115
C 07.03.2017 Design basis Bjørnafjorden Rev:C For DNV GL comments SMJ B 2.12.2016 Design basis Bjørnafjorden Rev:B Updates and corrections: See ch. 1. SMJ ØN KHB KHB A 1.11.2016 Preliminary for comments SMJ Rev. Utgivelses dato Beskrivelse Laget av Sjekk. av Prosj. godkj. Klient godkj. Kunde Konsulent Kontrakt nr.: Dokument navn: Design Basis Bjørnafjorden Side- and end anchored floating bridge Dokument nr.: SBJ-32-C3-SVV-90-BA-002 Rev.: C Sider: 50 Fergefri E39 – Kryssing av Bjørnafjorden

Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

  • Upload
    lamnhi

  • View
    219

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

|

C 07.03.2017 Design basis Bjørnafjorden Rev:C For DNV GL comments

SMJ

B 2.12.2016 Design basis Bjørnafjorden Rev:B Updates and corrections: See ch. 1.

SMJ ØN KHB KHB

A 1.11.2016 Preliminary for comments SMJ

Rev. Utgivelses dato

Beskrivelse Laget av

Sjekk. av

Prosj. godkj.

Klient godkj.

Kunde

Konsulent

Kontrakt nr.:

Dokument navn:

Design Basis Bjørnafjorden Side- and end anchored floating bridge

Dokument nr.:

SBJ-32-C3-SVV-90-BA-002

Rev.:

C

Sider:

50

Fergefri E39 – Kryssing av Bjørnafjorden

Page 2: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 1 Date:7.03.2017

Table of contents 1 Updates and corrections ............................................................................................................................. 4 2 Introductory provisions .............................................................................................................................. 5

2.1 Area of application ............................................................................................................................. 5 2.2 Differentiation between individual and common design rules ........................................................... 5 2.3 Definitions .......................................................................................................................................... 5

3 General ....................................................................................................................................................... 7 3.1 Introduction ........................................................................................................................................ 7 3.2 Definition of project: .......................................................................................................................... 7 3.3 Geographic coordinate system - CP ................................................................................................... 8

4 Design principles ........................................................................................................................................ 9 4.1 General - CP ....................................................................................................................................... 9 4.2 Design method - CP ........................................................................................................................... 9 4.3 Structural reliability and control class - CP ........................................................................................ 9 4.4 Minimum lifetime - CP ...................................................................................................................... 9

5 Functional criteria..................................................................................................................................... 10 5.1 General - CP ..................................................................................................................................... 10 5.2 Bridge girder - CP ............................................................................................................................ 10 5.3 Roadclass and alignment - CP .......................................................................................................... 10

5.3.1 Guard rails - CP ........................................................................................................................ 10 5.3.2 Minimum clearance for ship traffic - IP ................................................................................... 11 5.3.3 Safety systems for navigation - CP .......................................................................................... 11

5.4 Pontoons ........................................................................................................................................... 12 5.4.1 Water tightness - CP ................................................................................................................. 12 5.4.2 Splash zone – IP ....................................................................................................................... 12 5.4.3 Contingency and ballast – IP .................................................................................................... 12 5.4.4 Water detectors and inspection hatches - CP............................................................................ 12 5.4.5 Bilge pump systems- IP ............................................................................................................ 12

5.5 Tower ............................................................................................................................................... 13 5.5.1 Wind transition zone - IP .......................................................................................................... 13

5.6 Other functional criteria ................................................................................................................... 13 5.6.1 Instrumentation - CP ................................................................................................................ 13 5.6.2 Inspection, operation and maintenance – IP - HOLD .............................................................. 13

6 Materials and implementation .................................................................................................................. 14 6.1 Concrete structures ........................................................................................................................... 14

6.1.1 General – CP ............................................................................................................................ 14 6.1.2 Concrete cover requirements - CP - HOLD ............................................................................. 14 6.1.3 Concrete aggregate and quality – CP ....................................................................................... 14 6.1.4 Concrete elasticity module– CP ............................................................................................... 15 6.1.5 Concrete material factors – CP ................................................................................................. 15 6.1.6 Concrete structure properties – CP ........................................................................................... 15 6.1.7 Reinforcement quality – CP ..................................................................................................... 15 6.1.8 Reinforcement placement – CP ................................................................................................ 15 6.1.9 Prestressing reinforcement – CP .............................................................................................. 15 6.1.10 Concrete cathodic protection – CP ........................................................................................... 15

6.2 Steel structures ................................................................................................................................. 16 6.2.1 General – CP ............................................................................................................................ 16 6.2.2 Steel structure material factors – CP ........................................................................................ 16 6.2.3 Normal/construction steel properties – IP ................................................................................ 16 6.2.4 Corrosion protection – CP-HOLD............................................................................................ 16 6.2.5 Surfacing – CP .......................................................................................................................... 17

6.3 High strength steel ............................................................................................................................ 17 6.3.1 Stay cables and tension bars - IP .............................................................................................. 17

Page 3: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 2 Date: 07.03.2017

2

6.3.2 Stay cables – (IP) ...................................................................................................................... 17 7 Loads ........................................................................................................................................................ 17

7.1 General - CP ..................................................................................................................................... 17 7.2 Permanent loads - CP ....................................................................................................................... 18

7.2.1 Self-weight (G-W) - CP............................................................................................................ 19 7.2.2 Permanent equipment (super self-weight) (G-Add) - CP ......................................................... 19 7.2.3 Permanent water buoyancy (G-B) - CP .................................................................................... 19 7.2.4 Permanent ballast (G-S) - IP..................................................................................................... 19 7.2.5 Stay cable forces (G-Cable) - IP ............................................................................................... 20 7.2.6 Pretension of side-anchoring system (G-Mor) - IP .................................................................. 20 7.2.7 Structural weight contingency (G-Con) - IP............................................................................. 20 7.2.8 Water absorption fraction (G-Abs) - CP................................................................................... 20

7.3 Deformation loads ............................................................................................................................ 20 7.3.1 Creep, shrinkage and relaxation (G-D) - CP ............................................................................ 20 7.3.2 Prestressing of tendons (G-P) - CP ........................................................................................... 20

7.4 Variable loads ................................................................................................................................... 21 7.4.1 General - CP ............................................................................................................................. 21 7.4.2 Traffic load (Q-Trf) - IP ........................................................................................................... 22 7.4.3 General information on environmental loads - CP ................................................................... 24 7.4.4 Temperature (Q-Temp) - CP .................................................................................................... 24 7.4.5 Water level variations (Q-Tide) - CP ....................................................................................... 24 7.4.6 Waves (hydrodynamic loads) (Q-Wave) - CP .......................................................................... 24 7.4.7 Current (Q-Cur) - CP ................................................................................................................ 25 7.4.8 Wind (Q-Wind) - CP ................................................................................................................ 25 7.4.9 Marine fouling (Q-MFoul) - CP ............................................................................................... 25 7.4.10 Slamming (Q-Slam) - CP ......................................................................................................... 25

7.5 Accidental loads ............................................................................................................................... 25 7.5.1 General - CP ............................................................................................................................. 25 7.5.2 Ship impact (A-Coll) – IP - HOLD .......................................................................................... 26 7.5.3 Accidental filling of buoyancy elements (A-Flood) - IP .......................................................... 29 7.5.4 Failure of mooring lines (A-MorFail) - IP................................................................................ 29 7.5.5 Rupture of cable stays - IP........................................................................................................ 29 7.5.6 Underwater landslides - CP ...................................................................................................... 30 7.5.7 Earthquake - CP ........................................................................................................................ 30

8 Design loads ............................................................................................................................................. 31 8.1 Limit states – CP .............................................................................................................................. 31 8.2 Load combinations – CP .................................................................................................................. 31 8.3 Determination of load actions .......................................................................................................... 31

8.3.1 General - CP ............................................................................................................................. 31 8.3.2 Non-linear effects - CP ............................................................................................................. 31 8.3.3 Environmental load actions – CP - HOLD ............................................................................... 31 8.3.4 Structural damping - CP ........................................................................................................... 33

8.4 Limit states ....................................................................................................................................... 33 8.4.1 General - CP ............................................................................................................................. 33 8.4.2 Characteristic response values - CP ......................................................................................... 33

8.5 Serviceability limit state ................................................................................................................... 33 8.5.1 SLS - Characteristic - CP ......................................................................................................... 33 8.5.2 SLS – In-frequent – CP ............................................................................................................ 34

8.6 Ultimate limit state - IP .................................................................................................................... 35 8.7 Accidental limit state - CP ................................................................................................................ 37 8.8 Fatigue limit state - CP ..................................................................................................................... 38

9 Design criteria .......................................................................................................................................... 38 9.1 Freeboard - IP ................................................................................................................................... 38 9.2 Motion limitations - IP ..................................................................................................................... 39 9.3 Boundary conditions and special design considerations for floating bridges - IP ............................ 40

Page 4: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 3 Date: 07.03.2017

3

9.4 Concrete structures ........................................................................................................................... 41 9.4.1 General - CP ............................................................................................................................. 41 9.4.2 Water tightness - IP .................................................................................................................. 41 9.4.3 Concrete joints - CP ................................................................................................................. 41 9.4.4 Casting joints – CP ................................................................................................................... 41 9.4.5 Crack widths - CP ..................................................................................................................... 42 9.4.6 Transverse shear - CP ............................................................................................................... 42 9.4.7 Water runoff on pontoon top plate - CP ................................................................................... 42

9.5 Steel structures ................................................................................................................................. 42 9.5.1 General - CP ............................................................................................................................. 42 9.5.2 Structural components specially subjected to fatigue - CP ...................................................... 42

10 Bearings and expansion joints .............................................................................................................. 42 10.1 Bearings ............................................................................................................................................ 42

10.1.1 General - CP ............................................................................................................................. 42 10.1.2 Design - CP .............................................................................................................................. 43

10.2 Expansion joints ............................................................................................................................... 43 10.2.1 General - CP ............................................................................................................................. 43 10.2.2 Design - CP .............................................................................................................................. 43

11 Mooring system - IP ............................................................................................................................. 43 12 Marin geology and Geotechnics - CP ................................................................................................... 43 13 Bibliography ......................................................................................................................................... 44

Page 5: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 4 Date: 07.03.2017

4

1 Updates and corrections The following updates and corrections is introduced in revision C:

1. Differentiation between individual and common design principles, see 2.2.

2. Definition of green sea and requirements of freeboard, see 9.1 .

3. Geographic coordinate system NN2000, see 3.3.

4. The pedestrian lane width is reduced from 3.5m to 3.0m, see 5.3.

5. The minimum requirements for concrete cover is reduced, see 6.1.2.

6. A minimum rebar dimension and centre distance is given for external and internal pontoon walls, see

6.1.8.

7. Cladding steel can be used for mechanical and corrosion protection in splash zone, see 6.2.4.

8. The sub-chapter discussing construction method is taken out of design basis, since the construction

phase will largely depend on building method chosen by contractor.

9. Damping ratio for stay cables is introduced, see 8.3.4.

10. Fatigue design check shall be based on relevant procedure specified in DNVGL-RP-C203, see 8.8.

11. The rotation about bridge girder from environmental loading shall be evaluated from the rms values

(motion limitation), see 9.2.

12. Water tightness criteria for pontoon walls is re-evaluated, see 9.4.2.

13. To prove fatigue limit state capacity through the design service life, traffic loads based on an AADT

of 20.000 shall be used, see 8.8.

14. Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2.

Page 6: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

5

2 Introductory provisions

2.1 Area of application The following design rules apply for the feasibility study for the crossing of Bjørnafjorden with an end- or

side anchored floating bridge concept.

In case of conflicting rules, the specific rules will govern over general rules.

2.2 Differentiation between individual and common design rules Several design rules stated in this document are equivalent to the design rules stated in the design basis for

the Multi-span suspension bridge on floating foundation. Since the two bridge types have fundamental

different structural behaviour, individual design rules are necessary to differentiate between the two bridge

types.

For this reason, the subchapters differentiate on individual and common principles. The following notation

are added after each header in the subchapters.

Individual design principle (IP): Design rule is individual and applies to the end- or side anchored

floating bridge concept.

Common design principle (CP): Design rule is common and applies to both the Multi-span

suspension bridge on floating foundation and the end- and side anchored floating bridge concepts.

2.3 Definitions Terms used in the design basis have the following meaning:

Floating bridge

A floating structure, designed for traffic loads directly applied on to floaters or on a separately constructed

carriageway, which may have fixed or floating supports between the abutments.

Mooring system

Arrangement of cables that is connecting a bridge structure to the seabed.

Splash zone:

External surface that is periodically in contact with seawater.

Freeboard

The vertical distance from the water level to the buoyancy body’s lateral surface.

Service Life

The service life of the structure estimated from its completion date.

Green sea

Sea waves that periodically is partly or entirely flooding the pontoon top plate. The effect of pontoon

presence shall be evaluated (diffraction effects shall be included).

LAT

Lowest astronomical tide.

MLW

Mean low water.

MSL

Mean sea level.

Page 7: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 6 Date: 07.03.2017

6

MHW

Mean high water.

HAT

Highest astronomical tide.

Service life

The service life of the structure estimated from its completion date.

NPRA

Norwegian Public Road Administration.

EC

European standard codes.

AADT

Annual average daily traffic. Average daily traffic density at a fixed point (for both direction), through the

year.

HDPE

High density polyethylene

Page 8: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 7 Date: 07.03.2017

7

3 General

3.1 Introduction A bridge will replace todays ferry connection between Halhjem and Sandvikvåg in Bjørnafjorden. The

bridge will be a part of a larger project to make E39 continuous, without ferries, from Kristiansand to

Trondheim. Replacing the ferries with bridges will significantly reduce the travelling time and will have

large positive socioeconomic effects for the regions.

Bjørnafjorden is located about 30km south of Bergen. The crossing is planned from a small island, with the

name Svarvahella at Rekstern (in the south) to Søre – Øyane (in the north). The distance is about 4.8km.

There are three relevant concepts for the crossing of the fjord.

1. Multi-span suspension bridge on floating foundation (Tension leg foundation).

2. Side anchored floating bridge.

3. End anchored floating bridge.

This design basis shall only be used for design of alternative two and three.

Figure 3-1 Bjørnafjorden basin

3.2 Definition of project:

Multi-span suspension bridge on floating foundations

The concept is defined from the start of the abutment south of the fjord, and includes the entire road, until the

solid rock tunnel in the north (including the tunnel portal).

All structural elements that supports the road line between these two points are included in this project.

Side anchored bridge

The concept is defined from the start of the abutment in the back span of the cable stayed high bridge and

includes the entire road, until solid rock tunnel in the north (including the tunnel portal).

All structural elements that supports the road line between these two points are included in this project.

Page 9: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 8 Date: 07.03.2017

8

End anchored bridge

The concept is defined from the start of the abutment in the back span of the cable stayed high bridge and

includes the entire road, until solid rock tunnel in the north (including the tunnel portal).

All structural elements that supports the road line between these two points are included in this project.

3.3 Geographic coordinate system - CP

The geographic coordinate system is EUREF 89 UTM 32N.

Bathymetry maps is given with reference to NN2000 (not LAT).

All maps, geographic information and geographic drawings must be developed according to this coordinate

system.

MLW, MSL, MHW and HAT is given in the metocean design basis with reference to LAT.

In Bergen, the NN2000 is defined at +97cm above LAT. Transfer coefficient to Bjørnafjorden shall be taken

as 0.81. The distance from LAT to shall therefore be taken as +78cm.

Page 10: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 9 Date: 07.03.2017

9

4 Design principles

4.1 General - CP All design shall be in accordance with relevant Eurocodes as well as publication N400 and other rules and

regulations by the Norwegian Public Road Administration. Some topics may deviate from EC and NPRA

handbooks and will be specified in this document

4.2 Design method - CP The design shall be based on the limit state method. For permanent, deformation and traffic loads, the partial

factor method shall be used according to the Eurocode system. For environmental loads, further description

is given in this document in 8.3.3. The purpose of the limit state calculation is to prove margin for the

dimensioning loads exceeding the criteria for the range of limit states.

4.3 Structural reliability and control class - CP The bridge is categorized as consequence class CC3 and reliability class RC3 in accordance with NS-EN

1990 Annex B (Norsk Standard, 2016). Design supervision level DSL3 (extended supervision,) and

Inspection level IL3 (extended inspection during execution) shall be applied.

Particular members of the structure may be categorised as consequence class CC2 (Medium) and

consequently reliability class RC2. For these members Design supervision level DSL3 and inspection level

IL2 (normal inspection during execution) shall be applied.

4.4 Minimum lifetime - CP

The bridge will be designed for a minimum lifetime of 100 years (design service life).

Components in the structure that has a design service life, less than 100 years, shall be

replaceable. The replacement of such components shall have minimum disturbance on road and

maritime traffic, so that the bridge on average is open 99,5 % of the time, considering all

events. The procedures of replacing such components shall be described, planned and facilitated in

the design process.

Page 11: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 10 Date: 07.03.2017

10

5 Functional criteria

5.1 General - CP The bridge shall be designed in a way that ensure the comfort and safety for the both the drivers and the

pedestrians that are using the bridge. It shall be designed in a way that limits the possibility of irrational

human behaviour caused by dynamic effects provoked by environmental loads during normal conditions (1-

year storm).

5.2 Bridge girder - CP The two user groups shall be separated from each other in a way that significantly reduces the risk of

collision with pedestrians. Guardrails shall not be deflected into the pedestrian area during a traffic collision.

5.3 Roadclass and alignment - CP The road shall fulfil the requirements for design class H8 in N100 (Vegdirektoratet, 2013). Four driving

lanes, 3.5m wide each, with 1.5m outer shoulder shall be placed on the girder. The girder shall also have a

4m service/pedestrian lane. One meter of the service/pedestrian lane shall be marked as no traffic area. The

pedestrian lane shall be placed on the east side on the girder.

Figure 5-1 Roadclass H8 in N100

Figure 5-2 Example of divisions of carriageways and pedestrian lane

- The design traffic volume are 12.000-14.000 AADT (2050).

- The driving speed for the bridge is limited to 110km/h.

- The road alignment must satisfy the requirements in N100 (Vegdirektoratet, 2013).

- The bridge girder shall be designed without protective windscreen with the exception of the

transition zone at bridge tower, see section 5.5.

5.3.1 Guard rails - CP

The traffic guardrails shall have a minimum strength class of H2 and a maximum working width of 1.0m

(W3) (Vegdirektoratet, 2014).

Page 12: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 11 Date: 07.03.2017

11

Figure 5-3 Definition of working width

5.3.2 Minimum clearance for ship traffic - IP

Minimum vertical clearance:

The vertical clearance is defined as the lowest distance from sea surface to the underside of the bridge girder.

The distance for vertical clearance shall account for the following effects:

- Deflection from traffic load in the SLS condition (in-frequently occurring).

- The highest astronomical tide (HAT).

The minimum vertical clearance is defined as:

- 45m in the mainspan (ship navigation channel).

- 11.5m in the sidespans.

Minimum horizontal clearance:

Horizontal navigational clearance is defined as the free width for ship passage and shall not be less than:

- 400m in the mainspan (ship navigation channel).

- No requirements in the side spans.

Minimum keel clearance

Design keel clearance in the navigation channel shall be according to regulations given in Farledsnormalen

Ch.3 by the Norwegian Costal Administration (Kystverket, 2014). The minimum water depth in the

navigation channel shall be minimum 16m including safety distance to keel. The distance shall be measured

relative to LAT.

5.3.3 Safety systems for navigation - CP

The bridge shall be equipped with signs for ship and aeronautical navigation, see 12.7.5 in N400

(Vegdirektoratet, 2015).

Page 13: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 12 Date: 07.03.2017

12

5.4 Pontoons

5.4.1 Water tightness - CP

Buoyancy elements (pontoons) shall be watertight, see 9.4.2.

5.4.2 Splash zone – IP

Splash zone shall be calculated according to DNV GL-OS-C101 see, section 10 B 200 (DNV, 2011).

5.4.3 Contingency and ballast – IP

To account for deviation in the permanent action during the building phase a structural contingency shall be

included in the pontoon structural mass. Designer shall evaluate the contingency fraction for each structural

element. The contingency shall be based on acceptable deviations during construction and uncertainties in

the applied permanent loading. Structural weight contingency shall be applied as permanent ballast.

Concrete pontoon

Temporary phase

For temporary phases, water ballast shall be used. If seawater is used, sufficient cleaning and subsequent

drying of the compartments shall be performed before permanent solid ballast is filled into the pontoon.

Permanent phase Only solid ballast shall be assumed for the permanent situation.

Steel pontoon

If a steel pontoon is chosen, water ballast shall be used for both the temporary and permanent situation.

5.4.4 Water detectors and inspection hatches - CP

All pontoon compartments shall be equipped with minimum two water detectors. Inspection and testing of

detector systems shall be part of maintenance program.

All pontoon compartments shall be available for inspection.

The pontoon compartments shall be accessible through watertight hatches. The hatches shall be designed in

such way, that these will be closed mechanically, when not in use. The compartments shall be available from

the top plate.

5.4.5 Bilge pump systems- IP

Permanent bilge pump systems shall not be installed as an integrated part of the pontoons. Provision must be

made for easy installation of mobile pumping system, if a pontoon is subjected to an un-intendent water

leakage.

Page 14: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 13 Date: 07.03.2017

13

5.5 Tower

5.5.1 Wind transition zone - IP

Traffic passing by the tower shall be protected against the rapid transition to wind loads. The tower shall

have linearly decaying windscreens on both sides’ protection light vehicles with large exposed areas for this

transition.

5.6 Other functional criteria

5.6.1 Instrumentation - CP

There shall be installed different instrumentation systems:

Monitoring of the bridge response, such as velocities, accelerations and deformations.

Monitoring of the mooring tension, so that any loss of mooring or movement in the anchors can be

detected.

Monitoring of degradation mechanisms, such as rebar corrosion.

5.6.2 Inspection, operation and maintenance – IP - HOLD

It shall be developed a program for inspection, operation and maintenance. The program shall be planned in

a way that has systematically focus on detecting mechanisms that differ from intended design. For example

detecting cracks from fatigue loads and effects from chloride penetration into the concrete.

The design of the bridge shall provide safe and easy access (within arm's length of all components) for

inspection and maintenance of all relevant structures, equipment and systems.

The design of the bridge shall allow routine inspection and maintenance to be carried out with minimum

disturbance to road traffic (One lane can be closed during a short period and in general respecting that the

bridge on average shall be open for partial or full traffic at least 99.5% of the time considering all events).

Bridge components that expectedly require maintenance shall be easy to maintain with minimal disturbance

to road- as well as maritime traffic.

Page 15: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 14 Date: 07.03.2017

14

6 Materials and implementation

6.1 Concrete structures

6.1.1 General – CP

Handbook R762, N400 and the eurocode series apply in design. There is given some additions to the existing

rules and codes in the clauses below.

6.1.2 Concrete cover requirements - CP - HOLD

Concrete cover

Concrete cover Exposure class Minimum cover

External panels and top plate (splash zone) XS 3 95mm (2)

Submerged panels and bottom plate XS 2 80mm(2)

Internal panels XS 1 80mm (1)

(1) Including 15 mm negative tolerance. (2) Including 20 mm negative tolerance.

If traditional scaffolding is assumed instead of slip forming, the minimum cover can be reduced by 10mm.

If normal concrete is assumed instead of lightweight aggregate concrete, the minimum cover can be reduced

by 5mm.

6.1.3 Concrete aggregate and quality – CP

The concrete, its aggregates and workmanship shall be in accordance to the requirements in Handbook R762

(Vegdirektoratet, 2015), N400 (Vegdirektoratet, 2015) with necessary adjustments according to NS-EN

1992-1 (Norsk Standard, 2008) and NS-EN 1992-2 (Norsk Standard, 2010)

Minimum concrete grade shall be C45.

