RW Schafer 12

Fourier Transform Defined

For non-periodic signalsFourier Synthesis

Fourier Analysis

dtetxjX tj )()(

dejXtx tj)()( 21

6/1/2018 © 2003, JH McClellan & RW Schafer 13

11.4 Examples of Fourier Transform Pairs

X( j) 1a j

x(t) eatu(t)

Example 1:

6/1/2018 © 2003, JH McClellan & RW Schafer 14

Example 1: x(t) eatu(t)

X( j) 1a j

X( j ) eat

0

e j tdt 0

e (a j )tdt

X( j ) eate j t

a j 0

1

a j

a 0

6/1/2018 © 2003, JH McClellan & RW Schafer 15

Frequency Response

Fourier Transform of h(t) is the Frequency Response

jjHtueth t

11)()()(

)()( tueth t

6/1/2018 © 2003, JH McClellan & RW Schafer 16

Magnitude and Phase Plots

jajH

1)(

ajH 1tan)(

22

11

aja

)()( jHjH

6/1/2018 © 2003, JH McClellan & RW Schafer 17

X( j) sin(T / 2) / 2

Example 2: x(t) 1 t T / 20 t T / 2

X( j ) e j t

j T / 2

T /2

e jT / 2 e jT /2

j

X( j) (1)e jtdtT / 2

T /2 e jtdt

T / 2

T /2

6/1/2018 © 2003, JH McClellan & RW Schafer 18

x(t) 1 t T / 20 t T / 2

X( j ) sin(T / 2) / 2

6/1/2018 © 2003, JH McClellan & RW Schafer 19

Example 3:

b

bjX

0

1)(

tttx b

)sin()(

b

b

dedejXtx tjtj

121)(

21)(

jtee

jtetx

tjtjtj bbb

b

21

21)(

6/1/2018 © 2003, JH McClellan & RW Schafer 20

b

bb jXt

ttx

0

1)()sin()(

6/1/2018 © 2003, JH McClellan & RW Schafer 21

Example 4:

X( j ) (t)e jtdt

1

Shifting Property of the Impulse

)()( 0tttx

0)()( 0tjtj edtettjX

6/1/2018 © 2003, JH McClellan & RW Schafer 22

x(t) (t) X( j ) 1

6/1/2018 © 2003, JH McClellan & RW Schafer 23

Example 5: X( j ) 2 ( 0 )

x(t) 12

2 ( 0 )e jtd

e j0t

x(t) 1 X( j ) 2 ()

x(t) e j0 t X( j) 2 ( 0 )

x(t) cos(0t) X( j) ( 0) ( 0)

6/1/2018 © 2003, JH McClellan & RW Schafer 24

x(t) cos(0t) X( j) ( 0) ( 0)

6/1/2018 © 2003, JH McClellan & RW Schafer 25

Table of Fourier Transforms

x(t) eatu(t) X( j ) 1a j

x(t) 1 t T / 20 t T / 2

X( j ) sin(T / 2) / 2

x(t) sin(0t) t

X( j ) 1 00 0

x(t) (t t0) X( j ) e jt0

x(t) e j0 t X( j ) 2 ( 0 )