9
AIRCRAFT DESIGN PROJECT II DESIGN OF PASSENGER AIRCRAFT TEAM - SIERRAH SUBMITTED BY SIDDANA NAMRUTHA (0001201004) AKSHA JAIN (0001201018) NADIPI JAHNAVI (0001201046) RITHWIK PK (0001201051)

Sierra h

  • Upload
    jahnavi

  • View
    218

  • Download
    3

Embed Size (px)

DESCRIPTION

aircraft design project 2

Citation preview

Page 1: Sierra h

AIRCRAFT DESIGN PROJECT II

DESIGN OF PASSENGER AIRCRAFT

TEAM - SIERRAH

SUBMITTED BY

SIDDANA NAMRUTHA (0001201004)

AKSHA JAIN (0001201018)

NADIPI JAHNAVI (0001201046)

RITHWIK PK (0001201051)

Page 2: Sierra h

SPECIFICATIONS :

Cessna 162 -Skycatcher Instrument panel. This aircraft is a factory demonstrator and has the second

optional EFIS display installed

Data from Flying Magazine[55] and Cessna.com[5]

GENERAL CHARACTERISTICS :

Crew: one pilot

Capacity: one passenger

Length: 22.8 ft (6.95 m)

Wingspan: 30.0 ft (9.14 m)

Height: 8.53 ft (2.53 m)

Wing area: 120 ft² (11.14 m²)

Empty weight: 830 lb (376.5 kg)

Useful load: 490 lb (222.3 kg)

Max. takeoff weight: 1,320 lb (598.7 kg)

Powerplant: 1 × Continental O-200D flat-four engine, 100 hp (74.6 kW)

PERFORMANCE :

Maximum speed: 118 knots (218 km/h (136 mph))

Cruise speed: 112 knots (207 km/h (129 mph))

Range: 470 nm (870 km (540 smi.)) at 6,000 ft (1830 m)

Service ceiling: 15,500 ft (4727 m)

Rate of climb: 890 ft/min (4.52 m/s)

Wing loading: 11.0 lb/ft² (55.0 kg/m²)

Power/mass: 13.2 lb/hp (8.04 kg/kW)

Page 3: Sierra h

3D VIEW OF CESSNA 162 AIRCRAFT

Page 4: Sierra h

V-n DIAGRAM FOR CESSNA 162 AIRCRAFT

Curve OA:

Maximum Load Factor, nmax = (LD

)max

×( TW

)max

CLmax=1.52; CDmax=0.14

( LD

)max

=(CLCD

)max

= 10.857

( TW

)max

=( 100598.7

)max

= 0.167

nmax = (LD

)max

×( TW

)max

nmax = 10.857×0.167

nA = 1.813

nmax=12ρ∞V ∞

2 CLmax

(WS

)

Hence along the curve OA, nOA=0.018×V ∞2

Using the above equation we get: Velocity vs. positive load factor (n)

Velocity (m/s) Load Factor (n)

0 05 0.45

10 1.815 4.0520 7.2125 11.27

nA=0.018×V ¿2

1.813=0.018×V ∞2

Page 5: Sierra h

VA = 10.03m/s

Along OG:

nmax=12ρ∞V ∞

2 CLmax ,¬¿

(WS

)¿

CLmax ,¬¿=−1.26¿

Hence along the curve OG,

nOC=−0.01495×V ∞2 ; nC=−1.503

Therefore we get the table as: velocity vs. negative load factor

Velocity (m/s) Load Factor (n)

0 05 -0.28125

10 -1.49515 -3.3637520 -5.9825 -9.34375

GRAPH:

GUST V-n DIAGRAM :

Page 6: Sierra h

The relation between load factor and airspeed is given by

n=1+kg v¿ veaρs

2w

Since the cruising speed is for 10,000 ft, two flight conditions are considered for maximum load

factor. Then we calculate n for both VC and VD.

Aircraft maximum weight at sea level :

c= sb

= 1.21m

μg= 2mρas c

=2×61.09

1.225×1.21×6.2×11.14

=1.193

kg=

0.88μg5.3+µg

¿ 1.0496.493

=¿0.161

When gust velocity is ±50 ft/sec (i.e. ±15.24m/sec) load factor will be

n=1+kg v¿ veaρs

2w

¿1+0.161×(±15.24)×v×6.2×1.225×11.14

2×598.7

=1±0.173v

Since cruising speed vc is 57.5m/sec

n= 1+0.173(57.5)= 10.947 (positive)

n=1-0.173(57.5)= -8.947 (negative)

For dive speed , gust velocity could be ±25ft/sec (i.e.±7.62m/sec) . load factor is given by

n=1+kg v¿ veaρs

2w

¿1+0.161×(±7.62)×v×6.2×11.14×1.225

2×598.7

Page 7: Sierra h

=1±0.086v

For dive speed vd is 80.5m/sec

n=1+0.086(80.5)= 7.923 (positive)

n=1-0.086(80.5)= -5.923 (negative)

Aircraft maximum weight at 10,000 ft:

ρ=0.413kg/m3

μg= 2mρas c

=2×61.09

0.413×1.21×6.2×11.14

=3.53

kg=

0.88μg5.3+µg

¿ 0.88×3.535.3+3.53

=0.351

When gust velocity is ±50 ft/sec (i.e. ±15.24m/sec) load factor will be

n=1+kg v¿ veaρs

2w

¿1+0.351×(±15.24)×v×6.2×0.413×11.14

2×598.7

=1±0.127v

For cruising speed vcis 57.5 m/sec

n=1+0.127(57.5)= 8.302 (positive)

n=1-0.127(57.5)= -6.302 (negative)

For dive speed , gust velocity could be ±25ft/sec (i.e.±7.62m/sec) . load factor is given by

n=1+kg v¿ veaρs

2w

¿1+0.351×(±7.62)×v×6.2×11.14×0.413

2×598.7

Page 8: Sierra h

=1±0.0637v

For dive speed is 80.5m/sec

n=1+0.0637(80.5)= 6.127 (positive)

n=1-0.0637(80.5)= -4.127 (negative)

GRAPH :