Light Weight Aggregate (LWA) concrete (density class ≥ 2,0) may be considered where advantageous.

Page 16: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 15 Date: 07.03.2017

15

6.1.4 Concrete elasticity module– CP

The elasticity modules for concrete shall be calculated on basis of NS 3473 table 9.2.1, (Norsk Standard,

2003).

Ec = kEfcc0.3

Where kE can be taken ass 9500 N/mm2 for concrete with characteristic strength between C20 and C75.

6.1.5 Concrete material factors – CP

Material factors shall be used in accordance to NS-EN 1992-1-1:2004+NA: 2008, table NA.2.1N.

6.1.6 Concrete structure properties – CP

Concrete properties shall be used according to NS-EN 1992-1-1:2004+NA: 2008.

6.1.7 Reinforcement quality – CP

Rebar quality shall be of B500NC according to NS 3576-3, (Norsk Standard, 2012) and NS-EN 10080,

(Norsk Standard, 2005).

6.1.8 Reinforcement placement – CP

All cross sections shall have sufficient minimum reinforcement to ensure controlled cracking.

All panels shall have double-sided reinforcement

The minimum centre distance for rebar placement shall be no less than 150mm. For external walls, the

minimum rebar dimension shall be no less than 16mm. For internal walls, the minimum dimension shall be

no less than 12mm (Vegdirektoratet, 2015).

6.1.9 Prestressing reinforcement – CP

Prestressing steel, its components and workmanship shall satisfy the requirements of prEN 10138 (European

Standard, 2000).

Prestressing cable anchors shall be cast with normal concrete cover requirements.

In general, all prestressing ducts shall be grouted, cables that are scheduled to be replaced during the service

life of the bridge shall not be grouted. Protective measures for corrosion will in these cases be specified and

approved.

6.1.10 Concrete cathodic protection – CP

Permanently submerged concrete surfaces shall have cathodic protection in the form of sacrificial anodes. To

prepare the structure for cathodic protection, electrical continuity for the reinforcement shall be established.

Page 17: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 16 Date: 07.03.2017

16

6.2 Steel structures

6.2.1 General – CP

Handbook R762, N400 and the eurocode series apply in design. There is given some additions to the existing

rules and codes in the clauses below.

6.2.2 Steel structure material factors – CP

Material factors shall be used in accordance to relevant section in NS-EN 1993:

Ultimate limit state

Material factors for construction steel shall be used in accordance to NS-EN 1993-2 NA.6.1 (Norsk

Standard, 2009).

Fatigue limit state

Fatigue design check shall be based on relevant procedure specified in DNVGL-RP-C203 Fatigue design of

offshore steel structures (DNV GL, 2016).

6.2.3 Normal/construction steel properties – IP

Steel type and maximum thicknesses shall comply with the requirements in NS-EN-1993-1 (Norsk Standard,

2015) and NS-EN-1993-2 (Norsk Standard, 2009).

For construction steel, the quality shall be limited to S420.

6.2.4 Corrosion protection – CP-HOLD

Steel surfaces shall have corrosion protection to preserve the steel structure in best possible way.

Maintenance intervals shall be planned during design.

Steel surfaces exposed to air shall be protected with coating according to R762 (Vegdirektoratet, 2015). For

inner surfaces of box girder and steel columns, corrosion protection is ensured using dehumidification

system and light zinc-rich primer.

Permanently submerged steel surfaces shall have cathodic protection in the form of sacrificial anodes,

generally combined with a 10mm rust allowance.

Cladding steel may be evaluated in the splash zone for surface corrosion protection and periodically

mechanical loading (example: protection from periodically presence of ice).

Enclosed surfaces unavailable for inspection and surface treatments, such as the inside of pipes, steel hollow

sections etc. shall be airtight and the airtightness ensured by pressure tests.

Enclosed surfaces available for inspection and surface treatments, such as the steel box girders and columns

shall be watertight. If internal corrosion protection is ensured by low internal humidity, the structure shall be

airtight. Doors, hatches and other openings shall be equipped with gaskets and closing devices that ensure

the airtightness. Valves (or something similar) must be utilized out differences in pressure between the inside

and outside of the airtight structure.

Page 18: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 17 Date: 07.03.2017

17

Railing fixes, embedded details and other minor steel parts shall in general be acid prof.

6.2.5 Surfacing – CP

The girder shall have surfacing class A3-3 specified in 12.2.1 in N400 (Vegdirektoratet, 2015).

6.3 High strength steel

6.3.1 Stay cables and tension bars - IP

Material factors for stay cables and tensions bars are defined in NS-EN 1993-1-11 (Norsk Standard, 2009)

NA.6.

𝛾𝑅 = 1.2

6.3.2 Stay cables – (IP)

Cables with parallel strands or spiral stands (locked coil) can be used for the high bridge. The design of

tension components shall comply with the requirements of NS-EN 1993-1-11 (Norsk Standard, 2009).

Material properties

Stay cables shall be of the type; Group C according to Table 1.1, see (Norsk Standard, 2009) comprising

bundles of parallel wire strands, anchored with wedges.

Properties (in accordance with EN 10138-3: Strands) shall be adopted:

Corrosion protection

The cable stays will be comprised of galvanised, grease, PE coated strands contained within a HDPE outer

pipe. THE HDPE outer pipe is assumed to be of the standard type with respect to diameter.

Highest utilization of cables

Limits for cable utilization is given in NA.7.1 and NA 7.2 (Norsk Standard, 2009).

7 Loads

7.1 General - CP The loads are divided into categories based on their nature and the likelihood of their occurrence:

Permanent loads (G)

Variable loads (Q)

Accidental loads (A)

The classification of individual loads are shown below. Load designations are given with a symbol for the

main group as well as a symbol for type of load. Deformation loads are treated as permanent loads in

accordance to the Eurocodes.

Permanent loads (G)

Self-weight G-W

Permanent equipment (surfacing, railings etc.) G-Add

Permanent water head (buoyancy) G-B

Permanent ballast G-S

Page 19: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 18 Date: 07.03.2017

18

Stay cable forces G-Cable

Pretension anchoring system G-Mor

Structural weight contingency G-Con

Water absorption fraction G-Abs

Deformation loads (G)

Shrinkage, creep, relaxation (deformation loads) G-D

Pre-stress in pre-stressing tendons G-P

Variable loads (Q)

Traffic loads Q-Trf

Temperature Q-Temp

Water level variations Q-Tide

Waves (hydrodynamic loads) Q-Wave

Current Q-Cur

Wind Q-Wind

Marine Fouling Q-MFoul

Slamming Q-Slam

Accidental loads (A)

Ship impact forces A-Coll

Filling of floating body A-Flood

Failure in mooring system A-MorFail

Abnormal environmental loads A-Abnor

Failure in stay cables A-SCab

Earthquake A-EarthQ

7.2 Permanent loads - CP

All permanent actions are combined in an equilibrium group, denoted G-EQ, which is combined with other

loads. Buoyancy shall be calculated based on the outer dimension of the pontoons, without additions from

marine fouling (marine fouling shall be treated as a variable load). Surfacing shall be divided into two load

groups. The equilibrium group for permanent load, only include the surfacing applied to the structure, when

the construction is finished, see 7.2.2.

Permanent effects are loads that are constant within the considered period, and include:

Weight of the construction, surfacing and non-removable equipment.

Weight of permanent ballast.

Page 20: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 19 Date: 07.03.2017

19

External hydrostatic pressure from surrounding seawater up to mean water level with mean density

(mean buoyancy).

Cable stay forces

Mooring cable pre-stressing.

Permanent loads linked to permanent deformations are also classified as permanent effects, such as:

Pre-stressing of tendons

Shrinkage, creep and relaxation.

Deformations applied to the construction as a result of erection or installation method.

7.2.1 Self-weight (G-W) - CP

The structure self-weight shall be calculated from the weight density of the relevant construction material.

The greatest occurring weight density of the concrete including reinforcement shall be used. If the density

turns out to be low, permanent ballast must be put in to the pontoons to account for this.

Weight of structure steel: 77kN/m3

Weight of stay cables: 77.0kN/m3x1.2

Normal weight concrete (reinforced): 26kN/m3

Light weight concrete (reinforced): 23kN/m3 (density class = 2.0)

7.2.2 Permanent equipment (super self-weight) (G-Add) - CP

Railings

Weight of railings: 0.5kN/m per railing.

Asphalt

Design road surface weight shall be included in the permanent equilibrium group. Road surface weight is

defined in 5.2.2.2 in N400 (Vegdirektoratet, 2015):

80 mm thick wearing surface for the driving lanes: 2.0 kN/m2

60 mm thick wearing surface for the pedestrian lane: 1.5 kN/m2

All areas between the outer railings shall be loaded with asphalt.

7.2.3 Permanent water buoyancy (G-B) - CP

The water density variations shall be according to Design basis MetOcean Rev B Ch.6, (Statens vegvesen,

2016)

7.2.4 Permanent ballast (G-S) - IP

If a concrete pontoon is chosen, permanent ballast shall be solid ballast of the form of rock (aggregate),

olivine or iron ore:

Rock (aggregate): 16kN/m3

Olivine: 24kN/m3

Iron Ore: 38kN/m3

If a steel pontoon is chosen, water ballast shall be assumed for the permanent situation:

Page 21: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 20 Date: 07.03.2017

20

Water ballast: Water density shall be chosen according to Design basis MetOcean Rev B Ch.6.

Permanent ballast shall account for the contingency defined in 5.4.3.

7.2.5 Stay cable forces (G-Cable) - IP

Applies to prestressing forces in cables of the main bridge that are included in the equilibrium group G-EQ.

7.2.6 Pretension of side-anchoring system (G-Mor) - IP

Pretension in the mooring system shall be included in the equilibrium group G-EQ. For design of mooring

lines, see 11.

7.2.7 Structural weight contingency (G-Con) - IP

The contingency shall be applied in the permanent loading equilibrium group. Structural weight contingency

shall be applied as permanent ballast as defined in 5.4.3.

7.2.8 Water absorption fraction (G-Abs) - CP

The water absorption fraction of submerged concrete is assumed to be 0.01 of the concrete volume exposed

to water.

7.3 Deformation loads

7.3.1 Creep, shrinkage and relaxation (G-D) - CP

Creep and shrinkage shall be applied in accordance with NS-EN 1992-1-1, 2.3.2.2, 3.1.4 and 5.8.4 (Norsk

Standard, 2004).

Relaxation is applied in accordance with NS-EN 1992-1-1, 3.3.2 and 5.10.6 (Norsk Standard, 2004).

7.3.2 Prestressing of tendons (G-P) - CP

Applies to prestress tendons in concrete structures. Effects of friction and anchor losses at tendon as well as

the time dependent effects as shrinkage, creep and relaxation shall be taken into account when determining

the prestress forces in tendons.

Page 22: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 21 Date: 07.03.2017

21

7.4 Variable loads

7.4.1 General - CP

Variable operational loads are loads linked to the expected use of the structure, and include:

Traffic loads

Variable deformation loads are also regarded as variable actions, such as:

Temperature

Water level variations

Environmental loads are usually regarded as variable actions, such as:

Wind loads

Wave loads

Water current loads

Variable loads also include

Marine fouling

Additional unintended variable loads

Page 23: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 22 Date: 07.03.2017

22

7.4.2 Traffic load (Q-Trf) - IP

The structure shall be designed (capacity check) according to the eurocode traffic load system.

When evaluating the motion limitations defined in 9.2, the internordic traffic model shall be used. The

loadmodel shall be used for both criteria’s, independent on the influence length. The model is described in

NA rundskriv 2015/07, see (Vegdirektorratet, 2015). More information about this in 9.2.

Load model 1

Uniformly distributed load model (UDL) - Vertical traffic LM 1 is described below according to NS-EN 1991-2 (Norsk Standard, 2010) and NA to NS-EN 1991-

2:2010 paragraph NA.4.3.2(3)

Qi = 1,0 for i = 1,2 and 3

q1 = 0,6

q2 = 1,0

q3 = 1,0

qr = 1,0

w = 10 m, i.e. n1=Integer (10/3) = 3.

Page 24: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 23 Date: 07.03.2017

23

Placement Uniformly distributed

load [kN/m2]

Notional lane nr. 1 5,4

Notional lane nr. 2 2,5

Notional lane nr. 3 2,5

Remaining area 2,5

Load on pedestrian lane concurrent with other traffic loading: 2.5kN/m2.

All areas restrained by railings shall be loaded with traffic (driveable areas).

Tandem system (TS) – Vertical traffic loads

The tandem system shall be distributed to a total of three lanes with 2 axels in each lane, with a distance

between axels as described below. For local verification, a minim distance of 1.20m shall be applied between

the two axels in each lane.

Figure 7-1 Division of tandem axels in each lane

Placement Axle loads [kN]

Notional lane nr. 1 2x300

Notional lane nr. 2 2x200

Notional lane nr. 3 2x100

Remaining area 0

Page 25: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 24 Date: 07.03.2017

24

Horizontal traffic loads

The horizontal breaking loads shall be applied accordaning to NS-EN-1991-2 (Norsk Standard, 2010).

Breaking loads

Qlk shall be taken as the minimum value of:

Qlk = 0.6αQ1(2Q1k) + 0.10αq1q1kwL = 6903kN or Qlk = 900kN

Characteristic load

Breaking load Qlk = 900kN

Skew breaking load Qtrk =

1

4Qlk = 225kN

Centrifugal loads

When horizontal curvature R>1500m, centrifugal forces are not applied to the bridge deck (Qtk = 0).

Fatigue limit state for influence lengths over 200 m

In this phase, for components with an influence length over 200m, load model FLM3 in NS-EN 1991-

2:2003+NA:2010 (Norsk Standard, 2010) shall be used for fatigue checks.

For later phases of the project, a more thorough design with FLM5 should be conducted.

7.4.3 General information on environmental loads - CP

Characteristic environmental loads shall be determined from the relevant return periods directly, rather than

to decide Ψ-values through the Eurocode system. Information about the Characteristic response values are

given in Design basis MetOcean Rev B Ch.9 (Statens vegvesen, 2017). The combinations area given in the

same document in Ch.10.

7.4.4 Temperature (Q-Temp) - CP

Temperature variation shall be implemented in the analysis according to Design basis MetOcean Rev B ch.8

(Statens vegvesen, 2017).

7.4.5 Water level variations (Q-Tide) - CP

Water level variation shall be accounted in the analysis as described in Design basis MetOcean Rev B ch.5

(Statens vegvesen, 2017).

The assumption on rise of future sea level shall be according to Design basis MetOcean Rev B ch.5. The

effects can be encompassed by use of permanent ballast according to Ch. 7.2.4 and Feil! Fant ikke

eferansekilden. (Statens vegvesen, 2017).

7.4.6 Waves (hydrodynamic loads) (Q-Wave) - CP

Design for wave loads shall be according to Design basis MetOcean Rev B ch.1 (Statens vegvesen, 2017).

Page 26: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 25 Date: 07.03.2017

25

7.4.7 Current (Q-Cur) - CP

Design for current loads shall be according to Design basis MetOcean Rev B ch.3 (Statens vegvesen, 2017).

7.4.8 Wind (Q-Wind) - CP

Design from wind loads shall be according to Design basis MetOcean Rev B ch.2 (Statens vegvesen, 2017).

7.4.9 Marine fouling (Q-MFoul) - CP

Design from effects from marine fouling shall be according to Design basis MetOcean Rev B ch.7 (Statens

vegvesen, 2017).

7.4.10 Slamming (Q-Slam) - CP

Design from slamming effects shall be according to DNV-RP-C205 ch.8 (DNV., 2014), based on the input

from Design basis MetOcean Rev B ch.1 (Statens vegvesen, 2017).

Horizontal slamming loads must be considered in relation to ship impact loads. If slamming loads are

assumed to be more severe than ship impact, a detailed slamming analysis shall be performed.

7.5 Accidental loads

7.5.1 General - CP

The following is defined for accident loads in N400 (Vegdirektoratet, 2015):

"Prevalence and consequences of accidental loads relates generally to a certain level of risk. In so far

accident loads can be determined by probability calculations, the likelihood of an incident that’s being

disregarded not exceed 10-4 per year, to the extent the accidental load can be determined based on

probability calculations."

The accumulated possibility of occurrence is assumed when evaluating the incident to the return period 10-4.

Accidental loads are loads imposed to the structure due to incorrect operation or extraordinary situations

such as:

- Ship and submarine collisions

- Unintended filling of buoyancy bodies

- Failure of elements in the bridge structure's mooring system

- Earthquake (10.000-year)

- Rupture of cable stays

- Landslides

Page 27: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 26 Date: 07.03.2017

26

7.5.2 Ship impact (A-Coll) – IP - HOLD

The capacity must be evaluated for impact and post-impact considerations, where the load and material

factor is set to 1.0. Accurate numerical prediction of elasto-plastic buckling requires a good representation of

the work hardening curve. FE-simulation of ship impact should be based a validated material model and

fracture criterion, accounting for both plastic instability, ductile fracture and shear fracture. Mesh-sensitivity

effects should also be taken into account.

Impact events for the floating bridge:

- Bow collisions with bridge pontoons (centric)

- Bow collisions with bridge pontoons (eccentric)

- Deckhouse collision with bridge girder

- Bow collisions with bridge girder

- Sideway collisions (against the pontoons longitudinal walls)

To account for added mass of striking ship, 10 % of the ship mass shall be assumed.

Local damage may be acceptable, but in such case the bridge must be evaluated for post-impact

considerations NS-EN 1991-1-7-2006, 3.2, (Norsk Standard, 2008). Post-impact denotes a limit state for a

damaged condition of the bridge, with load and material factors set to 1.0. The limit state must be according

to N400, which states that the environmental return period must be 100 years if not documented otherwise. A

damaged condition may involve the following and more:

- Filling of two compartments of a pontoon.

- Mooring line failure (failure of two lines in cluster).

- Local plastic damage of bridge girder and columns.

More about load combinations is Ch.8.7.

Collision with bridge pontoons

For the bow collision with the bridge pontoons (centric and eccentric), a maximum deviation of the ships

attack angle of 30o, shall be investigated.

Distribution of impact energies

The probability of an impact against the pontoons are not assumed uniform over the bridge length. Based on

Monte Carlo simulation, it is found four different scenarios that accumulated will give the largest energy

distribution that will fulfil a return period of 5E-5. The return period 5E-5 was chosen in lack of an

indentation curve for the ships superstructure.

Page 28: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 27 Date: 07.03.2017

27

Side anchored bridge

Bridge axis

Alternative

1

Alternative

2

Alternative

3 Alternative 4

Axis 3 340 420 360 300

Axis 4 120 160 110 110

Axis 5 90 70 90 110

Axis 6 90 70 90 110

Axis 7 90 70 90 110

Axis 8 90 70 90 110

Axis 9 90 70 90 110

Axis 10 90 70 90 110

Axis 11 90 70 90 110

Axis 12 90 70 90 110

Axis 13 90 70 90 110

Axis 14 90 70 90 110

Axis 15 30 30 90 110

Axis 16 30 30 90 110

Axis 17 30 30 90 110

Axis 18 30 30 90 110

Axis 19 30 30 90 110

Axis 20 30 30 90 110

Axis 21 30 30 90 110

Tabell 7-1 Distribution of impact energies (MJ)

For the side anchored bridge, the distribution of energies highlighted in alternative 2 shall be used in design.

End anchored bridge

Bridge axis Alternative 1 Alternative 2 Alternative 3 Alternative 4

Axis 3 335 350 305 250

Axis 4 110 160 110 110

Axis 5 90 70 90 110

Axis 6 90 70 90 110

Axis 7 90 70 90 110

Axis 8 90 70 90 110

Axis 9 90 70 90 110

Axis 10 90 70 90 110

Axis 11 90 70 90 110

Axis 12 90 70 90 110

Axis 13 90 70 90 110

Axis 14 90 70 90 110

Axis 15 30 30 90 110

Axis 16 30 30 90 110

Axis 17 30 30 90 110

Axis 18 30 30 90 110

Axis 19 30 30 90 110

Axis 20 30 30 90 110

Axis 21 30 30 90 110

Axis 22 30 30 90 110

Tabell 7-2 Distribution of impact energies (MJ)

Page 29: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 28 Date: 07.03.2017

28

For the side anchored bridge, the distribution of energies highlighted in alternative 2 shall be used in design.

For sensitivity analysis and evaluations of redundancy, the bridge shall be analysed for an impact on the

pontoon in Axis 3 with an impact energy of 500 MJ for the end anchored bridge and 550 MJ for the side

anchored.

If the number of pontoons are changed during design (or other parameters that will affect the possibility of a

collision), the distribution of impact energies shall be clarified with the client.

Other distributions of collision energies may be given from client during concept development.

Load indentation curve for a ship bow colliding with an infinite stiff wall

The indentation curve is based on a container ship of 22000 tons displacement; see (NTNU, 2015). The

container ship has an overall length of 166.62 m, a breadth of 27.4 m, a depth of 13.2 m and a scantling

draught of 9.6 m. Only the first 20 meters of the ship bow structures is modelled and crushed against a rigid

wall. The force-indentation curve showed below.

Tabell 7-3 Ship bow colliding with a pontoon

The force shall be multiplied with a factor of 2, to take account for the uncertainty of that the ship may have

a locally ice-reinforcement bow.

For local design of the pontoon concrete wall the following pressure-area relation is proposed through a

study at NTNU, see (NTNU, 2015).

Page 30: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 29 Date: 07.03.2017

29

The force as function of the increasing area is given by the following expression, where A is the area in m2

and P is the pressure in MPa:

𝑃 = 18A-0.5

Deckhouse collision with bridge girder

The load indentation curve showed below was used during the design of the Storebælt bridge in Denmark. A

new indentation curve may be given from client during the concept development.

If a static analysis is applied, a factor of 2 shall be used to account for the dynamic amplification.

Submarine impact

In lieu of better founded input the consequence of an impact from the New Norwegian submarine class with

a displacement of 3000 t shall be assessed with the following two energy levels: impact velocity of 5 knots

and 10 knots.

7.5.3 Accidental filling of buoyancy elements (A-Flood) - IP

Unintended filling of a pontoon includes filling of one or two neighbouring chambers.

Most unfavourable chambers shall be assumed, flooding does not need to be related to ship impact, and

filling of the outer pontoon cells.

7.5.4 Failure of mooring lines (A-MorFail) - IP

Failure of mooring lines shall be according to the redundancy requirements given in Design Basis Mooring

system Bjørnafjorden, Ch.3. (DNV GL, 2016)

The load combinations is given in Ch. 8.7.

7.5.5 Rupture of cable stays - IP

The bridge shall be able to lose one stay cable. The bridge shall also be evaluated for post-impact

considerations in this damaged condition with a 100-year environmental loading applied to the structure.

The load combination is given in Ch. 8.7.

Page 31: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 30 Date: 07.03.2017

30

7.5.6 Underwater landslides - CP

Underwater landslides is defined in Ch. 12.

7.5.7 Earthquake - CP

Response from earthquake shall be calculated according to specification given in chapter 12.

Page 32: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 31 Date: 07.03.2017

31

8 Design loads

8.1 Limit states – CP

The structure shall be checked in the following limit states according to the Eurocode system:

- Ultimate limit state (ULS)

- Serviceability limit state (SLS)

- Accident limit state (ALS)

- Fatigue limit state (FLS)

8.2 Load combinations – CP

Design load effects in the different limit states shall be determined by combining the effect of characteristic

loads with load coefficients given in the following paragraphs.

8.3 Determination of load actions

8.3.1 General - CP

Load actions shall be determined by using recognized methods that take into account the variation of loads in

time and space, the response of the structure, the relevant environmental and soil conditions, as well as the

limit state that is being controlled. Simplified methods can be used if it is sufficiently documented that they

provide safe results.

8.3.2 Non-linear effects - CP

Non-linear (time domain) analysis shall be used if linearized (frequency domain) models are not expedient.

This can be relevant with concurrency of dynamic wind and wave loads, regarding correlation between the

two load effects.

Results shall be verified by linearized models, which gives intuitive understanding of the loading situation.

Geometric deviations shall be included in the calculations with their most unfavourable tolerance limits in

situations where it can have especially unfavourable effects on the structure's safety. Geometric deviations

should be clarified with client in each relevant case.

Deviations shall be evaluated through a non-linear analysis with large deformations.

Pretension forces in cable stays and side anchoring system shall be included in analysis, and shall be

accounted for in a proper manner.

8.3.3 Environmental load actions – CP - HOLD

N400 13.12.3 Environmental loads

“Environmental loads caused by waves, stormtides, tidal effects and wind shall be characterised as one

characteristic load group, with equal load factor in combination with other loads.”

“A 100-year load action shall be specified with a 100 year event for one of the loads, with relevant return

periods for the other environmental load, so that the correlation is included”

Page 33: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 32 Date: 07.03.2017

32

Combination matrix for environmental loading

Combination matrix for environmental loading can be found in Design basis MetOcean Rev B Ch.10.

Simultaneous calculation of characteristic environmental loads

The loads in the combination matrix should be calculated simultaneous if appropriate method provides

sufficient safety in the description of the load components and the response they generate.

Separate calculation of characteristic environmental loads - Combination factors

If simultaneous procedure are not available, the response can be calculated individually and combined with

combination factors.

The combination factors should be verified from a time domain analysis.

Hydrodynamic response shall be calculated using methods that give a good description of the actual water

kinematics, the hydrodynamic coefficients and the interaction between fluid and structure.

Calculation procedure shall include possible non-linearity in the load definition, including any non-linear

behaviour of moorings (if relevant).

If load effects from wind, waves and current are calculated separately, the combined effects (including load

factors) are given by the algebraic composition:

Q-Env = Q-Wind + Q-Wave + Q-Curr

The wind part consists of a static and a dynamic term:

Q-Wind = Q-Wind_stat + Q-Wind_dyn

For the present location current is of marginal importance and is thus handled as a static loading term.

Summing this one have:

Q-Env = Q-Env_stat + Q-Env_dyn

where:

Q-Env_stat = Q-Wind_stat + Q-Curr

Q-Env_dyn = Q-Wind_dyn + Q-Wave

The pure static part shall be present with full value always.

Simplified combination for sectional forces

In handbook V499, 2011 chapter 4.3.1.2.4 (Vegdirektoratet, 2014) a method of combining extreme values

from dynamic loading (correlation) is described. The method applies a combination factor 𝛼𝑗𝑖 to be used on

the coinciding maximum sectional forces, where 𝑗 = 1, … 6 represents the dominant force component, and

𝑖 = 1, … 5 represents the corresponding force component.

The dominant force component𝑗, is fully applied, and combination factor 𝛼𝑗𝑖 is determined for all the

corresponding force components.

If force component 𝑖 is uncorrelated to force component𝑗, 𝛼𝑗𝑖 = 0.5.

If force component 𝑖 is correlated to force component𝑗, 𝛼𝑗𝑖 is determined by linear interpolation between 0.5

and 1.0. This is done by using the correlation coefficient 𝜌𝑗𝑖 for each force component.

𝛼𝑗𝑖 = 0.5(1 + |𝜌𝑗𝑖|)

Page 34: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 33 Date: 07.03.2017

33

The correlation factor 𝜌𝑗𝑖 shall be determined directly through a stochastic time domain load effect analysis.

Based on this the following correlation matrix shall be used:

Combination matrix

Nx Qy Qz Mx My Mz

Dom Nx 1.00 α12 α13 α14 α15 α16

Dom Qy α21 1.0 α23 α24 α25 α26

Dom Qz α31 α32 1.0 α34 α35 α36

Dom Mx α41 α42 α43 1.0 α45 α46

Dom My α51 α52 α53 α54 1.0 α56

Dom Mz α61 α62 α63 α64 α65 1.00

8.3.4 Structural damping - CP

The following values shall be used for structural damping in fraction of critical damping, based on the

logarithmic decrements given in NS-EN 1991-1-4 Table F.2 (Norsk Standard, 2009):

- steel: ζ = 0.005

- concrete, uncracked: ζ = 0.008

- concrete, cracked: ζ = 0.016

- stay cables (parallel strands): ζ = 0.001

- stay cables (locked coil): ζ = 0.003

Where: 𝜁 =1

√1+(2𝜋

𝛿)2

8.4 Limit states

8.4.1 General - CP

The following has been taken into account when establishing the load coefficients:

- The possibility for loads to deviate from the characteristic values.

- The reduced probability for different loads contributing to the total evaluated load effect to achieve

their characteristic values simultaneously.

- Deviations in the load effect calculation, to the extent that such deviations can be assumed to be

independent of the construction material and design tolerance.

8.4.2 Characteristic response values - CP

Characteristic response values are given in MetOcean Design Basis Rev B Ch. 9

8.5 Serviceability limit state

8.5.1 SLS - Characteristic - CP

Load combinations in the characteristic limit state shall be used to determine bearing displacements, etc.

Page 35: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 34 Date: 07.03.2017

34

The characteristic serviceability limit state shall be combined for load combination in accordance to Table

NA.A2.6 in NS-EN 1990:2002+A1:2005+NA:2016 (Norsk Standard, 2016).

An equilibrium group for characteristic permanent loads G-EQk containing self-weights, buoyancy, fixed

ballast and pretension of side-anchoring system shall be established.

Wind, wave and current loads are treated as a characteristic load group (Environmental loads Q-Ek) in

combination with other loads. For combination matrix of environmental loads, see Design basis MetOcean

Rev B Ch.10.

Characteristic load for environmental loads on bridge without traffic loads shall be determined for a return

period of 100-years.

Characteristic value for environmental loads on the bridge with traffic shall be calculated as the largest load

of:

1-year.

50% of loading with a 100-year return period.

An environmental load with a return period, which corresponds to wind gusts of 35 m/s at bridge

deck elevation.

The table below shows the principles for combining loads at the characteristic serviceability limit. Not all

possible combinations are shown and other possible combinations must be evaluated by the designer for the

individual projects according to EC.

Ψ0 is combination factor in accordance to table NA.A2.1 in NS-EN 1990:2002+A1:2005+NA:2016 (Norsk

Standard, 2016).

Load combinations in the characteristic limit state

Dominant loads G-

EQK Q-TrfK Q-TempK Q-Eenv(1y) Q-Eenv(100y) QK

w/traffic No traffic

Ψ0 Ψ0 Ψ0 Ψ0 Ψ0 Ψ0

Permanent loads

Permanent loads G-EQK 1.0 1.0 1.0 1.0 1.0 1.0

Variable loads

Traffic loads Q-TrfK 0.7 1.0 0.7 0.7 - 0.7

Temperature loads Q-TempK 0.7 0.7 1.0 0.7 0.7 0.7

Environmental loads with traffic Q-EK(1year) 0.7 0.7 0.7 1.0 - 0.7

Environmental loads without traffic Q-EK(100year) - - - - 1.0 -

Other loads QK 0.7 0.7 0.7 0.7 0.7 1.0

Tabell 8-1 Load combinations in the characteristic limit state serviceability limit state

8.5.2 SLS – In-frequent – CP

Load combinations in in-frequent serviceability limit state with 1-year return periods shall be used to check

deflections, displacements and accelerations.

The in-frequent combination in serviceability limit state shall be in accordance to NS-EN

1990:2002/A1:2005/NA:2010 Table NA.A2.6.

Page 36: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 35 Date: 07.03.2017

35

An equilibrium group for characteristic permanent loads G-EQk containing self-weights, buoyancy, fixed

ballast, stay cable pretension and mooring pretension is established.

Wind, wave and current loads are treated as a characteristic load group (Environmental loads Q-Ek) in

combination with other loads. For combination matrix of environmental loads, see Design basis MetOcean

Rev B Ch.10.

The quasi-permanent or frequently occurring load combinations are the basis for controlling cracking and

compression zone height in accordance to Eurocode NS-EN 1992-1-1 table NA.7.1N. However, these load

combinations do not include the contributions from traffic, environmental loads and temperature

simultaneously. For negligible environmental loads, the rarely occurring and frequent occurring

combinations give approximately the same load effect. For high environmental loads the two combinations

give very different results. It is therefore reasonable to use the in-frequent occurring combination for control

of the compression zone height and cracking where environmental loads and traffic loads can occur

simultaneously.

The load factor for dominant temperature load is 1.0 when checking compression zone height.

The table below shows the principles for combining loads at the in-frequent occurring serviceability limit.

Not all possible combinations are necessarily shown and other possible combinations must be evaluated by

the designer for the individual projects according to EC.

Characteristic load for environmental loads for the in-frequent combination is calculated with a 1 year return

period, i.e. Ψ1, infq x Ek(50 year) is replaced with 1.0 x Eenv (1 year).

Ψ1 / Ψ1,infq are combination factors in accordance to table NA.A2.1 in NS-EN1990:2002+A1:2005+NA:2016.

Load combinations in the in-frequent occurring serviceability limit state.

Dominant loads Q-TrfK Q-TempK Q-Eenv(1year) QK

Ψ1 / Ψ1,infq Ψ1 / Ψ1,infq Ψ1 / Ψ1,infq Ψ1 / Ψ1,infq

Permanent loads

Permanent loads G-EQK 1.0 1.0 1.0 1.0

Variable loads

Traffic loads Q-TrfK 0.8 0.7 0.7 0.7

Temperature loads Q-TempK 0.6 0.8 0.6 0.6

Environmental loads Q-EK(1year) 0.75**) 0.75**) 1.0*) 0.75**)

Other loads QK 0.6 0.6 0.6 0.8

*) 1.0 replaces 0.8 x 50 years in Table NA.A2.1 NS-EN 1990:2002+A1:2005+NA:2016 which is assumed equal to 1-

year.

**) 0.75 = 0.6/0.8. Scaled from 50 years to 1-year.

Table 8-2 Load combinations in the in-frequent occurring serviceability limit state

8.6 Ultimate limit state - IP The ultimate limit state shall be established for load combinations according to equation 6.10a and 6.10b in

Table NA.A2.4 (B) NS-EN 1990:2002+A1:2005+NA:2016

An equilibrium group for characteristic permanent loads G-EQk containing self-weights, buoyancy, fixed

ballast, stay cable pretension and mooring pretension is established.

Wind, wave and current loads are treated as a characteristic load group (Environmental loads Q-Ek) in

combination with other loads. For combination matrix of environmental loads, see Design basis MetOcean

Rev B Ch.10.

Characteristic load for environmental loads on bridge without traffic loading is chosen to a return period of

100 years.

Page 37: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 36 Date: 07.03.2017

36

For bridge without traffic loads the environmental loads are only evaluated as dominant loads (can also

evaluate permanent loads, temperature and other loads as dominant).

Characteristic value for environmental loads on the bridge with traffic shall be calculated as the largest load

of:

1-year.

50% of loading with a 100-year return period.

An environmental load with a return period, which corresponds to wind, gusts of 35 m/s at bridge

deck elevation.

The table below shows the principles for combining loads for the characteristic values in the ultimate limit

state. Not all possible combinations are necessarily shown and other possible combinations must be

evaluated by the designer for the individual projects according to EC.

γ is load factor in accordance to table NA.A2.4(B) in NS-EN 1990:2002+A1:2005+NA:2016.

Ψ0 is combination factor in accordance to table NA.A2.1 in NS-EN 1990:2002+A1:2005+NA:2016.

Load combination in ULS (comb B)

Dominant loads G- EQK Q-

TrfK

Q-

TempK

Q-

Eenv(1y)

Q-

Eenv(100y) QK

m/traffic u/traffic

γ x Ψ0 γ x Ψ0 γ x Ψ0 γ x Ψ0 γ x Ψ0 γ x Ψ0

Permanent load

Permanent load 1) G- EQK 1.35/1.

0 1.2/1.0 1.2/1.0 1.2/1.0 1.2/1.0

1.2/1.

0

Variable loads

Traffic loads Q-TrfK 0.95 1.35 0.95 0.95 - 0.95

Temperature loads Q-

TempK 0.84 0.84 1.2 0.84 0.84 0.84

Environmental loads with traffic Q-EK(1y) 1.12 1.12 1.12 1.6 - 1.12

Environmental loads without

traffic Q-EK(100y) - - - - 1.6 -

Other loads QK 1.05 1.05 1.05 1.05 1.05 1.5

Table 8-3 Load combinations in the ultimate limit state (comb B)

Water level variations shall be divided into two categories with the following load coefficients:

1. Storm surge: 1.6

2. Tide:1.1

Page 38: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 37 Date: 07.03.2017

37

8.7 Accidental limit state - CP The accident limit state shall be checked in two stages, a and b, with load factors as given in the table below.

a: The structure in a permanent situation is subjected to an accident load. The purpose is to control the

magnitude of local damage for such an action.

b: The structure in damaged condition. A damaged condition can be local damage as stated in a, or any other

more explicitly defined local damage.

Design values for loads in the accident state are in accordance to Table NA.A2.5 i NS-EN

1990:2002+A1:2005+NA:2016.

An equilibrium group for characteristic permanent loads G-EQk containing self-weights, buoyancy, fixed

ballast, stay cable pretension and mooring pretension is established.

Wind, wave and current loads are treated as a characteristic load group (Environmental loads Q-Ek) in

combination with other loads. For internal combination of environmental loads, see Design basis MetOcean

Rev B Ch.10.

Characteristic load for abnormal environmental loads shall be calculated with a 10.000 year return period.

Characteristic environmental loads for a damaged structure is calculated with a 100-year return period.

Up to two mooring cables shall be assumed lost during 100-year storm condition, possible transient effects

shall be evaluated.

Ψ2 is a combination factor in accordance to Table NA.A2.1 in NS-EN 1990:2002+A1:2005+NA:2016.

Load combinations with accident

loads

Stage a Stage b (damaged condition)

Earthquake Abnormal

environmenta

l loads

Ship

impact

Pontoon

filled

with

water

Lost

anchorage

Lost

cable

stay

Ψ2 Ψ2 Ψ2 Ψ2 Ψ2 Ψ2

Permanent loads

Permanent loads G- EQK 1.0 1.0 1.0 1.0 1.0 1.0

Variable loads

Traffic loads Q_TrfK 0.2 0 0.2 0.2 0.2 0.2

Temperature loads Q-TempK 0 0 0 0 0 0

Other loads QK 0 0 0 0 0 0

Environmental loads in

event of damage

Q-EK(100

year)

0 0 0 1.0 1.0 1.0

Accident loads

Earthquake A-EarthQ 1.0 0 0 0 0 0

Abnormal environmental

loads Q-EK(*)

0

1.0 0 0 0 0

Ship impact A-Coll 0 0 1.0 0 0 0

Pontoon filled with water A-Flood 0 0 0 1.0 0 0

Lost mooring cables A-Morfail 0 0 0 0 1.0 0

Lost cable stay A-SCab 0 0 0 0 0 1.0

Table 8-4 Load combinations in the accident limit state

Page 39: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 38 Date: 07.03.2017

38

8.8 Fatigue limit state - CP Fatigue design check shall be based on relevant procedure specified in DNVGL-RP-C203 Fatigue design of

offshore steel structures, see (DNV GL, 2016).

To prove fatigue limit state capacity through the design service life, traffic loads based on an AADT of

20.000 shall be used in analysis.

9 Design criteria

9.1 Freeboard - IP Freeboard on buoyant construction elements from permanent loading

The freeboard from permanent load effects shall be calculated with reference to unfavourable density of

materials, including water absorption, permanent ballast and marine growth.

For the side anchored bridge alternative, the vertical force of mooring system, including pretension shall be

included in the calculation.

Permanent ballast: The structural weight contingency shall be included for all structural elements when calculating the

freeboard. Contingency shall be included as permanent ballast for the temporary situation. The amount of

permanent ballast filled in each pontoon shall be calibrated based on the calculated contingency if the

margins are exceeded. The structural contingency, see 5.4.3 includes the unintended weight increase of the

pontoons and the superstructure.

Future climate change induced rise of sea level will affect the pontoon freeboard, depending on the girder

stiffness. Designer will need to decide whether this effect should be accounted for by filling extra ballast in

the pontoons as required in the future or whether it will be designed for restraining forces at the tower and

the abutment.

The design must take into account the fact that none of the permanent solid ballast may be filled into the

pontoon if margins are exceeded. The resulting change in metacentric height for the pontoon and bridge

system shall be accounted for by running relevant static and dynamic analysis proving the structure feasible

in the relevant limit states.

Freeboard on construction elements not affected of tidal change:

For construction parts that do not follow the rise of the tide, the freeboard shall be positive and measured

from the highest water level for a tide with a 100-year return period.

Freeboard from traffic loads and 1-year wave height

The freeboard from permanent loading shall as a minimum be large enough that the undisturbed wave height

(1-year), the effects from traffic loads (LMV x 0.7) and the dynamic motion of the pontoon does not exceed

the pontoon deck (freeboard).

Freeboard from 100-year wave height The freeboard from permanent loading shall at a minimum be large enough that the undisturbed wave height

(100-year) and the dynamic motion of the pontoon does not exceed the pontoon deck.

Green sea (including diffraction effects) on the pontoon top plate is allowed during the ALS condition.

Page 40: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 39 Date: 07.03.2017

39

9.2 Motion limitations - IP

Floating bridges shall be designed in such way that they are comfortable to drive on in a normal storm (1-

year). Deflection and motion criteria’s shall be used to ensure this.

Motion limitation Load scenario Maximum motion

Vertical deformation from

traffic loads

0.7xtraffic uy ≤ 1.5m

Rotation about bridge axis

from eccentric traffic loading

0.7xtrafic θx ≤ 1.0 deg

Rotation about bridge axis

from environmental loading

1-year storm θx ≤ 1.5 deg(rms)

Rotation about bridge axis

from static wind load

1-year static wind θx ≤ 0.5 deg

Vertical acceleration 1-year storm ��𝑦.𝑡𝑜𝑡 ≤ 0.5m/s2 (rms)

Horizontal acceleration 1-year storm uze ≤ 0.5m/s2, ��zs ≤ 0.3m/s2(rms) The acceleration criteria are based on recommendations from ISO 2631/1 and 2631/3- 1985.

*The horizontal accelerations has been reduced by 0.1 m/s2 to take account of possible reduced tire friction at vehicle

speed 110 km/hour.

Table 9-1 Motion limitation

Vertical acceleration (rms):

The human feeling of vertical acceleration (��𝑦.𝑡𝑜𝑡 ) consist of two contributions:

1. uy – Heave motion: Un-dependent on eccentricity on the girder.

2. uθx – Roll motion: Depending on the distance from girder centroid.

The rotational acceleration (uθx) shall be decomposed to a vertical component placed in the centre of the

roadway furthest away from the centroid when evaluating the vertical acceleration criteria.

Example: For the side anchored bridge there is about 8.5m to the centre of the outer driving lane (H8) from

centroid. A rotational acceleration of uθx = 0.05rad/s2 gives a vertical acceleration in the outer driving lane

of tan(0.05rad/s2)x8.5m=0.42m/s2.

The two contribution shall not be evaluated together unless they coincide.

Bridge girder (LMV load model)

When evaluating freeboard limitations and motion limitations the uniform distributed load model referred to

in NA rundskriv 07/2015 shall be used. The loadmodel shall be used in the evaluation of both traffic

criteria’s described in table Tabell 7-1 , independent on the influence length.

The load model (from now on referred to as LMV) have the following distribution of load trains:

9kN/m for traffic lanes

2kN/m for pedestrian lanes

The number of load lanes shall correspond with the number of carriageways and pedestrian lanes. With

respect to eccentricity, the most unfavourable placement transversally shall be assumed according to

(Vegdirektoratet, 2017).

For further information on LMV model, see (Vegdirektoratet, 2009).

Page 41: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 40 Date: 07.03.2017

40

ULS capacity design check shall be according to EC 1991-2 (Norsk Standard, 2010) , see chapter 7.4.2.

9.3 Boundary conditions and special design considerations for floating bridges - IP

The N400 have some special design considerations for floating bridges. These are showed below:

The N400 states that floating bridges whit velocities larger than v ≥ 70km/h does not allow for kink between

the girder and the abutment, which means that the girder shall be clamped for rotation about both vertical and

horizontal axis.

End anchored bridge

In this project, it will be allowed to realise the fixation about the vertical axis for the end-anchored floating

bridge at the abutment in the back span of the cable stayed high bridge.

The rotation shall be limited to θy≤1.0 deg(expected max) in the SLS condition Characteristic limit state.

Side anchored bridge

In this project, it will be allowed to realise the fixation about the vertical axis for the side-anchored floating

bridge at the caisson in the north, and the abutment in the back span of the cable stayed high bridge.

The rotation shall be limited to θy=1.0 deg (expected max) in the SLS condition Characteristic limit state.

Page 42: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 41 Date: 07.03.2017

41

9.4 Concrete structures

9.4.1 General - CP

Concrete structures shall be designed in accordance to NS-EN 1992-1 (Norsk Standard, 2008) and NS-EN

1992-2 (Norsk Standard, 2010) .

9.4.2 Water tightness - IP

The pontoons shall be design to be watertight in accordance to N400 13.12.4.4. This is ensured by using

criteria’s given in NS3473 table A.9 (Norsk Standard, 2003).

Design criteria Normal requirements

for water tightness

Extended requirements for

water tightness

Requirements for minimum cross section

thickness

- 200mm

Requirements for minimum compression zone

height

If hc≤50mm:

wk≤0.20mm

Min 0.25h;100mm

Maximum membrane stress σ = N/A ftn 0

Where prestressing tendons are used, decompression criteria in table NA.7.1N should be applied.

The in-frequent SLS combination shall be used in control of design.

All structural parts subject to one-sided water pressure shall be checked for pressure forces from both

sides to ensure a tight structure.

External walls and bottom plate

The bottom plate and the exterior walls shall satisfy the extended requirements for water tightness.

Membrane force from pretension shall maintain compression at the inflection points. The minimum

compression zone height shall be no less than 100mm.

Internal walls and top plate

The internal walls and top plate should satisfy the normal requirements for water tightness.

If it is not possible to prove a compression zone height larger than 50mm, the crack widths shall be limited to

0.2mm.

9.4.3 Concrete joints - CP

Joints subject to permanent water pressure or wave slamming shall have double seals.

9.4.4 Casting joints – CP

Casting joints that demands water tightness will be designed with additional reinforcement. A factor of 1.25

will be used on the adjoining part with the lowest calculated need for reinforcement. For joints in walls,

surrounded by sea, there will also be epoxy sealing with injection hose or additional suitable system.

Page 43: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 42 Date: 07.03.2017

42

9.4.5 Crack widths - CP

The crack widths shall not exceed the values given in N400 for load action calculated in SLS – Infrequent

occurring combination. Water pressure in cracks shall be accounted for where relevant.

9.4.6 Transverse shear - CP

Water pressure in cracks will be accounted for regarding shear capacity of slabs/pannels subjected to water

pressure.

Walls subject to water pressure shall be considered for minimum shear reinforcement according to EC

(minimum shear reinforcement in walls are unlikely, since ship collision may most likely require additional

shear capacity in the walls.)

Shear reinforcement strain is limited to 0.9xyield strain.

9.4.7 Water runoff on pontoon top plate - CP

The pontoon top plate shall have an angle of 3% to the horizontal plane to ensure an appropriate water

runoff.

9.5 Steel structures

9.5.1 General - CP

Steel structures shall be designed in accordance to NS-EN-1993.

9.5.2 Structural components specially subjected to fatigue - CP

Structural components specially subjected to fatigue loads shall be available for inspection.

10 Bearings and expansion joints

10.1 Bearings

10.1.1 General - CP

The bearings shall have a service life of 100 years for the type of loads, motions and environments for which

the bearing structure will be subjected to. Replaceable parts of the bearing structure may be designed with an

expected service life less than 100 years.

Piers and superstructures shall be prepared for jacking equipment for easy replacement of sliding parts or

entire bearings with no false work required. Ways to supply and dispose parts shall be ensured.

Implementation analysis of such operations should be developed during design, to ensure a cost efficient

replacement and as low as possible interruption in the normal use of the bridge. The structure should be

designed for installation of temporary jacks and other relevant equipment to implement such operations.

Page 44: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 43 Date: 07.03.2017

43

10.1.2 Design - CP

Maximum forces and displacements are determined in the ultimate and serviceability limit states. Calculated

values shall not exceed the capacity guaranteed by the supplier.

The following effects shall be accounted for when checking bearing movements:

Temperature

Traffic loads

Creep, shrinkage, pre-stressing and other potential loads

Ambient temperature at installation of bearing

Deformations (including elastic deformations) and movements due to construction method,

foundation settlements and other variables.

Environmental loads.

Maximum deflections shall be calculated in the characteristic serviceability limit state.

Design bearing displacements shall not exceed the upper deformations values given by the supplier.

It shall be ensured that the joint/bearing structure's displacement and rotational capacity is adequate for the

applied calculation model for checking of ultimate limit state.

10.2 Expansion joints

10.2.1 General - CP

The expansion joint shall allow snow ploughing, and shall be dampened to avoid unnecessary noise.

Expansion joints shall not be placed at the bottom of sag-curves.

Water runoff systems shall be included beneath the expansion joint, to make sure that water does not run

down on underlying structures.

Expansion joints shall be easily accessible. The expansion joint's wearing parts shall be possible to

disassemble for one driving lane at a time. Fasteners shall be resistant in contact with seawater and easy to

detach when being replaced.

10.2.2 Design - CP

Expansion joint displacement and rotation shall not exceed the upper deformations values given by the

supplier.

In the SLS (characteristic), the distance between joint edges or slats that can be in contact with the wheels

will not exceed 80 mm (N400 12.5.4).

11 Mooring system - IP

Mooring design shall be designed according to Design Basis Mooring Rev A Bjørnafjorden Rev.1. (DNV

GL, 2016)

12 Marin geology and Geotechnics - CP Marin geology and geotechnics shall be according to Design Basis for Geotechnical Design Rev B, (Statens

vegvesen, 2017).

Page 45: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 44 Date: 07.03.2017

44

13 Bibliography DNV. (2011). DNV-OS-C101 Design of offshore steel structures, general (LRFD method). DNV GL. (2016). Design Basis Mooring System Rev A.

DNV GL. (2016). DNVG-RP-C203 - Fatigue Design of Offshore Steel Structures.

DNV. (2014). DNV-RP-C205-Environmental conditions and environmental loads.

European Standard. (2000). EN 10138-4 Prestressing steels - Part 4: Bar.

Kystverket. (2014). Farledsnormalen.

Norsk Standard. (2003). NS 3473 - Prosjektering av betongskonstruksjoner - Beregnings- og

konstruksjonsregler.

Norsk Standard. (2004). NS-EN 1992-1-1:2004+NA:2008 Prosjektering av betongkonstruksjoner Del 1-1:

Allmenne regler og regler for bygninger.

Norsk Standard. (2005). NS-EN 10080:2005 Armeringsstål - Armeringsstål - Sveisbar armering - Del 1:

Generelle krav.

Norsk Standard. (2005). NS-EN 1993-1-9 Prosjektering av stålkonstruksjoner - Utmattingspåkjente

konstruksjoner.

Norsk Standard. (2008). NS-EN 1991-1-7:2006+NA:2008 Laster på konstruksjoner - Ulykkeslaster.

Norsk Standard. (2008). NS-EN 1992-1-1:2004+NA:2008 Prosjektering av betongkonstruksjoner - Del 1-1:

Allmenne regler og regler for bygninger.

Norsk Standard. (2009). NS-EN 1991-1-4:2005+NA:2009 Laster på konstruksjoner - Del 1-4: Allmenne

laster - Vindlaster.

Norsk Standard. (2009). NS-EN 1993-1-11:2006+NA:2009 Prosjektering av stålkonstruksjoner - Del 1-11:

Kabler og strekkstag.

Norsk Standard. (2009). NS-EN 1993-2:2006+NA:2009 Prosjektering av stålkonstruksjoner Del 2: Bruer.

Norsk Standard. (2010). NS-EN 1991-2:2003+NA:2010 - Laster på konstruksjoner - Trafikklast på bruer.

Norsk Standard. (2010). NS-EN 1991-2:2003+NA:2010 Laster på konstruksjoner - Del 2: Trafikklast på

bruer.

Norsk Standard. (2010). NS-EN 1992-2:2005+NA:2010 Prosjektering av betongkonstruksjoner - Del 2:

Bruer.

Norsk Standard. (2012). NS3576-3 Armeringsstål - Mål og egenskaper.

Norsk Standard. (2014). NS-EN 1998-2:2005+A1:2009+A2:2011+NA:2014 Prosjektering av konstruksjoner

for seismisk påvirkning - Del:2 Bruer.

Norsk Standard. (2015). NS-EN 1993-1-1:2005+A1:2014+NA:2015 Prosjektering av stålkonstruksjoner -

Del:1 Almenne regler for bygninger.

Norsk Standard. (2016). NS-EN 1990:2002+A1:2005+NA:2016 - Grunnlag for prosjektering av

konstruksjoner.

NTNU. (2015). Ship collision force for the pontoon of the Bjørnefjorden floating bridge.

SINTEF. (2013). Bridge across Bjørnafjorden Metocean conditions.

Statens vegvesen. (2016). Design basis MetOcean.

Statens vegvesen. (2017). Design Basis for Geotechnical Design Rev B.

Statens vegvesen. (2017). Design basis MetOcean Rev B.

Vegdirektoratet . (1997). Håndbok 145 - Brudekker - Fuktisolering og slitelag.

Vegdirektoratet. (2000). Håndbok 145 - Brudekker - Fuktisolering og slitelag .

Vegdirektoratet. (2009). Bruprosjektering - Håndbok 185.

Vegdirektoratet. (2013). Håndbok N100 Veg og gateutforming .

Vegdirektoratet. (2014). N101 - Rekkverk og vegens sideområder.

Vegdirektoratet. (2014). V499 Bruprosjektering - Eurokodeutgave.

Vegdirektoratet. (2015). N400 Bruprosjektering - Prosjektering av bruer, fergekaier og andre bærende

konstruksjon.

Vegdirektoratet. (2015). Prosesskode 2 Standard beskrivelsestekster for bruer og kaier.

Page 46: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 45 Date: 07.03.2017

45

Vegdirektoratet. (2015). R762 Prosesskode 2 - Standard beskrivelsestekster for bruer og kaier, hovedprosess

8.

Vegdirektoratet. (2017). Bruprosjektering - om tolkning av lastforskrifter m.v.

Vegdirektorratet. (2015). NA rundskriv 2015/07 - Trafikklast i håndbok N400.

Page 47: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 46 Date: 07.03.2017

46

Appendix A-1 MetOcean Rev B

Page 48: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 47 Date: 07.03.2017

47

Appendix A-2 Mooring system Rev A

Page 49: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Design Basis Bjørnafjorden Page 48 Date: 07.03.2017

48

Appendix A-3 Geotechnics Rev B

Page 50: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

|

B 22.02.17 Updated for use ES/HKF BJ MEE MEE

A 23.01.17 Issued for use ES/HKF BJ MEE MEE

Ii 31.12.16 For issue ES/HKF BJ MEE MEE

i 25.11.16 For review and comments ES/HKF BJ MEE MEE

Rev. Utgivelses dato

Beskrivelse Laget av Sjekk av

Prosj. godkj.

Klient godkj.

Kunde

Entreprenør

Kontrakt nr.:

Dokument navn:

Design basis MetOcean

Dokument nr.:

SBJ-01-C3-SVV-01-BA-001

Rev.:

B

Sider:

18

Ferry free E39 – Fjord crossings Bjørnafjorden 304624

Page 51: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Innhold

General

Nomenclature

Table of revisions

1 Wave data ........................................................................................................................................ 3 1.1 Wind waves ............................................................................................................................. 3 1.2 Swell ........................................................................................................................................ 4 1.3 Scatter diagram ........................................................................................................................ 5

1.3.1 Wind sea scatter diagram ................................................................................................. 5 1.3.2 Swell scatter diagram ...................................................................................................... 6

1.4 Wave spectra ........................................................................................................................... 7 1.4.1 Wind sea .......................................................................................................................... 7 1.4.2 Swell ................................................................................................................................ 7 1.4.3 Directional spreading....................................................................................................... 7

1.5 Combination of wind, waves, swell and wind ......................................................................... 8 1.5.1 Combination of wind and waves ..................................................................................... 8 1.5.2 Combination of wind seas and swell ............................................................................... 9

1.6 Averaging period for waves .................................................................................................... 9 1.7 Waves from passing vessels .................................................................................................... 9

2 Wind .............................................................................................................................................. 11 2.1 Return periods ....................................................................................................................... 11

2.1.1 Sectoral extremes........................................................................................................... 11 2.1.2 Distribution along the bridge ......................................................................................... 12 2.1.3 Profile factor .................................................................................................................. 12

2.2 Turbulence intensity .............................................................................................................. 12 2.3 Power spectral density of wind turbulence ............................................................................ 13

3 Current ........................................................................................................................................... 14 4 Earthquake ..................................................................................................................................... 15 5 Water level variations .................................................................................................................... 15 6 Water density variations ................................................................................................................ 15 7 Marine fouling ............................................................................................................................... 16 8 Temperature ................................................................................................................................... 16 9 Characteristic response values ....................................................................................................... 16 10 Environmental load combinations ............................................................................................. 17 11 References ................................................................................................................................. 18

Appendix A Wind sea scatter diagrams

Appendix B Swell scatter diagrams

Appendix C Wind Wave Misalignment

Appendix Ship Waves.xlsx

Appendix A.xlsx

Appendix B.xlsx

Page 52: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

1

General

This document gives the specifications for meteorological data to be used for the design of the bridge

alternatives for crossing of the Bjørnafjorden.

Furthermore, the document gives requirements and guidelines for combination of environmental loads.

The data are presently to a varying degree encumbered with uncertainties due to lack of reliable data.

This applies in particular to data on current and storm surge. The data given in the specification are

mostly based on numerical simulations and only to a limited degree on reliable physical

measurements. Both wind and wave data are however to a certain degree corroborated by comparisons

with physical measurements.

The situation calls for a need to examine the sensitivities of the response quantities to uncertain

parameters. The selection of the parameters and their variation range for such sensitivity evaluations

shall be done in close cooperation with the client, where they are not specified herein.

The references give background for the design parameters given in this specification.

Nomenclature

Hs: significant wave height

Tp: spectral peak period

Sp: limiting average wave steepness

JONSWAP: JOint North Sea WAve Project

σa & σb: JONSWAP spectral width parameters

γ: JONSWAP non-dimensional peak shape parameter

Γ: Gamma function

U: wind speed

Z: height above sea level

α: profile factor for the wind profile

𝐼𝑢: longitudinal turbulence intensity

𝐼𝑣: lateral turbulence intensity

𝐼𝑤: vertical turbulence intensity

𝑉0: current speed

Page 53: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

2

Table of revisions

Revision Comments

B

Table 1: The margin on the upper limit of Tp (0.5s) is removed for the 10 000 year

condition. And footnote 3 is updated.

Section 1.4.1: The formula for the JONWAP spectra has been included

Section 1.5.1: Misalignment between Wind wave and wind direction has been updated,

from +/- 15 to 30 degrees for extreme conditions, and Appendix C for fatigue.

Figure 2: Some cosmetic changes

Chp. 9. The text is changed

Chp. 10. Table 16 is changed

Page 54: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

3

1 Wave data

As a general note, the wave conditions given herein shall be assumed constant along the bridge

crossing. Presently we do not have adequate data to give reliable estimates of the wave energy along

the bridge crossing.

1.1 Wind waves

Design wave conditions for locally generated wind waves shall be taken from the tables below.

Estimates are based on simulations from [1] and [2]. Procedure for combining results from analysis

and validation of analysis results can be found in ref. [2].

Return period / Sectors

1 year 10 year 100 year 10 000 year

Hs [m]

Tp max [s]

Hs [m]

Tp max [s]

Hs [m]

Tp max [s]

Hs [m]

Tp max [s]

345° - 75° 0.8 4.0 1.1 4.5 1.5 5.0 2.3 5.4

75° - 105° 1.6 5.3 2.2 5.9 2.8 6.6 3.9 7.1

105° - 165° 1.1 4.4 1.3 4.8 1.6 5.3 2.3 5.6

165° - 225° 1.2 4.4 1.5 4.9 1.9 5.3 2.7 5.6

225° - 315° 1.3 4.6 1.8 5.3 2.4 5.9 3.3 6.3

315° - 335° 1.5 5.1 1.9 5.6 2.5 6.2 3.5 6.7

335° - 345° 1.2 4.3 1.6 5.0 2.0 5.6 2.9 6.0

Table 1: Wind generated waves, All year

1) Direction 0° is waves coming from north, 90° is east, 180° is south and 270° is west

2) Wave conditions are constant within each sector

3) The upper limit of the Tp includes an added margin of 0.5s for 1, 10 and 100 year return periods

4) Lower peak periods shall also be assessed, if a Hs/Tp combination exceeds wave breaking criteria, then

the wave height shall be reduced to fit the limiting wave breaking criteria

Wave conditions for the summer season (May to August) are given in Table 2.

Return period / Sectors

1 year 10 year 100 year

Hs [m]

Tp max [s]

Hs [m]

Tp max [s]

Hs [m]

Tp max [s]

345° - 75° 0.5 3.3 0.6 3.5 0.9 4.0

75° - 105° 0.9 4.2 1.3 4.8 1.8 5.4

105° - 165° 0.6 3.6 0.8 3.9 1.0 4.4

165° - 225° 0.7 3.5 0.9 4.0 1.2 4.4

225° - 315° 0.8 3.8 1.1 4.4 1.5 4.8

315° - 335° 0.9 4.2 1.2 4.5 1.6 5.1

335° - 345° 0.7 3.4 1.0 4.0 1.2 4.5

Table 2: Wind generated waves, Summer (May-August)

1) Direction 0° is waves coming from north, 90° is east, 180° is south and 270° is west

2) Wave conditions are constant within each sector

3) The upper limit of the Tp includes an added margin of 0.5s

4) Lower peak periods shall also be assessed, if a Hs/Tp combination exceeds wave breaking criteria, then

the wave height shall be reduced to fit the limiting wave breaking criteria

Page 55: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

4

The limiting wave breaking criteria, or limiting average wave steepness as it is also referred to, can be

taken as (ref. [3]):

𝑆𝑝 =2𝜋

𝑔

𝐻𝑠

𝑇𝑝2 , 𝑆𝑝 =

1

15 𝑓𝑜𝑟 𝑇𝑃 ≤ 8𝑠

1.2 Swell

The data for swell waves can be found from the table and figure below. Swell conditions in

Bjørnafjorden are based on simulations performed by Norconsult, ref. [1].

Return period / Season

1 year 10 year 100 year 10 000 year

Hs [m] Hs [m] Hs [m] Hs [m] All year 0.26 0.34 0.40 0.55

Summer 0.18 0.24 0.28 Na

Table 3: Significant Waveheight, Swell

The significant wave heights given in Table 3 are valid for peak periods from 12-20 seconds. Wave

heights outside this period range can be found by correcting with the coefficients given in Figure 1.

The basis for Figure 1 is described in ref. [2].

Figure 1: Swel peak periods

Tabulated values of Figure1 are given in Table 4.

Peak period [s] 6 7 8 9 10 11 12 18 20

𝐇𝐬/𝐇𝐬,𝐦𝐚𝐱 0.50 0.58 0.67 0.75 0.83 0.92 1.0 1.0 1.0 Table 4: Swell peak periods

Page 56: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

5

The swell system consists of two contributions, one coming from the northwest (320°) and one coming

from the south - southwest (205°). The contribution from northwest is dominating, and contains on

average above 80% of the total wave energy from swell. Since the total wave energy from swell

already is small, it is considered adequate to assume that all swell comes from north. Following this

approach, the direction of swell shall be taken as the most unfavorable in the sector 300°-330°.

1.3 Scatter diagram

Scatter diagrams for all year all directions are given in this report, see Table 5 and Table 6. Scatter

diagrams for different sectors and months for wind sea and swell can be found in Appendix A and B

respectively. All scatter diagrams are presented as percentage of occurrence.

1.3.1 Wind sea scatter diagram

The wind sea scatter diagram is based on 6 years of simulated data, which is not sufficient as basis for

a long-term analysis. The wind sea scatter diagrams shall only be used for fatigue analysis. For more

detail on how the scatter diagram is established, the reader is referred to ref. [2].

Table 5: Wind sea All Year Scatter diagram

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,1064 10,3301 16,7749 5,2128 0,1858 32,6100

0.1 - 0.2 2,5992 19,6681 5,1876 0,1154 27,5703

0.2 - 0.3 0,0018 3,9538 12,7778 1,8218 0,0162 18,5714

0.3 - 0.4 0,1190 6,0390 4,2154 0,1497 10,5231

0.4 - 0.5 1,1111 3,2125 0,6313 0,0018 4,9567

0.5 - 0.6 0,0992 1,2446 1,1093 0,0036 0,0018 2,4585

0.6 - 0.7 0,3283 1,0299 0,0090 1,3672

0.7 - 0.8 0,0920 0,7125 0,1082 0,0018 0,9145

0.8 - 0.9 0,0018 0,2597 0,3139 0,0018 0,5772

0.9 - 1.0 0,0487 0,1912 0,0018 0,0018 0,2435

1.0 - 1.1 0,0108 0,0703 0,0253 0,1064

1.1 - 1.2 0,0253 0,0253 0,0505

1.2 - 1.3 0,0036 0,0144 0,0180

1.3 - 1.4 0,0054 0,0054 0,0108

1.4 - 1.5 0,0054 0,0036 0,0090

1.5 - 1.6 0,0018 0,0018

1.6 - 1.7 0,0036 0,0036

1.7 - 1.8 0,0018 0,0018

1.8 - 1.9 0,0036 0,0036

1.9 - 2.0 0,0018 0,0018

Sum 0,1064 10,3301 19,3759 28,9538 25,4004 11,0317 3,9683 0,7269 0,0830 0,0234 100,0000

Tp [s]

Page 57: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

1.3.2 Swell scatter diagram

Note that the upper left bin in Table 6 (0<Hs<0.01 & Tp<2), represents sea states where there are no swell present. The swell scatter is based on 37 years of

simulated data from Norconsult, ref. [1]. Peak periods have been smoothed, more detail on this approach can be found in ref. [2].

Table 6: Swell All Year Scatter diagram

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 60,9633 1,6344 1,4060 1,1692 1,4633 1,5049 1,4448 1,1229 0,6123 0,3330 0,1545 0,0990 0,0351 0,0139 0,0037 71,9603

0,01 0,02 0,5291 1,2987 0,9278 1,1238 1,1127 0,9925 0,8491 0,7825 0,5291 0,3043 0,1609 0,0647 0,0277 0,0111 0,0018 8,7160

0,02 0,03 0,0990 0,3894 0,7853 0,4357 0,6299 0,6993 0,6151 0,6586 0,4542 0,2969 0,1924 0,0509 0,0231 0,0148 0,0037 0,0018 5,3501

0,03 0,04 0,0028 0,0583 0,7233 0,5272 0,2118 0,3663 0,3950 0,3200 0,2756 0,2183 0,1304 0,0555 0,0203 0,0102 0,0009 3,3160

0,04 0,05 0,0018 0,4486 0,8834 0,3857 0,1045 0,1841 0,2229 0,1554 0,1572 0,1258 0,0620 0,0250 0,0139 2,7703

0,05 0,06 0,1720 0,7169 0,6225 0,1350 0,0684 0,1165 0,0601 0,0684 0,0601 0,0573 0,0176 0,0157 0,0009 2,1117

0,06 0,07 0,0564 0,4199 0,7261 0,2951 0,0610 0,0462 0,0314 0,0287 0,0296 0,0462 0,0222 0,0139 1,7769

0,07 0,08 0,0166 0,1323 0,4116 0,3330 0,0675 0,0166 0,0176 0,0157 0,0166 0,0157 0,0111 0,0120 0,0018 1,0683

0,08 0,09 0,0018 0,0268 0,2405 0,3959 0,1267 0,0157 0,0074 0,0046 0,0046 0,0046 0,0028 0,0120 0,8436

0,09 0,10 0,0046 0,1119 0,2830 0,1933 0,0166 0,0009 0,0028 0,0028 0,0028 0,0046 0,0037 0,6271

0,10 0,11 0,0361 0,1794 0,1545 0,0166 0,0037 0,0009 0,0009 0,0037 0,0018 0,3977

0,11 0,12 0,0009 0,0102 0,1008 0,1526 0,0305 0,0018 0,0018 0,0009 0,0009 0,0028 0,3034

0,12 0,13 0,0074 0,0472 0,1073 0,0518 0,0092 0,0009 0,0018 0,0009 0,2266

0,13 0,14 0,0157 0,0444 0,0601 0,0111 0,0009 0,0009 0,0018 0,0018 0,1369

0,14 0,15 0,0028 0,0213 0,0657 0,0166 0,0028 0,0009 0,0018 0,0009 0,1128

0,15 0,16 0,0018 0,0250 0,0731 0,0176 0,0037 0,0009 0,0009 0,0009 0,1239

0,16 0,17 0,0120 0,0370 0,0111 0,0055 0,0009 0,0666

0,17 0,18 0,0055 0,0231 0,0102 0,0018 0,0028 0,0009 0,0444

0,18 0,19 0,0129 0,0046 0,0028 0,0018 0,0009 0,0018 0,0250

0,19 0,20 0,0009 0,0009 0,0028 0,0046 0,0009 0,0102

0,20 0,21 0,0009 0,0018 0,0009 0,0046 0,0009 0,0009 0,0102

0,21 0,22 0,0009 0,0009

0,22 0,23 0,0009 0,0009

Sum 60,9633 0,0000 0,0000 0,0000 2,2653 3,1542 4,3011 5,7348 6,0114 5,3972 4,2077 3,1828 1,9545 1,2829 0,8325 0,3968 0,1804 0,1239 0,0074 0,0037 100,0000

Tp

Page 58: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

1.4 Wave spectra

1.4.1 Wind sea

By comparing spectrums from both simulations and measurements, we see that the JONSWAP spectra

fits reasonable well to the locally wind generated waves in the fjord. JONSWAP with average spectral

width (σa=0.07 and σb=0.09) can be used, the gamma parameter shall be varied in the range γ = 1.8 -

2.3. The JONSWAP definition from DNV-RP-C205 (ref. [3]) shall be used, this is shown below.

𝑆𝐽(𝜔) = 𝐴𝛾 ∙5

16∙ 𝐻𝑠

2 ∙ 𝜔𝑝4 ∙ 𝜔−5 ∙ 𝑒𝑥𝑝 (−

5

4(

𝜔

𝜔𝑝)

−4

) ∙ 𝛾𝑒𝑥𝑝(−0.5(

𝜔−𝜔𝑝

𝜎∙𝜔𝑝)

2

)

where:

𝐴𝛾 = 1 − 0.287 ∙ ln(𝛾)

𝛾 = 𝑛𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑝𝑒𝑎𝑘 𝑠ℎ𝑎𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝜎 = 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑤𝑖𝑑𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝜎 = 𝜎𝑎 𝑓𝑜𝑟 𝜔 ≤ 𝜔𝑝

𝜎 = 𝜎𝑏 𝑓𝑜𝑟 𝜔 > 𝜔𝑝

1.4.2 Swell

Presently we do not have theoretical wave spectra that fit the simulated swell conditions very well.

There could be an option to run with the numerical spectra from the wave simulations. Instead, it is

decided that JONSWAP spectra should be used for swell, with a gamma value between 3-5.

With this simplification, the wave energy from swell is represented by a narrower and steeper wave

spectrum than one can expect from the actual wave spectrum. It is therefore crucial that a detailed

screening of the wave periods are performed, if not, there is a significant risk that the wave energy at

important resonant frequencies will be underestimated.

1.4.3 Directional spreading

Directional spreading for wind sea is defined in Table 7.

The incoming swell has low directional spreading and shall be taken as given in Table 7 or as

longcrested waves, whichever gives the largest response. . Recommended values for directional

spreading in Table 7, and the formula for the cos n distribution below, is taken from DNV-RP-C205

ref. [3].

Directional spreading / Wave system

Cos n

n

Wind Sea 4

Swell 10-20 Table 7: Directional spreading parameters

𝐷(𝜃) =Γ(1+

𝑛

2)

√𝜋Γ(1

2+

𝑛

2)

𝑐𝑜𝑠𝑛(𝜃 − 𝜃𝑝)

Page 59: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

8

1.5 Combination of wind, waves, swell and wind

1.5.1 Combination of wind and waves

Locally generated wind waves and wind velocity are directly correlated. Consequently extreme wind

sea with a given return period shall be combined with wind conditions with the same return period.

The misalignment between wind and wave direction will vary depending on the position along the

crossing. In general, there is a larger difference between directions for parts of the crossing that will

be sheltered for waves for a given wave direction. Unsheltered parts of the crossing tend to show less

difference between wind and wave direction compared to the center of the crossing. As a compromise,

data are given for the middle of the crossing that is considered to give a representative average

situation.

In general the misalignment is dependent on significant wave height, and it varies between different

sectors. For extreme sea states, it is seen that wind/wave misalignment is within ± 30°. The previously

stated ± 15° is too narrow even for extreme conditions. Consequently, for extreme sea states, the wind

direction shall be taken as the most unfavorable within a sector of ± 30° from the direction of wind

generated waves.

For smaller sea states, which typically will be governing for fatigue, these differences tend to be

larger. And they vary significantly dependent on which sector is investigated. For that reason, it is not

considered appropriate to give a general condition as is done for the extreme sea states. Distributions

of misalignment for all sectors is therefore established, and can be found in Appendix C. Note that the

distributions are established with an increment of 5 degrees to allow for a fine discretization for cases

and directions where this input may be important.

As an example of how the information in Appendix C should be used: Assuming a wave direction of

270 degrees, bin -50 (from sector 10) will for example give the probability that this wave direction

occurs together with a wind direction of 220 degrees.

Correlation of wind and waves to be used for fatigue analysis should be based on wind velocities

within each sector, given in Table 8. The table is established based on input wind velocity and

direction used to establish the wind sea scatter diagrams; for more information see ref. [2].

Correlated 1 hour wind speed [m/s]

Direction [˚] / 0˚

30˚

60˚

90˚

120˚

150˚

180˚

210˚

240˚

270˚

300˚

330˚

Hs [m] 345˚-15˚

15˚-45˚

45˚-75˚

75˚-105˚

105˚-135˚

135˚-165˚

165˚-195˚

195˚-225˚

225˚-255˚

255˚-285˚

285˚-315˚

315˚-345˚

0.00 - 0.10 1.31 1.21 1.76 2.21 1.97 1.90 1.74 2.00 2.07 2.00 2.00 1.49 0.10 - 0.20 3.56 3.66 3.89 4.07 4.19 4.00 3.77 4.50 4.26 4.27 4.08 3.53 0.20 - 0.30 5.63 3.91 5.40 5.74 6.15 6.19 5.77 6.62 6.37 6.35 5.88 5.46 0.30 - 0.40 7.70 7.04 7.35 8.02 8.47 7.84 8.51 8.34 8.27 7.54 7.08 0.40 - 0.50 9.24 8.54 9.73 10.48 9.22 10.06 9.96 9.88 9.11 8.61 0.50 - 0.60 9.90 9.62 11.21 11.96 10.45 11.14 11.65 11.72 10.33 10.01 0.60 - 0.70 10.94 12.75 13.49 11.84 12.14 13.06 13.56 11.71 10.93 0.70 - 0.80 11.87 14.69 14.70 13.99 13.62 14.37 14.07 13.17 11.76 0.80 - 0.90 12.84 15.09 16.15 14.90 15.09 15.78 15.60 14.17 12.70 0.90 - 1.00 13.58 15.75 17.20 16.60 16.47 18.21 17.32 14.75 13.68 1.00 - 1.10 13.94 17.10 18.94 16.23 14.55 1.10 - 1.20 14.70 17.00 21.00 18.30 17.21 15.90 1.20 - 1.30 17.00 19.80 16.87 1.30 - 1.40 17.60 18.50 17.27 1.40 - 1.50 17.85 21.50 19.85 1.50 - 1.60 22.90 1.60 - 1.70 22.40 21.00 1.70 - 1.80 23.20 1.80 - 1.90 24.85 1.90 - 2.00 25.50

Table 8: Correlated wind speed

Page 60: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

9

1.5.2 Combination of wind seas and swell

From ref. [1] it is seen that even severe storms give moderate wave energy from swell at the bridge

crossing. The wind direction and thereby the wind wave direction for both offshore and inshore waves

are fairly correlated for larger events. This means that large storms with wind coming from westerly

directions are likely to give both large wind sea and swell at the bridge location. For that reason, wind

sea from westerly directions (180˚-360˚) shall be combined with swell.

Wind sea from easterly directions are not likely to see any significant contributions from swell, of

course offshore swell could in principal give some swell seas at the bridge site, even for fairly severe

easterly storms. The wave heights for offshore swell are small, and it is thought that the swell energy

at the bridge crossing will be negligible for such events. Wind sea from easterly directions (0˚-180˚)

shall not be combined with swell.

1.6 Averaging period for waves

For local wind generated waves, the significant wave height is based on 1-hour wind speeds, and can

therefore be used directly as input to a 1 hour wave simulation. The basis for the significant wave

height for swell is based on 3-hour storms offshore. An inflation factor of 9% going from 3- hour to

1-hour storm duration is included in the wave heights given in Section 1.2.

1.7 Waves from passing vessels

During the measurement campaign that are underway in Bjørnafjorden, there has been observed a

significant number of cases that are presently believed to be waves induced by passing vessels. Many

of these cases give waves with periods around 6 seconds. The periods of vessel generated waves are

dependent on the vessel speed; 20 knots gives waves with periods around 6 seconds, which is a case

that matches fairly well with the ferries crossing Bjørnafjorden.

When a bridge is built sometime in the future, there will most likely be traffic control of the ship

traffic in the area, and in that context a speed limit around 12 knots have been suggested. With a speed

limit of 12 knots, the wave periods of vessel generated waves will be so short that the wave energy of

such events will be negligible compared to the wave energy from wind driven seas.

But even if speed restrictions are enforced in Bjørnafjorden when the bridge is completed, the

concepts need to be robust enough to withstand the loading from waves generated by rogue vessels

that do not follow these speed restrictions.

The following cases with vessel generated waves shall be considered for the concepts as ALS-cases, as

shown in Figure 2. The time series are established with a time step of 0.1s, and are therefore

considered impractical to include as tables in an Appendix. Time series will be made available to the

project groups by an excel sheet. For more information on how these time series are established, the

reader is referred to ref.[2].

Page 61: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

10

Figure 2 Vessel induced waves

Page 62: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

11

2 Wind

The wind design basis is based on measurements and simulations performed and analysed by Kjeller

vindteknikk, ref. [4]. Section 2.3 is referring to available handbooks, as we do not have analysis from

measurements available. For a discussion of the recommended values and how they are obtained, see

ref. [5].

2.1 Return periods

The wind speed, U, in Table 9 is the 1 hour mean wind for given return periods in 10 m height. For

extrapolation to higher levels, see section 2.1.3.

Return period Wind speed, U [m/s]

1 21.5

10 26

100 29.5

10 000 36

Table 9: 1 hour mean wind in 10m height

A summer reduction (May-Aug) of 0.7 can be used for all heights, return periods and averaging

periods, ref. [4].

2.1.1 Sectoral extremes

The extreme wind speed in the different sectors are found from the wind speeds in Table 9 multiplied

by the reduction factor in Table 10, ref. [4].

Sectors Reduction coeff.

0°-75° 0.7

75°-225° 0.85

225°-255° 0.9

255°-285° 1.0

285°-345° 0.9

345°-360° 0.7

Table 10: Directional reduction coefficients

Wind directions refer to the direction from which the wind is coming. 0°/360° means wind coming

from the North, 90° coming from the East, 180° from the South and 270° from the West.

Page 63: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

12

2.1.2 Distribution along the bridge

The mean wind speed can be assumed to have the following distributions along the bridge axis:

1) Constant

2) Linearly varying from 0,6 x U (Table 9) at one end to U on the other.

The maximum wind speed shall be assumed to occur at the end which gives the most

unfavourable load effects.

2.1.3 Profile factor

The wind profile is given by the following equation

𝑈(𝑍2)

𝑈(𝑍1)= (

𝑍2

𝑍1)

𝛼

where 𝑈 is the wind speed, Z2 is the height in question, Z1 is 10 m and α is the profile factor. The

profile factor shall be taken as α= 0,127.

The extreme wind profile for given return periods and different sectors can be calculated by using the

wind speeds in Table 9 and the directional reduction coefficients in Table 10.

2.2 Turbulence intensity

The turbulence intensity referred to 1 hour mean wind in the direction of the wind, 𝐼𝑢, is given in

Table 11.

Sector/ Height above sea

0°-150° and 210°-360° Turbulence intensity

150°-210° Turbulence intensity

10 14% Linearly decreasing from 30% at southern tower to 17% in the north

50 14% Linearly decreasing from 30% at southern tower to 17% in the north

200 12% 15% Table 11: Turbulence intensity

The lateral and the vertical turbulence components 𝐼𝑣 and 𝐼𝑤 found from measurements are [6].

[𝐼𝑣

𝐼𝑤] = [

0.850.55

] 𝐼𝑢

Wind coming from the south is very turbulent on the southern side of the fjord. Measurements shows a

turbulence intensity of 30% for strong winds in 50 meter height. The measurements are representative

for the conditions at the location of the southern tower. The turbulence intensity can be assumed to

decrease linearly from 30% to 17% in the north.

Page 64: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

13

2.3 Power spectral density of wind turbulence

The frequency distribution of the turbulence components in all three directions shall be taken from

Eqs. 5.2 - 5.5 in N400 [7]. Zmin is given in NS-EN 1991-1-4 [8].

The parameters Ai shall be varied in the range between ± 40% relative to the numbers given in N400

for sensitivity evaluations.

The statistical dependence between the turbulence components at two points at a given frequency shall

be described by the normalized co-spectrum given in N400 Eq. 5.6.

The parameters Cij shall be varied in the range between ± 50% relative to the numbers given in N400

for sensitivity evaluations.

The parameters Ai and Cij used for design checks shall be agreed with the client.

Page 65: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

14

3 Current

The estimates in Table 12 are based on simulations from SINTEF [9]. Extreme values are calculated

from 2 years and 8 months of simulated data. The short period of available data results in uncertainties

for the current velocities given below. Due to the uncertainties, a case where the 100-year and 10000-

year return period velocities are increased with 20% shall be considered as a sensitivity case. If this

presents problems, it should be discussed with the client.

Current directions refer to the direction towards which the current is flowing. 0° means that the current

is flowing towards the North, 90° towards the East, 180° towards the South and 270° towards the

West.

The values in Table 12 are termed V0 and can be assumed to go in or out the fjord, i.e. in 90° or 270°

direction. Linear interpolation can be used between depths.

Depth [m]

1 year

V0 [cm/s] 10 year

100 year

0-5 100 120 140

15 60 80 95

25 40 50 60

50 35 45 55

100 20 25 30 Table 12: Current velocity [cm/s] related to return period

The 10 000 year extreme current velocity can be assumed as 1.3*100-year value given in Table 12.

For the upper 50 m the following cases shall be considered:

1. The current is constant V0 along the bridge

2. The current increases linearly from 0,5xV0 in the south to V0 in the north.

3. The current is constant in or out the fjord in the south half of the bridge and constant acting in the

opposite direction in the northern half. The velocity shall be taken as

2/3xV0.

4. The current is V0 in the mid half of the bridge and 0,5xV0 in the rest

The current velocities in the north-south (0°-180°) directions, can be taken as the following

representing eddies:

The velocity is zero at both ends and linearly increasing to 0,5xV0 at the midsection of the

bridge.

a) Case1:The velocity is directed either towards north or south

b) Case2: The velocity is directed from the ends of the bridge towards the midsection of the

bridge

The current in the 90°- 270° direction can act alone or in combination with the current in the 0°-180°

direction.

When current is acting together with wind, they shall both act inwards or outwards in the fjord.

Page 66: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

15

4 Earthquake

The bridges shall be designed against earthquake according to N400, Cl. 5.4.9.

5 Water level variations

The water level variation is defined as an astronomical component and a surge component combined.

The surge component includes effects from low/high atmospheric pressure and storm surge. The

astronomical component is independent of the environmental conditions, whereas the surge

component is connected to the wind situation.

The reference level for the tidal amplitudes in Table 13 and the water level in Table 14 is chart datum

(LAT). The values are based on data from Kartverket.

Tidal amplitudes [m]

Lowest Astronomical Tide (LAT) 0,0

Mean Low Water ( MLW) 0,36

Mean Sea Level (MSL) 0,73

Mean high water ( MHW) 1,09

Highest Astronomical Tide( HAT) 1,46

NN 1954 0,71

NN 2000 0.81 Table 13: Tidal amplitudes

The water level for different return periods may be taken from Table 14.

Return periods

[years]

Highest water level [m]

Lowest water level [m]

1 1,81 -0,20

10 1,97 -0,30

100 2,10 -0,50

10000 Not defined Not defined Table 14: Water level related to return periods

The mean water level shall be increased by 0,8 m due to climate change where this is unfavourable.

This number includes the effect of land elevation rise.

The surge component (air pressure effect, storm surge etc) may for simplicity and until more reliable

data are collected be taken as the difference between the values in Table 14 and MSL.

6 Water density variations

Water density variations shall be taken according to N400, Cl. 13.12.2.2.

Page 67: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

16

7 Marine fouling

Marine fouling shall be designed for according to N400, Cl. 13.12.2.3.

8 Temperature

Design for temperature variations may be carried out in accordance with NS-EN 1991-1-5:2003+

NA:2008 and NS-EN 1993-2:2006+NA:2009.

For pontoons or other structures with compartments in air/water the following two temperature cases

shall be considered:

Temperature gradient over the thickness of external walls/slabs

Case A Case B

External face (towards air/water) 20/10 -10/0

Inner face ( inside structure) 5 -5

Temperature difference between structural parts

Top slab 15 -15

Walls above MSL 10 -10

Walls/slabs below MSL 0 0 Table 15: Temperature cases for structures with compartments in air/water

9 Characteristic response values

In principle, the characteristic response values due to environmental loads like wind and waves should

be determined based on a long-term response analysis. In lieu of available data supporting such

analyses the characteristic response values for wind and wave action shall be determined based on the

most critical short term storm state of 1 hour duration. The longterm characteristic responses shall then

be taken as the following fractiles from the extreme value distribution (Gumbel distribution) of the

short term response:

In ULS: the 90% fractile

In ALS: the 95% fractile

In SLS: the 50% fractile

provided that the Coefficient of Variation of the maxima does not exceed 0,20.

Here, the short term storm states refer to the yearly probability of occurrence of 10-2, 10-4

and 0,63, respectively.

It shall be documented that the number of realizations are sufficient.

Page 68: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

17

10 Environmental load combinations

The combination of the various environmental load components to form characteristic loads for

different return periods shall be taken from Table 16.

Return period (Years)

Wind Waves Current Sea level

Wind generated

Swell Astronomical Surge

1 1 1 1 1 HAT 1

10 10 10 1 10 HAT 10

1 1 10 1 HAT 1

100 100 100 10 100 HAT 100

10 10 100 10 HAT 10

10000 10000 10000 100 10000 Mean 10000

100 100 10000 100 Mean 100

Table 16: Combinations of environmental load components

If low water is governing, the water level corresponding to LAT shall be used.

If the omission of one or more components may give larger response values ( eg current causes

increased damping of wave response) this situation should be used for the design checks.

Page 69: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

18

11 References

[1] A. Lothe, «E39 Bjørnafjord Crossing, Design Wave Data, Assignment no: 514672, Doc. No. 1,

Ver. 1,» Norconsult, 21/06-2016.

[2] E. Svangstu, «Technical Note, Wave conditions for phase 3,» Norwegian Public Road

Administration, December 2016.

[3] DNV, «Recommended practise DNV-RP-C205,» April 2014.

[4] K. Harstveit, R. E. Bredesen og H. Agustsson, «Bjørnafjorden, Hordaland, Kartlegging av

vindforhold,» Kjeller vindteknikk, 2016.

[5] H. K. Fuhr, «Wind, background for design basis,» National Public Roads Administration,

December 2016.

[6] K. Harstveit og H. Agustsson, «E 39, brukryssinger Hordaland. Status rapport for vindmålinger pr

november 2015,» Kjeller vindteknikk, 2016.

[7] Statens Vegvesen, Vegdirektoratet, «Håndbok N400 Bruporsjektering, Prosjektering av bruer,

ferjekaier og andre bærende konstruksjoner,» 2015.

[8] 2. EN-1991-1-4: 2005+NA, «Eurocode 1: Laster på konstruksjoner. Standard Norge,» 2009.

[9] Ø. Knutsen, G. Eidnes og T. McClimans, «Simulation of currents and hydrography in

Bjørnafjorden,» SINTEF, 2015

[10] O. Øiseth: “A note on long-term distribution of wind induced load effects

with applications to structures with high natural periods”, NTNU 2017

Page 70: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

19

Appendix A

Wind Sea Scatter Diagrams

Page 71: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

20

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0050 1,0483 1,3654 0,2248 0,0067 2,6502

0.1 - 0.2 0,2281 1,3704 0,3053 0,0101 1,9138

0.2 - 0.3 0,3606 1,1037 0,0906 0,0067 1,5616

0.3 - 0.4 0,0084 0,6458 0,3422 0,0067 1,0030

0.4 - 0.5 0,1409 0,3439 0,0554 0,5401

0.5 - 0.6 0,0168 0,2046 0,1107 0,0017 0,3338

0.6 - 0.7 0,0654 0,1141 0,0017 0,1812

0.7 - 0.8 0,0151 0,0939 0,0034 0,1124

0.8 - 0.9 0,0654 0,0285 0,0939

0.9 - 1.0 0,0268 0,0218 0,0486

1.0 - 1.1 0,0067 0,0101 0,0050 0,0218

1.1 - 1.2 0,0084 0,0034 0,0117

1.2 - 1.3 0,0017 0,0017

1.3 - 1.4 0,0017 0,0017 0,0034

1.4 - 1.5 0,0034 0,0034

1.5 - 1.6 0

1.6 - 1.7 0,0017 0,0017

1.7 - 1.8 0

1.8 - 1.9 0,0034 0,0034

1.9 - 2.0 0,0017 0,0017

Sum 0,0050 1,0483 1,5935 1,9642 2,2191 1,0718 0,4864 0,0755 0,0151 0,0084 8,4873

Wind Sea, Scatter diagram: January

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0098 1,2629 1,1647 0,3272 0,0147 2,7794

0.1 - 0.2 0,1489 1,2040 0,2896 0,0131 1,6555

0.2 - 0.3 0,3501 1,0633 0,1096 0,0016 1,5246

0.3 - 0.4 0,0131 0,6020 0,2552 0,0082 0,8785

0.4 - 0.5 0,1080 0,2748 0,0344 0,0016 0,4188

0.5 - 0.6 0,0164 0,1390 0,0573 0,0016 0,2143

0.6 - 0.7 0,0393 0,0589 0,0016 0,0998

0.7 - 0.8 0,0196 0,0540 0,0098 0,0834

0.8 - 0.9 0,0245 0,0213 0,0458

0.9 - 1.0 0,0033 0,0147 0,0180

1.0 - 1.1 0,0049 0,0049

1.1 - 1.2 0,0049 0,0033 0,0082

1.2 - 1.3 0,0016 0,0016

1.3 - 1.4 0,0016 0,0016

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0098 1,2629 1,3136 1,8943 2,0939 0,8507 0,2421 0,0605 0,0049 0,0016 7,7344

Wind Sea, Scatter diagram: February

Tp [s]

Page 72: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

21

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0114 1,3021 1,4977 0,5769 0,0228 3,4109

0.1 - 0.2 0,1923 1,6672 0,4791 0,0130 2,3516

0.2 - 0.3 0,3406 0,8996 0,1483 0,0016 1,3901

0.3 - 0.4 0,0114 0,4808 0,2167 0,0130 0,7219

0.4 - 0.5 0,1010 0,1825 0,0244 0,3080

0.5 - 0.6 0,0130 0,0896 0,0228 0,1255

0.6 - 0.7 0,0277 0,0717 0,0994

0.7 - 0.8 0,0065 0,0342 0,0407

0.8 - 0.9 0,0212 0,0065 0,0277

0.9 - 1.0 0,0016 0,0049 0,0065

1.0 - 1.1 0,0033 0,0033

1.1 - 1.2 0,0016 0,0016

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,01141 1,30211 1,68997 2,59607 1,99635 0,68446 0,19067 0,01630 0 0 8,4873

Wind Sea, Scatter diagram: March

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0082 1,0864 1,5789 0,5481 0,0229 3,2445

0.1 - 0.2 0,2012 1,6084 0,5121 0,0180 2,3397

0.2 - 0.3 0,2863 0,9588 0,1800 1,4251

0.3 - 0.4 0,0098 0,4434 0,2585 0,0164 0,7281

0.4 - 0.5 0,0589 0,1849 0,0376 0,2814

0.5 - 0.6 0,0491 0,0540 0,1031

0.6 - 0.7 0,0049 0,0278 0,0016 0,0344

0.7 - 0.8 0,0196 0,0131 0,0327

0.8 - 0.9 0,0033 0,0115 0,0147

0.9 - 1.0 0,0049 0,0049

1.0 - 1.1 0,0016 0,0016

1.1 - 1.2 0,0016 0,0016

1.2 - 1.3 0,0016 0,0016

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0082 1,0864 1,7801 2,4526 1,9961 0,6954 0,1587 0,0360 0 0 8,2136

Wind Sea, Scatter diagram: April

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0057 0,5742 1,3879 0,5152 0,0228 2,5059

0.1 - 0.2 0,2377 1,5743 0,5761 0,0076 2,3956

0.2 - 0.3 0,2947 1,1256 0,2282 1,6484

0.3 - 0.4 0,0171 0,4297 0,5856 0,0133 1,0457

0.4 - 0.5 0,0399 0,2985 0,1103 0,4487

0.5 - 0.6 0,0494 0,1635 0,2129

0.6 - 0.7 0,0019 0,0951 0,0970

0.7 - 0.8 0,0703 0,0038 0,0742

0.8 - 0.9 0,0133 0,0247 0,0380

0.9 - 1.0 0,0133 0,0133

1.0 - 1.1 0

1.1 - 1.2 0,0038 0,0038

1.2 - 1.3 0,0038 0,0038

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0057 0,5742 1,6256 2,4013 2,1941 1,1712 0,4658 0,0418 0,0076 0 8,4873

Wind Sea, Scatter diagram: May

Tp [s]

Page 73: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

22

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0076 0,8118 1,5343 0,5152 0,0038 2,8728

0.1 - 0.2 0,3346 1,5933 0,3917 0,0038 2,3234

0.2 - 0.3 0,1711 0,8385 0,2015 1,2111

0.3 - 0.4 0,0019 0,1882 0,4810 0,0114 0,6826

0.4 - 0.5 0,0076 0,3422 0,0875 0,4373

0.5 - 0.6 0,0570 0,2282 0,2852

0.6 - 0.7 0,0038 0,1597 0,1635

0.7 - 0.8 0,0932 0,0190 0,1122

0.8 - 0.9 0,0133 0,0437 0,0570

0.9 - 1.0 0,0304 0,0304

1.0 - 1.1 0,0228 0,0076 0,0304

1.1 - 1.2 0,0038 0,0038 0,0076

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0076 0,8118 1,8690 2,2815 1,4298 1,0894 0,5932 0,1198 0,0114 0 8,2136

Wind Sea, Scatter diagram: June

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0120 0,8068 1,5673 0,5013 0,0155 2,9029

0.1 - 0.2 0,3039 2,0514 0,4704 0,0052 2,8308

0.2 - 0.3 0,2781 0,9510 0,2163 1,4455

0.3 - 0.4 0,0052 0,2592 0,4498 0,0103 0,7244

0.4 - 0.5 0,0069 0,1906 0,0841 0,2815

0.5 - 0.6 0,0155 0,1047 0,1202

0.6 - 0.7 0,0498 0,0498

0.7 - 0.8 0,0429 0,0086 0,0515

0.8 - 0.9 0,0069 0,0395 0,0464

0.9 - 1.0 0,0326 0,0326

1.0 - 1.1 0,0017 0,0017

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0120 0,8068 1,8712 2,8360 1,7030 0,8772 0,2987 0,0824 0 0 8,4873

Wind Sea, Scatter diagram: July

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0191 0,8040 1,6597 0,5806 0,0172 3,0806

0.1 - 0.2 0,2521 1,9977 0,4851 0,0095 2,7444

0.2 - 0.3 0,2655 1,0848 0,1547 1,5050

0.3 - 0.4 0,0095 0,2521 0,3610 0,0191 0,6417

0.4 - 0.5 0,0325 0,1662 0,0649 0,2636

0.5 - 0.6 0,0229 0,0840 0,1070

0.6 - 0.7 0,0019 0,0458 0,0477

0.7 - 0.8 0,0401 0,0095 0,0497

0.8 - 0.9 0,0076 0,0325 0,0401

0.9 - 1.0 0,0076 0,0076

1.0 - 1.1 0

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0191 0,8040 1,9118 2,8533 1,8716 0,7162 0,2616 0,0497 0 0 8,4873

Wind Sea, Scatter diagram: August

Tp [s]

Page 74: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

23

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0134 0,7884 1,5118 0,5014 0,0096 2,8246

0.1 - 0.2 0,1971 1,7204 0,5473 0,0057 2,4706

0.2 - 0.3 0,0019 0,4287 1,1080 0,1703 0,0019 1,7108

0.3 - 0.4 0,0057 0,4363 0,2583 0,0057 0,7062

0.4 - 0.5 0,0478 0,2029 0,0325 0,2832

0.5 - 0.6 0,0038 0,0536 0,0478 0,1053

0.6 - 0.7 0,0172 0,0498 0,0670

0.7 - 0.8 0,0153 0,0057 0,0211

0.8 - 0.9 0,0019 0,0172 0,0191

0.9 - 1.0 0,0038 0,0038

1.0 - 1.1 0,0019 0,0019

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0134 0,7884 1,7108 2,6562 2,1529 0,7081 0,1550 0,0268 0,0019 0 8,2136

Wind Sea, Scatter diagram: September

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0038 0,5457 1,1332 0,3784 0,0133 2,0743

0.1 - 0.2 0,1407 1,7264 0,3479 0,0076 2,2226

0.2 - 0.3 0,4126 1,2453 0,1502 1,8081

0.3 - 0.4 0,0190 0,8632 0,3765 0,0247 1,2834

0.4 - 0.5 0,2015 0,3194 0,0456 0,5666

0.5 - 0.6 0,0171 0,1312 0,0970 0,2453

0.6 - 0.7 0,0285 0,1198 0,0019 0,1502

0.7 - 0.8 0,0019 0,0418 0,0095 0,0532

0.8 - 0.9 0,0114 0,0304 0,0418

0.9 - 1.0 0,0209 0,0209

1.0 - 1.1 0,0076 0,0038 0,0114

1.1 - 1.2 0,0076 0,0076

1.2 - 1.3 0

1.3 - 1.4 0,0019 0,0019

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0038 0,5457 1,2739 2,5363 2,6884 1,0153 0,3403 0,0703 0,0133 0 8,4873

Wind Sea, Scatter diagram: October

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0079 0,6648 1,2883 0,3363 0,0197 2,3169

0.1 - 0.2 0,1947 1,8449 0,4484 0,0039 2,4920

0.2 - 0.3 0,4052 1,1014 0,0806 0,0039 1,5912

0.3 - 0.4 0,0138 0,6589 0,3265 0,0079 1,0070

0.4 - 0.5 0,1514 0,2124 0,0197 0,3835

0.5 - 0.6 0,0138 0,1377 0,0433 0,1947

0.6 - 0.7 0,0492 0,0629 0,1121

0.7 - 0.8 0,0256 0,0374 0,0020 0,0649

0.8 - 0.9 0,0197 0,0020 0,0216

0.9 - 1.0 0,0039 0,0020 0,0059

1.0 - 1.1 0,0020 0,0059 0,0020 0,0098

1.1 - 1.2 0,0020 0,0020 0,0039

1.2 - 1.3 0,0020 0,0020

1.3 - 1.4 0

1.4 - 1.5 0,0020 0,0020

1.5 - 1.6 0,0020 0,0020

1.6 - 1.7 0,0020 0,0020

1.7 - 1.8 0,0020 0,0020

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0079 0,6648 1,4830 2,6002 2,3937 0,8359 0,2006 0,0138 0,0079 0,0059 8,2136

Wind Sea, Scatter diagram: November

Tp [s]

Page 75: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

24

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0020 0,4126 1,0413 0,1906 0,0157 1,6621

0.1 - 0.2 0,1709 1,3615 0,3458 0,0157 1,8939

0.2 - 0.3 0,3654 1,3537 0,0904 1,8095

0.3 - 0.4 0,0039 0,7937 0,3438 0,0138 1,1552

0.4 - 0.5 0,2240 0,5226 0,0393 0,7859

0.5 - 0.6 0,0177 0,3026 0,1140 0,0020 0,4362

0.6 - 0.7 0,0904 0,1925 0,0020 0,2849

0.7 - 0.8 0,0236 0,1807 0,0255 0,0020 0,2318

0.8 - 0.9 0,0020 0,0707 0,0609 0,0020 0,1356

0.9 - 1.0 0,0118 0,0354 0,0020 0,0020 0,0511

1.0 - 1.1 0,0020 0,0138 0,0059 0,0216

1.1 - 1.2 0,0020 0,0020 0,0039

1.2 - 1.3 0,0020 0,0059 0,0079

1.3 - 1.4 0,0020 0,0020 0,0039

1.4 - 1.5 0,0039 0,0039

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0020 0,4126 1,2122 1,9214 2,7505 1,3910 0,6248 0,1415 0,0236 0,0079 8,4873

Wind Sea, Scatter diagram: Descember

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0162 0,2038 0,4419 0,1407 0,8027

0.1 - 0.2 0,0126 0,0884 0,0397 0,1407

0.2 - 0.3 0,0018 0,0234 0,0072 0,0325

0.3 - 0.4 0,0072 0,0108 0,0180

0.4 - 0.5 0

0.5 - 0.6 0

0.6 - 0.7 0

0.7 - 0.8 0

0.8 - 0.9 0

0.9 - 1.0 0

1.0 - 1.1 0

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0162 0,2038 0,4545 0,2309 0,0703 0,0180 0 0 0 0 0,9939

Wind Sea, Scatter diagram: Sector 1: 345˚ - 15˚

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0126 0,3229 0,2435 0,0397 0,6187

0.1 - 0.2 0,0108 0,0325 0,0072 0,0505

0.2 - 0.3 0,0126 0,0126

0.3 - 0.4 0

0.4 - 0.5 0

0.5 - 0.6 0

0.6 - 0.7 0

0.7 - 0.8 0

0.8 - 0.9 0

0.9 - 1.0 0

1.0 - 1.1 0

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0126 0,3229 0,2543 0,0722 0,0198 0 0 0 0 0 0,6818

Wind Sea, Scatter diagram: Sector 2: 15˚ - 45˚

Tp [s]

Page 76: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

25

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0126 0,6349 0,8171 0,2417 0,0018 1,7082

0.1 - 0.2 0,0216 0,5447 0,0595 0,6259

0.2 - 0.3 0,0162 0,1353 0,0018 0,1533

0.3 - 0.4 0,0343 0,0216 0,0559

0.4 - 0.5 0,0036 0,0198 0,0234

0.5 - 0.6 0,0018 0,0018

0.6 - 0.7 0

0.7 - 0.8 0

0.8 - 0.9 0

0.9 - 1.0 0

1.0 - 1.1 0

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0126 0,6349 0,8387 0,8027 0,2345 0,0451 0 0 0 0 2,5685

Wind Sea, Scatter diagram: Sector 3: 45˚ - 75˚

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0072 4,3380 5,6548 0,8838 0,0162 10,9001

0.1 - 0.2 0,4690 5,7973 0,9776 0,0054 7,2493

0.2 - 0.3 0,4744 3,2991 0,1497 0,0054 3,9286

0.3 - 0.4 1,0552 0,6512 0,0072 1,7136

0.4 - 0.5 0,0595 0,5159 0,0559 0,0018 0,6331

0.5 - 0.6 0,1768 0,1154 0,0036 0,2958

0.6 - 0.7 0,0379 0,1136 0,0018 0,1533

0.7 - 0.8 0,0595 0,0126 0,0722

0.8 - 0.9 0,0198 0,0343 0,0541

0.9 - 1.0 0,0234 0,0018 0,0253

1.0 - 1.1 0,0108 0,0036 0,0144

1.1 - 1.2 0,0072 0,0072

1.2 - 1.3 0,0018 0,0018

1.3 - 1.4 0,0036 0,0036

1.4 - 1.5 0,0036 0,0036

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0072 4,3380 6,1237 7,1555 5,4076 1,5368 0,3770 0,0884 0,0180 0,0036 25,0559

Wind Sea, Scatter diagram: Sector 4: 75˚ - 105˚

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0090 1,4827 1,4394 0,2237 3,1548

0.1 - 0.2 0,2742 2,2727 0,3211 2,8680

0.2 - 0.3 0,4095 1,3799 0,0379 1,8272

0.3 - 0.4 0,0036 0,6313 0,2074 0,0018 0,8442

0.4 - 0.5 0,0812 0,2128 0,0108 0,3048

0.5 - 0.6 0,1064 0,0216 0,1281

0.6 - 0.7 0,0234 0,0253 0,0487

0.7 - 0.8 0,0054 0,0234 0,0289

0.8 - 0.9 0,0054 0,0090 0,0144

0.9 - 1.0 0,0036 0,0036

1.0 - 1.1 0

1.1 - 1.2 0,0018 0,0018

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0090 1,4827 1,7136 2,9095 2,4134 0,5934 0,0884 0,0144 0 0 9,2244

Wind Sea, Scatter diagram: Sector 5: 105˚ - 135˚

Tp [s]

Page 77: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

26

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,4527 0,7161 0,1353 0,0018 1,3059

0.1 - 0.2 0,2814 1,2843 0,0974 1,6631

0.2 - 0.3 0,0018 0,8351 0,7738 0,0036 1,6144

0.3 - 0.4 0,0343 1,0011 0,0541 1,0895

0.4 - 0.5 0,4600 0,1118 0,0054 0,5772

0.5 - 0.6 0,0433 0,1587 0,0090 0,2110

0.6 - 0.7 0,0794 0,0162 0,0956

0.7 - 0.8 0,0325 0,0307 0,0631

0.8 - 0.9 0,0216 0,0216

0.9 - 1.0 0,0090 0,0090

1.0 - 1.1 0

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0 0,4527 0,9993 2,2890 2,3773 0,4401 0,0920 0 0 0 6,6504

Wind Sea, Scatter diagram: Sector 6: 135˚ - 165˚

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0018 0,3175 0,7179 0,2020 1,2392

0.1 - 0.2 0,2399 1,1273 0,1750 0,0036 1,5458

0.2 - 0.3 0,5213 0,6259 0,0054 1,1526

0.3 - 0.4 0,0613 0,4419 0,0956 0,0036 0,6025

0.4 - 0.5 0,0776 0,1082 0,0036 0,1894

0.5 - 0.6 0,0144 0,0649 0,0722 0,1515

0.6 - 0.7 0,0126 0,0451 0,0577

0.7 - 0.8 0,0072 0,0216 0,0289

0.8 - 0.9 0,0144 0,0036 0,0180

0.9 - 1.0 0,0036 0,0036

1.0 - 1.1 0

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0018 0,3175 0,9578 1,9120 1,3348 0,2976 0,1605 0,0072 0 0 4,9892

Wind Sea, Scatter diagram: Sector 7: 165˚ - 195˚

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0036 0,4113 1,8795 0,9235 0,0090 3,2269

0.1 - 0.2 0,1533 3,6562 0,8766 0,0090 4,6952

0.2 - 0.3 0,5195 3,3315 0,1010 0,0018 3,9538

0.3 - 0.4 0,0018 1,4863 0,7918 0,0036 2,2835

0.4 - 0.5 0,0920 0,8712 0,0108 0,9740

0.5 - 0.6 0,3120 0,1118 0,4239

0.6 - 0.7 0,0144 0,3030 0,3175

0.7 - 0.8 0,1840 0,0090 0,1930

0.8 - 0.9 0,0451 0,0415 0,0866

0.9 - 1.0 0,0126 0,0126

1.0 - 1.1 0,0018 0,0018

1.1 - 1.2 0

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0036 0,4113 2,0328 5,1010 5,7955 2,0996 0,6602 0,0649 0 0 16,1688

Wind Sea, Scatter diagram: Sector 8: 195˚ - 225˚

Tp [s]

Page 78: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

27

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0054 0,3734 0,7197 0,0685 0,0018 1,1688

0.1 - 0.2 0,3824 0,6908 0,0036 1,0768

0.2 - 0.3 0,5844 0,1227 0,7071

0.3 - 0.4 0,0108 0,4401 0,0126 0,4636

0.4 - 0.5 0,1389 0,0685 0,2074

0.5 - 0.6 0,0234 0,1010 0,0018 0,1263

0.6 - 0.7 0,0631 0,0180 0,0812

0.7 - 0.8 0,0090 0,0253 0,0343

0.8 - 0.9 0,0234 0,0234

0.9 - 1.0 0,0198 0,0018 0,0216

1.0 - 1.1 0

1.1 - 1.2 0,0018 0,0018

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0054 0,3734 1,1021 1,3546 0,7305 0,2543 0,0884 0,0036 0 0 3,9123

Wind Sea, Scatter diagram: Sector 9: 225˚ - 255˚

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0162 0,6349 0,9235 0,0234 1,5981

0.1 - 0.2 0,6169 0,6638 0,0072 1,2879

0.2 - 0.3 0,3680 0,1010 0,4690

0.3 - 0.4 0,0072 0,2940 0,0018 0,3030

0.4 - 0.5 0,1515 0,0289 0,1804

0.5 - 0.6 0,0162 0,0667 0,0830

0.6 - 0.7 0,0361 0,0018 0,0379

0.7 - 0.8 0,0343 0,0072 0,0415

0.8 - 0.9 0,0018 0,0162 0,0180

0.9 - 1.0 0,0090 0,0090

1.0 - 1.1 0,0108 0,0036 0,0144

1.1 - 1.2 0,0018 0,0018

1.2 - 1.3 0

1.3 - 1.4 0

1.4 - 1.5 0

1.5 - 1.6 0

1.6 - 1.7 0

1.7 - 1.8 0

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0162 0,6349 1,5404 1,0624 0,5700 0,1696 0,0451 0,0054 0 0 4,0440

Wind Sea, Scatter diagram: Sector 10: 255˚ - 285˚

Tp [s]

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0054 0,7630 1,7280 0,4690 0,0054 2,9708

0.1 - 0.2 0,1263 2,2240 0,2092 2,5595

0.2 - 0.3 0,1948 0,8874 0,0343 1,1165

0.3 - 0.4 0,4131 0,1010 0,5141

0.4 - 0.5 0,0451 0,2110 0,0036 0,2597

0.5 - 0.6 0,0018 0,1335 0,0234 0,0018 0,1605

0.6 - 0.7 0,0595 0,0361 0,0018 0,0974

0.7 - 0.8 0,0036 0,0559 0,0018 0,0613

0.8 - 0.9 0,0667 0,0144 0,0812

0.9 - 1.0 0,0108 0,0216 0,0325

1.0 - 1.1 0,0180 0,0018 0,0198

1.1 - 1.2 0,0126 0,0018 0,0144

1.2 - 1.3 0,0036 0,0036

1.3 - 1.4 0,0018 0,0018

1.4 - 1.5 0,0018 0,0018

1.5 - 1.6 0

1.6 - 1.7 0,0018 0,0018

1.7 - 1.8 0

1.8 - 1.9 0,0036 0,0036

1.9 - 2.0 0,0018 0,0018

Sum 0,0054 0,7630 1,8543 2,8878 1,5620 0,5429 0,1966 0,0740 0,0090 0,0072 7,9022

Wind Sea, Scatter diagram: Sector 11: 285˚ - 315˚

Tp [s]

Page 79: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

28

Hm0 [m] 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 4.0 4.0 - 4.5 4.5 - 5.0 Sum

0.0 - 0.1 0,0162 0,3950 1,4935 1,8615 0,1497 3,9159

0.1 - 0.2 0,0108 1,2861 2,4134 0,0974 3,8077

0.2 - 0.3 0,0289 2,0851 1,4809 0,0090 3,6039

0.3 - 0.4 0,2345 2,2673 0,1335 2,6353

0.4 - 0.5 0,0018 1,0642 0,5411 1,6071

0.5 - 0.6 0,1227 0,7540 0,8766

0.6 - 0.7 0,0018 0,4708 0,0054 0,4780

0.7 - 0.8 0,3048 0,0848 0,0018 0,3914

0.8 - 0.9 0,0469 0,2110 0,0018 0,2597

0.9 - 1.0 0,1245 0,0018 0,1263

1.0 - 1.1 0,0361 0,0198 0,0559

1.1 - 1.2 0,0072 0,0162 0,0234

1.2 - 1.3 0,0126 0,0126

1.3 - 1.4 0,0054 0,0054

1.4 - 1.5 0,0036 0,0036

1.5 - 1.6 0,0018 0,0018

1.6 - 1.7 0,0018 0,0018

1.7 - 1.8 0,0018 0,0018

1.8 - 1.9 0

1.9 - 2.0 0

Sum 0,0162 0,3950 1,5043 3,1764 4,8846 5,0343 2,2601 0,4690 0,0559 0,0126 17,8084

Wind Sea, Scatter diagram: Sector 12: 315˚ - 345˚

Tp [s]

Page 80: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix B

Swell Scatter Diagrams

Page 81: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 4,6277 0,0055 0,0379 0,0444 0,0592 0,0536 0,0805 0,0749 0,0546 0,0213 0,0194 0,0148 0,0009 0,0009 5,0957

0,01 0,02 0,0139 0,0342 0,0231 0,1017 0,0795 0,0583 0,0490 0,0435 0,0518 0,0416 0,0277 0,0083 0,0065 0,0028 0,0018 0,5439

0,02 0,03 0,0092 0,0379 0,0444 0,0435 0,1110 0,0721 0,0573 0,0518 0,0592 0,0472 0,0296 0,0092 0,0046 0,0083 0,0018 0,5874

0,03 0,04 0,0083 0,0490 0,0287 0,0240 0,0620 0,0601 0,0305 0,0388 0,0472 0,0231 0,0074 0,0018 0,0028 0,3839

0,04 0,05 0,0435 0,0860 0,0342 0,0166 0,0388 0,0379 0,0213 0,0324 0,0231 0,0157 0,0046 0,0028 0,3570

0,05 0,06 0,0203 0,0823 0,0712 0,0148 0,0083 0,0213 0,0065 0,0139 0,0148 0,0111 0,0046 0,2692

0,06 0,07 0,0055 0,0546 0,1202 0,0453 0,0176 0,0074 0,0065 0,0102 0,0046 0,0037 0,0065 0,0046 0,2867

0,07 0,08 0,0028 0,0268 0,0703 0,0638 0,0129 0,0018 0,0037 0,0018 0,0028 0,0046 0,0009 0,0028 0,1952

0,08 0,09 0,0009 0,0037 0,0425 0,0758 0,0222 0,0065 0,0046 0,0009 0,0009 0,0009 0,1591

0,09 0,10 0,0009 0,0194 0,0509 0,0481 0,0055 0,0009 0,0009 0,0009 0,1276

0,10 0,11 0,0092 0,0425 0,0499 0,0018 0,0009 0,0009 0,0009 0,0018 0,1082

0,11 0,12 0,0009 0,0018 0,0324 0,0435 0,0120 0,0009 0,0009 0,0009 0,0934

0,12 0,13 0,0028 0,0092 0,0314 0,0120 0,0037 0,0009 0,0009 0,0009 0,0620

0,13 0,14 0,0046 0,0157 0,0194 0,0009 0,0407

0,14 0,15 0,0018 0,0102 0,0203 0,0037 0,0018 0,0009 0,0009 0,0398

0,15 0,16 0,0074 0,0231 0,0102 0,0018 0,0009 0,0435

0,16 0,17 0,0037 0,0185 0,0055 0,0018 0,0009 0,0305

0,17 0,18 0,0046 0,0129 0,0074 0,0018 0,0028 0,0009 0,0305

0,18 0,19 0,0065 0,0046 0,0009 0,0009 0,0009 0,0018 0,0157

0,19 0,20 0,0009 0,0009 0,0018 0,0037 0,0009 0,0083

0,20 0,21 0,0009 0,0018 0,0009 0,0018 0,0009 0,0009 0,0074

0,21 0,22 0,0009 0,0009

0,22 0,23 0,0009 0,0009

Sum 4,6277 0,0000 0,0000 0,0000 0,0287 0,1184 0,2340 0,4884 0,6401 0,6308 0,5578 0,3913 0,2534 0,2312 0,1471 0,0629 0,0324 0,0398 0,0018 0,0018 8,4876

Tp

Swell, Scatter diagram, January

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 4,1615 0,0324 0,0250 0,0342 0,0509 0,0509 0,1110 0,0842 0,0527 0,0472 0,0259 0,0120 0,0083 0,0037 0,0009 4,7007

0,01 0,02 0,0213 0,0407 0,0509 0,0814 0,0610 0,0546 0,0573 0,0712 0,0490 0,0425 0,0176 0,0120 0,0037 0,0009 0,5642

0,02 0,03 0,0065 0,0231 0,0416 0,0305 0,0610 0,0703 0,0601 0,0758 0,0860 0,0573 0,0361 0,0083 0,0046 0,0009 0,0018 0,0018 0,5661

0,03 0,04 0,0018 0,0065 0,0388 0,0398 0,0324 0,0518 0,0481 0,0379 0,0287 0,0379 0,0213 0,0139 0,0055 0,0055 0,0009 0,3709

0,04 0,05 0,0009 0,0425 0,0888 0,0398 0,0111 0,0157 0,0231 0,0240 0,0231 0,0277 0,0102 0,0074 0,0028 0,3173

0,05 0,06 0,0194 0,0786 0,0953 0,0240 0,0083 0,0129 0,0074 0,0083 0,0083 0,0092 0,0028 0,2747

0,06 0,07 0,0102 0,0592 0,1128 0,0518 0,0092 0,0065 0,0083 0,0028 0,0037 0,0074 0,0028 0,0028 0,2775

0,07 0,08 0,0037 0,0139 0,0620 0,0435 0,0129 0,0028 0,0009 0,0065 0,0065 0,0028 0,0018 0,0028 0,0009 0,1609

0,08 0,09 0,0046 0,0259 0,0694 0,0194 0,0018 0,0018 0,0009 0,0009 0,0009 0,0028 0,1286

0,09 0,10 0,0009 0,0231 0,0555 0,0398 0,0037 0,0018 0,0009 0,0028 0,0018 0,1304

0,10 0,11 0,0102 0,0314 0,0222 0,0009 0,0009 0,0028 0,0684

0,11 0,12 0,0037 0,0148 0,0250 0,0055 0,0018 0,0009 0,0518

0,12 0,13 0,0028 0,0055 0,0240 0,0092 0,0018 0,0009 0,0444

0,13 0,14 0,0046 0,0074 0,0083 0,0037 0,0009 0,0250

0,14 0,15 0,0018 0,0139 0,0028 0,0009 0,0194

0,15 0,16 0,0009 0,0018 0,0065 0,0037 0,0009 0,0139

0,16 0,17 0,0037 0,0055 0,0028 0,0120

0,17 0,18 0,0028 0,0018 0,0046

0,18 0,19 0,0009 0,0009

0,19 0,20 0,0009 0,0009

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 4,1615 0,0000 0,0000 0,0000 0,0620 0,0962 0,2414 0,4486 0,5809 0,6003 0,4412 0,3413 0,2701 0,2081 0,1369 0,0749 0,0407 0,0231 0,0037 0,0018 7,7328

Swell, Scatter diagram, February

Tp

Page 82: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

31

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 4,8422 0,0166 0,0518 0,0583 0,0666 0,1017 0,0971 0,0953 0,0860 0,0268 0,0222 0,0129 0,0028 0,0009 5,4814

0,01 0,02 0,0185 0,0740 0,0749 0,0999 0,0860 0,0518 0,0888 0,0971 0,0925 0,0527 0,0213 0,0102 0,0018 0,7696

0,02 0,03 0,0120 0,0416 0,0351 0,0416 0,0462 0,0805 0,0555 0,0740 0,0546 0,0277 0,0203 0,0074 0,0037 0,0018 0,5023

0,03 0,04 0,0092 0,0462 0,0435 0,0176 0,0527 0,0583 0,0296 0,0379 0,0314 0,0213 0,0065 0,3543

0,04 0,05 0,0499 0,0647 0,0407 0,0185 0,0250 0,0342 0,0111 0,0203 0,0176 0,0102 0,0018 0,0009 0,2951

0,05 0,06 0,0231 0,0925 0,0777 0,0240 0,0092 0,0129 0,0129 0,0148 0,0139 0,0083 0,0037 0,0028 0,2960

0,06 0,07 0,0083 0,0573 0,0777 0,0388 0,0092 0,0018 0,0055 0,0055 0,0065 0,0092 0,0037 0,0009 0,2248

0,07 0,08 0,0009 0,0287 0,0499 0,0481 0,0185 0,0028 0,0009 0,0009 0,0018 0,0037 0,1563

0,08 0,09 0,0055 0,0361 0,0601 0,0231 0,0028 0,0018 0,0009 0,0046 0,1350

0,09 0,10 0,0009 0,0176 0,0388 0,0361 0,0009 0,0009 0,0009 0,0009 0,0971

0,10 0,11 0,0009 0,0231 0,0231 0,0028 0,0009 0,0509

0,11 0,12 0,0018 0,0092 0,0185 0,0009 0,0305

0,12 0,13 0,0018 0,0102 0,0120 0,0074 0,0009 0,0324

0,13 0,14 0,0028 0,0074 0,0028 0,0009 0,0139

0,14 0,15 0,0009 0,0102 0,0009 0,0009 0,0129

0,15 0,16 0,0037 0,0166 0,0028 0,0231

0,16 0,17 0,0009 0,0028 0,0028 0,0009 0,0074

0,17 0,18 0,0009 0,0018 0,0028

0,18 0,19 0,0018 0,0018

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 4,8422 0,0000 0,0000 0,0000 0,0472 0,1767 0,2969 0,5013 0,5559 0,5541 0,4810 0,3940 0,2534 0,1794 0,1156 0,0573 0,0213 0,0111 0,0000 0,0000 8,4876

Swell, Scatter diagram, March

Tp

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 5,2280 0,0805 0,0906 0,0694 0,0962 0,1128 0,1443 0,1665 0,0768 0,0657 0,0213 0,0139 0,0028 0,0018 6,1705

0,01 0,02 0,0416 0,1147 0,0657 0,0823 0,0509 0,0925 0,1073 0,1073 0,0592 0,0398 0,0203 0,0074 0,0018 0,0018 0,7927

0,02 0,03 0,0102 0,0305 0,0573 0,0277 0,0490 0,0601 0,0629 0,0777 0,0490 0,0194 0,0120 0,0055 0,0018 0,4634

0,03 0,04 0,0055 0,0620 0,0324 0,0222 0,0250 0,0314 0,0305 0,0296 0,0213 0,0129 0,0037 0,0018 0,0009 0,2793

0,04 0,05 0,0296 0,0694 0,0287 0,0129 0,0055 0,0185 0,0176 0,0203 0,0092 0,0018 0,2137

0,05 0,06 0,0092 0,0370 0,0333 0,0083 0,0065 0,0102 0,0046 0,0065 0,0055 0,0018 0,1230

0,06 0,07 0,0046 0,0213 0,0314 0,0166 0,0037 0,0028 0,0009 0,0009 0,0055 0,0009 0,0888

0,07 0,08 0,0046 0,0194 0,0157 0,0055 0,0009 0,0009 0,0472

0,08 0,09 0,0009 0,0139 0,0148

0,09 0,10 0,0028 0,0046 0,0074

0,10 0,11 0,0018 0,0018 0,0009 0,0046

0,11 0,12 0,0009 0,0009 0,0018

0,12 0,13 0,0018 0,0018

0,13 0,14 0,0028 0,0028

0,14 0,15 0,0009 0,0009

0,15 0,16 0,0009 0,0009

0,16 0,17 0,0000

0,17 0,18 0,0000

0,18 0,19 0,0000

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 5,2280 0,0000 0,0000 0,0000 0,1323 0,2414 0,2978 0,3709 0,3515 0,3959 0,3922 0,3330 0,2266 0,1295 0,0749 0,0287 0,0083 0,0028 0,0000 0,0000 8,2138

Swell, Scatter diagram, April

Tp

Page 83: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

32

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 5,9985 0,1452 0,1424 0,1489 0,1073 0,1239 0,1572 0,1230 0,0518 0,0296 0,0148 0,0092 0,0009 0,0009 7,0539

0,01 0,02 0,0509 0,1249 0,0897 0,0795 0,0832 0,0897 0,1073 0,0694 0,0296 0,0139 0,0065 0,0009 0,7455

0,02 0,03 0,0055 0,0231 0,0666 0,0185 0,0268 0,0259 0,0314 0,0379 0,0231 0,0129 0,0028 0,2747

0,03 0,04 0,0018 0,0388 0,0287 0,0046 0,0074 0,0065 0,0222 0,0213 0,0065 0,0046 0,0018 0,1443

0,04 0,05 0,0176 0,0425 0,0231 0,0037 0,0046 0,0065 0,0055 0,0028 0,0028 0,0009 0,1101

0,05 0,06 0,0102 0,0240 0,0194 0,0018 0,0018 0,0065 0,0009 0,0647

0,06 0,07 0,0018 0,0102 0,0148 0,0074 0,0028 0,0018 0,0388

0,07 0,08 0,0018 0,0074 0,0065 0,0009 0,0166

0,08 0,09 0,0055 0,0083 0,0037 0,0176

0,09 0,10 0,0009 0,0037 0,0009 0,0055

0,10 0,11 0,0018 0,0009 0,0028

0,11 0,12 0,0018 0,0009 0,0028

0,12 0,13 0,0018 0,0018 0,0037

0,13 0,14 0,0018 0,0018

0,14 0,15 0,0009 0,0037 0,0046

0,15 0,16 0,0000

0,16 0,17 0,0000

0,17 0,18 0,0000

0,18 0,19 0,0000

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 5,9985 0,0000 0,0000 0,0000 0,2016 0,2923 0,3737 0,3126 0,3099 0,3136 0,2867 0,2044 0,1110 0,0509 0,0268 0,0028 0,0028 0,0000 0,0000 0,0000 8,4876

Swell, Scatter diagram, May

Tp

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 5,7062 0,2738 0,1785 0,1276 0,1757 0,1868 0,1619 0,0953 0,0324 0,0074 0,0018 0,0028 6,9503

0,01 0,02 0,0712 0,1017 0,0971 0,0610 0,1017 0,0916 0,0721 0,0647 0,0194 0,0055 0,0018 0,6882

0,02 0,03 0,0037 0,0176 0,1017 0,0277 0,0287 0,0379 0,0296 0,0351 0,0065 0,0028 0,0009 0,2923

0,03 0,04 0,0536 0,0647 0,0065 0,0083 0,0092 0,0046 0,0046 0,0028 0,0009 0,1554

0,04 0,05 0,0157 0,0314 0,0129 0,0009 0,0009 0,0009 0,0037 0,0028 0,0694

0,05 0,06 0,0120 0,0120 0,0009 0,0250

0,06 0,07 0,0055 0,0092 0,0018 0,0166

0,07 0,08 0,0009 0,0055 0,0028 0,0092

0,08 0,09 0,0009 0,0028 0,0037

0,09 0,10 0,0009 0,0009

0,10 0,11 0,0000

0,11 0,12 0,0000

0,12 0,13 0,0009 0,0009

0,13 0,14 0,0000

0,14 0,15 0,0000

0,15 0,16 0,0009 0,0009 0,0018

0,16 0,17 0,0000

0,17 0,18 0,0000

0,18 0,19 0,0000

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 5,7062 0,0000 0,0000 0,0000 0,3487 0,2978 0,3959 0,3792 0,3644 0,3099 0,2081 0,1397 0,0416 0,0157 0,0065 0,0000 0,0000 0,0000 0,0000 0,0000 8,2138

Swell, Scatter diagram, June

Tp

Page 84: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

33

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 5,3556 0,5087 0,3062 0,1933 0,2553 0,2211 0,1017 0,0610 0,0213 0,0092 0,0009 0,0009 0,0009 7,0363

0,01 0,02 0,1156 0,2655 0,1276 0,0953 0,1230 0,1221 0,0536 0,0250 0,0102 0,0046 0,0055 0,9481

0,02 0,03 0,0009 0,0213 0,0731 0,0314 0,0185 0,0324 0,0370 0,0203 0,0092 0,0028 0,0028 0,2497

0,03 0,04 0,0009 0,0536 0,0222 0,0018 0,0018 0,0092 0,0139 0,0074 0,0018 0,1128

0,04 0,05 0,0194 0,0527 0,0139 0,0009 0,0028 0,0009 0,0028 0,0028 0,0009 0,0971

0,05 0,06 0,0148 0,0092 0,0018 0,0259

0,06 0,07 0,0055 0,0055 0,0018 0,0129

0,07 0,08 0,0028 0,0009 0,0037

0,08 0,09 0,0009 0,0009

0,09 0,10 0,0000

0,10 0,11 0,0000

0,11 0,12 0,0000

0,12 0,13 0,0000

0,13 0,14 0,0000

0,14 0,15 0,0000

0,15 0,16 0,0000

0,16 0,17 0,0000

0,17 0,18 0,0000

0,18 0,19 0,0000

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 5,3556 0,0000 0,0000 0,0000 0,6253 0,5938 0,4671 0,4773 0,3959 0,2636 0,1619 0,0832 0,0370 0,0129 0,0120 0,0009 0,0009 0,0000 0,0000 0,0000 8,4876

Swell, Scatter diagram, July

Tp

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 5,2169 0,3635 0,2904 0,1693 0,2627 0,2645 0,1730 0,0684 0,0250 0,0166 0,0046 0,0028 6,8578

0,01 0,02 0,0601 0,2285 0,1230 0,0934 0,1221 0,1360 0,0592 0,0370 0,0111 0,0046 0,0018 0,0018 0,8787

0,02 0,03 0,0083 0,0296 0,0990 0,0305 0,0111 0,0388 0,0398 0,0398 0,0065 0,0028 0,0028 0,3089

0,03 0,04 0,0990 0,0592 0,0028 0,0028 0,0111 0,0166 0,0065 0,0028 0,0009 0,2016

0,04 0,05 0,0287 0,0647 0,0250 0,0018 0,0028 0,0018 0,0009 0,0028 0,1286

0,05 0,06 0,0009 0,0231 0,0222 0,0037 0,0018 0,0009 0,0009 0,0536

0,06 0,07 0,0065 0,0139 0,0074 0,0009 0,0009 0,0296

0,07 0,08 0,0046 0,0046 0,0092

0,08 0,09 0,0028 0,0046 0,0028 0,0102

0,09 0,10 0,0009 0,0046 0,0055

0,10 0,11 0,0009 0,0018 0,0009 0,0037

0,11 0,12 0,0000

0,12 0,13 0,0000

0,13 0,14 0,0000

0,14 0,15 0,0000

0,15 0,16 0,0000

0,16 0,17 0,0000

0,17 0,18 0,0000

0,18 0,19 0,0000

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 5,2169 0,0000 0,0000 0,0000 0,4320 0,5485 0,5198 0,5402 0,4699 0,3755 0,1896 0,1239 0,0416 0,0157 0,0120 0,0018 0,0000 0,0000 0,0000 0,0000 8,4876

Swell, Scatter diagram, August

Tp

Page 85: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

34

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 4,7738 0,1101 0,1239 0,1147 0,1646 0,1406 0,1128 0,0897 0,0435 0,0240 0,0111 0,0065 0,0065 0,0028 0,0009 5,7256

0,01 0,02 0,0629 0,1397 0,0814 0,1424 0,1239 0,0971 0,0897 0,0814 0,0453 0,0157 0,0046 0,0046 0,0037 0,0009 0,8935

0,02 0,03 0,0083 0,0444 0,0823 0,0425 0,0620 0,0657 0,0601 0,0731 0,0305 0,0203 0,0139 0,0028 0,0009 0,5069

0,03 0,04 0,0046 0,1064 0,0629 0,0129 0,0166 0,0314 0,0240 0,0120 0,0018 0,0046 0,0009 0,0018 0,2803

0,04 0,05 0,0518 0,0860 0,0407 0,0111 0,0166 0,0120 0,0111 0,0065 0,0046 0,2405

0,05 0,06 0,0139 0,0999 0,0851 0,0120 0,0046 0,0129 0,0009 0,0046 0,0028 0,2368

0,06 0,07 0,0037 0,0416 0,0768 0,0222 0,0037 0,0018 0,0009 0,0028 0,1535

0,07 0,08 0,0065 0,0268 0,0268 0,0018 0,0037 0,0028 0,0028 0,0712

0,08 0,09 0,0009 0,0111 0,0166 0,0065 0,0009 0,0361

0,09 0,10 0,0092 0,0157 0,0055 0,0305

0,10 0,11 0,0018 0,0065 0,0065 0,0018 0,0166

0,11 0,12 0,0028 0,0009 0,0009 0,0046

0,12 0,13 0,0009 0,0009 0,0018 0,0037

0,13 0,14 0,0018 0,0018 0,0009 0,0009 0,0055

0,14 0,15 0,0018 0,0018 0,0037

0,15 0,16 0,0028 0,0009 0,0037

0,16 0,17 0,0009 0,0009

0,17 0,18 0,0000

0,18 0,19 0,0000

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 4,7738 0,0000 0,0000 0,0000 0,1813 0,3126 0,4542 0,6475 0,5911 0,4088 0,3191 0,2590 0,1323 0,0647 0,0425 0,0157 0,0092 0,0018 0,0000 0,0000 8,2138

Swell, Scatter diagram, September

Tp

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 5,2289 0,0388 0,0610 0,0934 0,1101 0,1323 0,1369 0,0860 0,0610 0,0240 0,0092 0,0074 0,0037 0,0018 5,9948

0,01 0,02 0,0231 0,0888 0,0749 0,1156 0,0832 0,0592 0,0573 0,0435 0,0333 0,0259 0,0166 0,0065 0,0037 0,0009 0,6327

0,02 0,03 0,0102 0,0536 0,0842 0,0527 0,0731 0,0740 0,0657 0,0546 0,0277 0,0166 0,0148 0,0046 0,0046 0,0009 0,5374

0,03 0,04 0,0102 0,0620 0,0555 0,0203 0,0296 0,0259 0,0370 0,0268 0,0166 0,0046 0,0018 0,0009 0,0009 0,2923

0,04 0,05 0,0416 0,1128 0,0453 0,0037 0,0176 0,0194 0,0222 0,0166 0,0102 0,0028 0,0037 0,0009 0,2969

0,05 0,06 0,0240 0,0842 0,0647 0,0120 0,0065 0,0046 0,0055 0,0028 0,0037 0,0111 0,2192

0,06 0,07 0,0065 0,0444 0,0795 0,0231 0,0018 0,0046 0,0009 0,0018 0,0009 0,0009 0,0028 0,0009 0,1683

0,07 0,08 0,0139 0,0472 0,0361 0,0037 0,0009 0,0009 0,0009 0,0009 0,1045

0,08 0,09 0,0037 0,0259 0,0407 0,0065 0,0009 0,0009 0,0786

0,09 0,10 0,0129 0,0407 0,0166 0,0009 0,0009 0,0009 0,0731

0,10 0,11 0,0009 0,0176 0,0092 0,0009 0,0287

0,11 0,12 0,0009 0,0083 0,0102 0,0009 0,0203

0,12 0,13 0,0009 0,0055 0,0018 0,0083

0,13 0,14 0,0009 0,0083 0,0092

0,14 0,15 0,0009 0,0037 0,0037 0,0083

0,15 0,16 0,0009 0,0092 0,0009 0,0009 0,0120

0,16 0,17 0,0000

0,17 0,18 0,0009 0,0009

0,18 0,19 0,0009 0,0009 0,0018

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 5,2289 0,0000 0,0000 0,0000 0,0721 0,2137 0,3866 0,5929 0,5864 0,4828 0,3154 0,2525 0,1461 0,0925 0,0592 0,0324 0,0185 0,0065 0,0009 0,0000 8,4876

Swell, Scatter diagram, October

Tp

Page 86: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

35

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 4,9791 0,0222 0,0499 0,0703 0,0564 0,0731 0,0916 0,0888 0,0379 0,0277 0,0092 0,0074 0,0009 5,5147

0,01 0,02 0,0324 0,0536 0,0629 0,0823 0,1073 0,0749 0,0518 0,0564 0,0555 0,0250 0,0139 0,0065 0,0037 0,0009 0,6271

0,02 0,03 0,0120 0,0416 0,0481 0,0453 0,0629 0,0666 0,0518 0,0749 0,0610 0,0444 0,0259 0,0018 0,0009 0,5374

0,03 0,04 0,0009 0,0037 0,0536 0,0416 0,0342 0,0564 0,0490 0,0351 0,0324 0,0213 0,0102 0,0074 0,0037 0,3496

0,04 0,05 0,0453 0,0860 0,0351 0,0092 0,0287 0,0333 0,0139 0,0148 0,0083 0,0009 0,0009 0,0018 0,2784

0,05 0,06 0,0287 0,0777 0,0518 0,0148 0,0083 0,0194 0,0129 0,0083 0,0055 0,0074 0,0028 0,2377

0,06 0,07 0,0102 0,0453 0,0749 0,0435 0,0083 0,0074 0,0028 0,0055 0,0046 0,0092 0,0009 0,0009 0,2137

0,07 0,08 0,0037 0,0111 0,0425 0,0361 0,0065 0,0037 0,0028 0,0009 0,0046 0,0009 0,0009 0,1138

0,08 0,09 0,0009 0,0046 0,0398 0,0555 0,0213 0,0037 0,0009 0,0018 0,0009 0,1295

0,09 0,10 0,0009 0,0157 0,0342 0,0166 0,0009 0,0009 0,0694

0,10 0,11 0,0055 0,0203 0,0185 0,0028 0,0009 0,0481

0,11 0,12 0,0139 0,0176 0,0028 0,0009 0,0351

0,12 0,13 0,0046 0,0037 0,0083 0,0009 0,0176

0,13 0,14 0,0018 0,0046 0,0037 0,0018 0,0009 0,0129

0,14 0,15 0,0009 0,0055 0,0009 0,0009 0,0083

0,15 0,16 0,0028 0,0065 0,0092

0,16 0,17 0,0018 0,0037 0,0009 0,0065

0,17 0,18 0,0028 0,0028

0,18 0,19 0,0018 0,0018

0,19 0,20 0,0000

0,20 0,21 0,0000

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 4,9791 0,0000 0,0000 0,0000 0,0675 0,1489 0,3237 0,4514 0,5430 0,5235 0,3811 0,3108 0,2155 0,1286 0,0768 0,0407 0,0148 0,0083 0,0000 0,0000 8,2138

Swell, Scatter diagram, November

Tp

Hm0 <2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 10 - 11 11 - 12 12 - 13 13 - 14 14 - 15 15 - 16 16 - 17 17 - 18 18 -19 19 - 20 >20 Sum

0,00 0,01 4,8450 0,0370 0,0481 0,0453 0,0583 0,0435 0,0768 0,0897 0,0694 0,0333 0,0139 0,0083 0,0074 0,0009 0,0018 5,3787

0,01 0,02 0,0176 0,0324 0,0564 0,0888 0,0906 0,0647 0,0555 0,0860 0,0721 0,0324 0,0231 0,0074 0,0018 0,0028 0,6318

0,02 0,03 0,0120 0,0250 0,0518 0,0435 0,0795 0,0749 0,0638 0,0435 0,0407 0,0425 0,0305 0,0111 0,0028 0,0018 0,5235

0,03 0,04 0,0074 0,0601 0,0481 0,0324 0,0518 0,0546 0,0379 0,0296 0,0268 0,0259 0,0120 0,0046 0,3913

0,04 0,05 0,0009 0,0629 0,0980 0,0462 0,0148 0,0268 0,0324 0,0231 0,0148 0,0166 0,0203 0,0046 0,0046 0,3663

0,05 0,06 0,0222 0,0906 0,0805 0,0166 0,0148 0,0139 0,0092 0,0083 0,0037 0,0083 0,0083 0,0083 0,0009 0,2858

0,06 0,07 0,0055 0,0684 0,1091 0,0351 0,0102 0,0083 0,0037 0,0009 0,0055 0,0102 0,0046 0,0037 0,2655

0,07 0,08 0,0055 0,0240 0,0731 0,0481 0,0055 0,0037 0,0037 0,0046 0,0028 0,0018 0,0028 0,0046 0,1804

0,08 0,09 0,0037 0,0490 0,0472 0,0213 0,0009 0,0009 0,0037 0,0009 0,0018 0,1295

0,09 0,10 0,0009 0,0102 0,0370 0,0250 0,0046 0,0018 0,0795

0,10 0,11 0,0065 0,0324 0,0222 0,0037 0,0009 0,0657

0,11 0,12 0,0018 0,0194 0,0342 0,0055 0,0009 0,0009 0,0629

0,12 0,13 0,0157 0,0277 0,0065 0,0018 0,0518

0,13 0,14 0,0028 0,0111 0,0083 0,0018 0,0009 0,0250

0,14 0,15 0,0046 0,0074 0,0028 0,0148

0,15 0,16 0,0009 0,0046 0,0083 0,0009 0,0009 0,0157

0,16 0,17 0,0018 0,0055 0,0018 0,0092

0,17 0,18 0,0018 0,0009 0,0028

0,18 0,19 0,0018 0,0009 0,0028

0,19 0,20 0,0009 0,0009

0,20 0,21 0,0028 0,0028

0,21 0,22 0,0000

0,22 0,23 0,0000

Sum 4,8450 0,0000 0,0000 0,0000 0,0666 0,1138 0,3099 0,5245 0,6225 0,5383 0,4736 0,3496 0,2257 0,1535 0,1221 0,0786 0,0314 0,0305 0,0009 0,0000 8,4866

Swell, Scatter diagram, December

Tp

Page 87: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix C

Wind Wave Misalignment

Page 88: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

37

Page 89: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

38

Offset

[deg] Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7 Sector 8 Sector 9 Sector 10 Sector 11 Sector 12

-180 1,35501E-03 2,02840E-03 7,02247E-04 7,19891E-05 0,00000E+00 0,00000E+00 6,08458E-04 2,23115E-04 0,00000E+00 0,00000E+00 2,28258E-04 1,01286E-04

-175 2,71003E-03 2,02840E-03 0,00000E+00 0,00000E+00 0,00000E+00 1,86881E-04 3,04229E-04 3,34672E-04 0,00000E+00 0,00000E+00 2,28258E-04 9,11577E-04

-170 0,00000E+00 0,00000E+00 7,02247E-04 2,15967E-04 0,00000E+00 0,00000E+00 0,00000E+00 3,34672E-04 0,00000E+00 0,00000E+00 2,28258E-04 9,11577E-04

-165 0,00000E+00 0,00000E+00 7,02247E-04 7,19891E-05 0,00000E+00 0,00000E+00 3,04229E-04 2,23115E-04 0,00000E+00 0,00000E+00 2,28258E-04 1,51930E-03

-160 0,00000E+00 2,02840E-03 0,00000E+00 0,00000E+00 0,00000E+00 1,86881E-04 0,00000E+00 1,11557E-04 0,00000E+00 0,00000E+00 0,00000E+00 2,02573E-03

-155 1,35501E-03 2,02840E-03 7,02247E-04 7,19891E-05 0,00000E+00 0,00000E+00 0,00000E+00 1,11557E-04 9,22084E-04 0,00000E+00 0,00000E+00 1,72187E-03

-150 2,71003E-03 2,02840E-03 1,40449E-03 0,00000E+00 1,95542E-04 0,00000E+00 0,00000E+00 2,23115E-04 0,00000E+00 0,00000E+00 0,00000E+00 2,83602E-03

-145 1,35501E-03 0,00000E+00 7,02247E-04 7,19891E-05 3,91083E-04 0,00000E+00 3,04229E-04 2,23115E-04 0,00000E+00 0,00000E+00 0,00000E+00 3,03859E-03

-140 1,35501E-03 0,00000E+00 0,00000E+00 1,43978E-04 3,91083E-04 0,00000E+00 3,04229E-04 0,00000E+00 0,00000E+00 0,00000E+00 9,13034E-04 2,83602E-03

-135 4,06504E-03 6,08519E-03 0,00000E+00 2,15967E-04 0,00000E+00 1,86881E-04 0,00000E+00 2,23115E-04 4,61042E-04 8,92061E-04 4,56517E-04 2,12701E-03

-130 4,06504E-03 2,02840E-03 0,00000E+00 2,87956E-04 1,95542E-04 1,86881E-04 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 4,15274E-03

-125 6,77507E-03 0,00000E+00 0,00000E+00 1,43978E-04 1,95542E-04 0,00000E+00 6,08458E-04 4,46229E-04 0,00000E+00 4,46030E-04 0,00000E+00 2,73473E-03

-120 2,71003E-03 2,02840E-03 7,02247E-04 1,43978E-04 1,95542E-04 1,86881E-04 0,00000E+00 1,11557E-04 4,61042E-04 0,00000E+00 2,28258E-04 4,25403E-03

-115 9,48510E-03 0,00000E+00 7,02247E-04 7,19891E-05 5,86625E-04 3,73762E-04 3,04229E-04 2,23115E-04 9,22084E-04 0,00000E+00 2,28258E-04 4,35531E-03

-110 2,03252E-02 0,00000E+00 7,02247E-04 2,15967E-04 1,95542E-04 5,60643E-04 3,04229E-04 2,23115E-04 0,00000E+00 0,00000E+00 0,00000E+00 3,24116E-03

-105 1,89702E-02 2,02840E-03 2,10674E-03 2,87956E-04 3,91083E-04 3,73762E-04 0,00000E+00 2,23115E-04 4,61042E-04 0,00000E+00 2,28258E-04 2,63345E-03

-100 2,43902E-02 4,05680E-03 1,40449E-03 7,19891E-05 3,91083E-04 3,73762E-04 0,00000E+00 1,11557E-04 4,61042E-04 0,00000E+00 0,00000E+00 2,12701E-03

-95 3,11653E-02 2,02840E-03 0,00000E+00 7,19891E-05 3,91083E-04 5,60643E-04 0,00000E+00 4,46229E-04 4,61042E-04 0,00000E+00 2,28258E-04 2,53216E-03

-90 1,76152E-02 8,11359E-03 0,00000E+00 1,43978E-04 1,17325E-03 0,00000E+00 3,04229E-04 4,46229E-04 1,84417E-03 4,46030E-04 4,56517E-04 2,73473E-03

-85 2,30352E-02 1,41988E-02 2,10674E-03 1,43978E-04 9,77708E-04 1,12129E-03 0,00000E+00 5,57787E-04 9,22084E-04 0,00000E+00 0,00000E+00 1,62058E-03

-80 3,11653E-02 1,41988E-02 7,02247E-04 2,15967E-04 1,17325E-03 7,47524E-04 0,00000E+00 2,23115E-04 4,61042E-04 0,00000E+00 0,00000E+00 2,73473E-03

-75 2,84553E-02 1,62272E-02 3,51124E-03 5,75913E-04 7,82167E-04 1,49505E-03 6,08458E-04 4,46229E-04 2,30521E-03 4,46030E-04 2,28258E-04 2,22830E-03

-70 3,25203E-02 2,23124E-02 1,40449E-03 5,75913E-04 2,54204E-03 3,73762E-04 9,12686E-04 4,46229E-04 4,14938E-03 2,67618E-03 0,00000E+00 2,73473E-03

-65 2,30352E-02 3,44828E-02 2,10674E-03 3,59945E-04 1,95542E-03 1,30817E-03 1,52114E-03 4,46229E-04 1,84417E-03 0,00000E+00 1,36955E-03 1,82315E-03

-60 1,49052E-02 4,46248E-02 3,51124E-03 7,91880E-04 3,91083E-03 2,99010E-03 1,21692E-03 4,46229E-04 2,76625E-03 1,78412E-03 6,84775E-04 1,11415E-03

-55 2,71003E-02 2,63692E-02 4,91573E-03 8,63869E-04 3,71529E-03 2,80321E-03 9,12686E-04 6,69344E-04 3,68834E-03 8,92061E-04 2,28258E-04 2,93730E-03

-50 2,16802E-02 2,83976E-02 8,42697E-03 1,15183E-03 4,88854E-03 4,11138E-03 2,73806E-03 7,80901E-04 1,38313E-03 2,67618E-03 1,14129E-03 2,73473E-03

-45 1,76152E-02 3,85396E-02 1,61517E-02 3,02354E-03 8,01721E-03 5,60643E-03 5,78035E-03 5,57787E-04 4,61042E-04 1,78412E-03 1,14129E-03 4,25403E-03

-40 1,89702E-02 2,63692E-02 1,19382E-02 4,10338E-03 1,60344E-02 7,84900E-03 4,25920E-03 1,00402E-03 4,14938E-03 3,12221E-03 6,84775E-04 4,65917E-03

-35 2,98103E-02 3,04260E-02 1,96629E-02 7,84681E-03 2,65937E-02 6,54083E-03 4,25920E-03 1,33869E-03 4,61042E-03 2,67618E-03 9,13034E-04 6,38104E-03

-30 1,76152E-02 4,46248E-02 3,86236E-02 1,52617E-02 6,35510E-02 1,49505E-02 8,21418E-03 2,00803E-03 2,76625E-03 4,01427E-03 2,28258E-03 1,20531E-02

-25 3,92954E-02 4,05680E-02 5,47753E-02 3,13872E-02 1,26124E-01 3,23304E-02 1,30818E-02 3,01205E-03 1,06040E-02 8,47458E-03 6,84775E-03 2,06624E-02

-20 4,47155E-02 4,46248E-02 8,00562E-02 5,34159E-02 1,53891E-01 7,28836E-02 2,19045E-02 4,57385E-03 2,21300E-02 1,56111E-02 5,02169E-03 4,76046E-02

-15 5,69106E-02 5,67951E-02 9,83146E-02 9,89130E-02 1,30622E-01 1,33433E-01 3,68117E-02 1,10442E-02 4,84094E-02 2,67618E-02 1,52933E-02 8,39664E-02

-10 6,36856E-02 6,89655E-02 1,03933E-01 1,69318E-01 1,01291E-01 1,85012E-01 6,54092E-02 2,19768E-02 7,42278E-02 4,90633E-02 2,32824E-02 1,51322E-01

-5 6,77507E-02 6,49087E-02 9,76124E-02 2,16039E-01 8,68205E-02 1,76976E-01 9,21813E-02 6,10219E-02 1,81651E-01 6,95807E-02 5,13581E-02 1,70870E-01

0 5,96206E-02 5,47667E-02 1,12360E-01 1,88179E-01 7,68479E-02 1,28014E-01 1,41771E-01 1,41009E-01 2,24527E-01 8,47458E-02 8,78795E-02 1,83024E-01

5 5,96206E-02 6,49087E-02 8,14607E-02 1,15614E-01 5,72937E-02 6,26051E-02 1,58503E-01 2,49331E-01 1,59060E-01 1,56111E-01 1,18010E-01 1,06655E-01

10 3,11653E-02 5,07099E-02 8,42697E-02 4,78007E-02 3,71529E-02 3,15829E-02 1,29602E-01 2,40071E-01 8,52928E-02 1,75736E-01 1,45629E-01 5,70242E-02

15 2,30352E-02 3,44828E-02 5,96910E-02 1,95810E-02 2,46383E-02 2,50421E-02 8,67052E-02 1,08099E-01 4,97925E-02 1,52988E-01 1,92194E-01 2,40049E-02

20 1,62602E-02 3,04260E-02 3,37079E-02 9,71852E-03 1,50567E-02 1,56980E-02 4,50259E-02 4,43998E-02 3,31950E-02 8,02855E-02 1,60466E-01 1,24582E-02

25 1,08401E-02 1,62272E-02 1,89607E-02 3,95940E-03 1,64255E-02 1,51374E-02 3,34652E-02 2,55466E-02 2,62794E-02 4,77253E-02 6,71080E-02 8,81191E-03

30 1,08401E-02 1,01420E-02 1,05337E-02 2,37564E-03 1,36879E-02 1,28948E-02 1,39945E-02 1,45025E-02 1,47533E-02 2,72079E-02 3,03584E-02 5,67204E-03

35 1,21951E-02 1,21704E-02 1,26405E-02 1,36779E-03 7,23504E-03 5,60643E-03 1,73410E-02 6,47033E-03 1,47533E-02 2,09634E-02 1,84889E-02 4,76046E-03

40 1,08401E-02 1,21704E-02 3,51124E-03 1,00785E-03 5,08408E-03 7,66212E-03 8,51841E-03 3,45828E-03 4,61042E-03 1,73952E-02 1,32390E-02 3,54502E-03

45 1,35501E-02 0,00000E+00 1,40449E-03 5,75913E-04 1,36879E-03 7,10148E-03 1,18649E-02 3,79295E-03 5,07146E-03 1,07047E-02 9,58685E-03 3,13988E-03

50 6,77507E-03 8,11359E-03 7,02247E-04 4,31934E-04 1,75988E-03 7,28836E-03 1,18649E-02 2,56582E-03 3,22729E-03 5,79839E-03 7,53253E-03 1,82315E-03

55 1,35501E-03 6,08519E-03 2,80899E-03 2,15967E-04 9,77708E-04 5,04579E-03 5,78035E-03 2,56582E-03 0,00000E+00 5,79839E-03 4,56517E-03 1,82315E-03

60 0,00000E+00 4,05680E-03 2,10674E-03 2,87956E-04 1,17325E-03 5,79331E-03 8,21418E-03 2,90049E-03 1,38313E-03 4,46030E-03 4,56517E-03 1,41801E-03

65 6,77507E-03 2,02840E-03 0,00000E+00 4,31934E-04 3,91083E-04 4,48514E-03 7,90995E-03 1,56180E-03 4,61042E-04 4,46030E-03 4,33691E-03 1,72187E-03

70 2,71003E-03 6,08519E-03 2,10674E-03 1,43978E-04 1,95542E-04 2,99010E-03 9,43109E-03 1,89648E-03 0,00000E+00 4,01427E-03 3,65213E-03 1,51930E-03

75 2,71003E-03 2,02840E-03 7,02247E-04 1,43978E-04 5,86625E-04 1,86881E-03 8,21418E-03 1,89648E-03 4,61042E-04 1,33809E-03 2,28258E-03 9,11577E-04

80 0,00000E+00 2,02840E-03 7,02247E-04 7,19891E-05 5,86625E-04 2,99010E-03 6,99726E-03 2,78893E-03 4,61042E-04 8,92061E-04 2,73910E-03 5,06432E-04

85 2,71003E-03 2,02840E-03 0,00000E+00 7,19891E-05 1,95542E-04 1,30817E-03 9,43109E-03 2,78893E-03 0,00000E+00 2,23015E-03 2,96736E-03 9,11577E-04

90 2,71003E-03 4,05680E-03 7,02247E-04 0,00000E+00 0,00000E+00 5,60643E-04 4,56343E-03 2,34270E-03 0,00000E+00 4,46030E-04 9,13034E-04 9,11577E-04

95 1,35501E-03 4,05680E-03 2,10674E-03 2,15967E-04 1,95542E-04 5,60643E-04 3,65075E-03 2,67738E-03 0,00000E+00 8,92061E-04 1,36955E-03 6,07718E-04

100 1,35501E-03 2,02840E-03 2,10674E-03 1,43978E-04 1,95542E-04 3,73762E-04 2,12960E-03 3,12361E-03 0,00000E+00 8,92061E-04 1,14129E-03 6,07718E-04

105 1,35501E-03 4,05680E-03 0,00000E+00 7,19891E-05 1,95542E-04 0,00000E+00 3,65075E-03 3,68139E-03 0,00000E+00 0,00000E+00 9,13034E-04 5,06432E-04

110 0,00000E+00 4,05680E-03 7,02247E-04 7,19891E-05 0,00000E+00 0,00000E+00 1,52114E-03 2,67738E-03 4,61042E-04 4,46030E-04 1,82607E-03 9,11577E-04

115 0,00000E+00 0,00000E+00 0,00000E+00 7,19891E-05 0,00000E+00 5,60643E-04 3,04229E-03 2,11959E-03 0,00000E+00 4,46030E-04 1,14129E-03 6,07718E-04

120 4,06504E-03 2,02840E-03 1,40449E-03 7,19891E-05 1,95542E-04 1,86881E-04 6,08458E-04 2,45426E-03 4,61042E-04 0,00000E+00 4,56517E-04 2,02573E-04

125 0,00000E+00 4,05680E-03 7,02247E-04 7,19891E-05 1,95542E-04 1,86881E-04 1,21692E-03 1,56180E-03 0,00000E+00 0,00000E+00 6,84775E-04 6,07718E-04

130 0,00000E+00 2,02840E-03 0,00000E+00 7,19891E-05 0,00000E+00 0,00000E+00 9,12686E-04 1,89648E-03 4,61042E-04 0,00000E+00 2,28258E-04 1,01286E-03

135 2,71003E-03 0,00000E+00 7,02247E-04 7,19891E-05 0,00000E+00 1,86881E-04 3,04229E-04 1,11557E-03 4,61042E-04 0,00000E+00 2,28258E-04 5,06432E-04

140 4,06504E-03 2,02840E-03 1,40449E-03 2,87956E-04 0,00000E+00 0,00000E+00 0,00000E+00 7,80901E-04 4,61042E-04 0,00000E+00 2,28258E-04 3,03859E-04

145 0,00000E+00 0,00000E+00 1,40449E-03 7,19891E-05 0,00000E+00 0,00000E+00 0,00000E+00 1,11557E-03 4,61042E-04 4,46030E-04 4,56517E-04 7,09004E-04

150 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 8,92459E-04 9,22084E-04 4,46030E-04 0,00000E+00 6,07718E-04

155 2,71003E-03 0,00000E+00 0,00000E+00 7,19891E-05 0,00000E+00 0,00000E+00 0,00000E+00 5,57787E-04 4,61042E-04 8,92061E-04 2,28258E-04 7,09004E-04

160 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 1,95542E-04 0,00000E+00 3,04229E-04 4,46229E-04 0,00000E+00 4,46030E-04 0,00000E+00 1,21544E-03

165 0,00000E+00 0,00000E+00 2,10674E-03 2,87956E-04 0,00000E+00 0,00000E+00 0,00000E+00 6,69344E-04 0,00000E+00 0,00000E+00 4,56517E-04 8,10291E-04

170 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 1,95542E-04 0,00000E+00 3,04229E-04 5,57787E-04 0,00000E+00 4,46030E-04 0,00000E+00 1,41801E-03

175 0,00000E+00 0,00000E+00 7,02247E-04 1,43978E-04 1,95542E-04 1,86881E-04 0,00000E+00 6,69344E-04 0,00000E+00 0,00000E+00 0,00000E+00 1,01286E-03

180 0,00000E+00 0,00000E+00 0,00000E+00 0,00000E+00 1,95542E-04 3,73762E-04 0,00000E+00 2,23115E-04 0,00000E+00 0,00000E+00 0,00000E+00 5,06432E-04

Page 90: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017
Page 91: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017
Page 92: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017
Page 93: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017
Page 94: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

A_1 14.12.2016 Edited after review by MC-AKER/NGI-AAJ and SVVRev. Utgivelses

dato Beskrivelse Laget

av Sjekk.

av Prosj. godkj.

Klient godkj.

Kunde

Konsulent Kontrakt nr.:

Dokument navn:

Design Basis for Geotechnical Design

Dokument nr.: Rev.:

BSider:

21

Fergefri E39 –– KKryssing av Bjørnafjorden

MAM AK TT

Appendix A-3

B 22.02.2017 Revised after review by DNV GL MAM TTTT/AK

Page 95: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 1 of 21

Table of contents Design Basis for Geotechnical Design .............................................................................................. 2

1. Introduction ................................................................................................................................ 2

2. Overview of available data, phase 3 ......................................................................................... 3

2.1 Bedrock geology ..................................................................................................................... 3

2.2 Quaternary geology ............................................................................................................... 3

2.3 Geotechnical properties ........................................................................................................ 6

3. Regulatory documents and standards .................................................................................... 11

4. Geotechnical project category .................................................................................................. 12

4.1 Consequence class ............................................................................................................. 12

4.2 Reliability class ..................................................................................................................... 12

4.3 Control/review of geotechnical design .............................................................................. 12

5. Geotechnical material/partial factors ....................................................................................... 13

5.1 Deterministic analysis .......................................................................................................... 13

5.2 Sensitivity analysis ............................................................................................................... 14

6. Considerations for seismic loads ............................................................................................. 14

7. Geohazard analysis ................................................................................................................... 16

8. Slope stability .............................................................................................................................. 17

8.1 Identification of critical profiles ........................................................................................... 17

8.2 Selection of static design shear strength profile .............................................................. 17

8.3 Selection of material model for stability and deformation analysis ............................... 17

8.4 Consideration of 3D effects for 2D analysis ..................................................................... 17

9. Design of anchors ...................................................................................................................... 18

9.1 Suction anchors .................................................................................................................... 19

9.1.1 Installation tolerances .................................................................................................. 19

9.2 Gravity anchors .................................................................................................................... 19

9.3 Bedrock anchor .................................................................................................................... 19

10. Foundations in shallow water and on land ........................................................................... 20

10.1 Road filling in shallow water ............................................................................................. 20

10.1.1 Stability of filling .............................................................................................................. 20

10.1.2 Settlements in fillings ..................................................................................................... 20

11. References ................................................................................................................................ 21

Page 96: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 2 of 21

Design Basis for Geotechnical Design 1. Introduction The Norwegian Public Road Administration is planning to build a 5000 m long bridge across Bjørnafjorden, located south of Bergen. The fjord is 560 m deep at the crossing site and the proposed bridge will become the worlds’ longest bridge built at such water depths. Two of the proposed bridge concepts require seabed anchoring; K1/K2 Multi-span suspension bridge on TLPs and K8 Side anchored floating bridge.

This design basis is valid for all bridge concepts in phase 3 (Multi-span suspension bridge, Side-anchored floating bridge and End-anchored floating bridge). Design criteria related to seabed anchoring are not relevant for the end-anchored floating bridge (Figure 1). Design criteria for seabed anchors that are specific for only multi-span suspension bridge or side-anchored floating bridge are clearly stated in the relevant chapters.

Figure 1 Bjørnafjorden with the relevant bridge concepts.

Page 97: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 3 of 21

2. Overview of available data, phase 3 2.1 Bedrock geology The bedrock near Bjørnafjorden mainly stems from Paleozoicum, and got its current position and structure during the Caledonian orogeny, which took place in the Silurian-Devonian transition time, about 425-416 million years ago. The Bergen Arc is strongly influencing the bedrock in the Bjørnafjorden region. It is composed of metamorphic rocks, most gneiss and intrusive rocks, including anorthosite, gabbro-anorthosite and mangerites in the central, inner portion, and a mix of volcanic and sedimentary layers in the outer and inner parts /Ref. 1 and 2/. There are very little knowledge on the submarine bedrock, but four rock samples at Flua show that this elevated feature consist of Greenstone.

2.2 Quaternary geology The marine geological investigations and analyses conducted by DOF Subsea Norway AS provides a good overview of subsurface conditions in the Bjørnafjorden crossing area. Investigations carried out are /Ref. 3/:

• Mapping of seafloor topography • Mapping of sediment thickness • Sediment deposition and layering • Mapping of previous subsea landslides with release- and deposition areas • Description of rock protrusions on the rock wall from Flua and down to the basin • Sampling in rock for caissons on Flua, total of 4 samples

Bathymetry data from Bjørnafjorden illustrates the variable seabed conditions. The fjord is asymmetrical with undulating seabed. On the northern side, there is more exposed bedrock, some submarine elevations and plateaus. In the south, the inclination down to the basin is steeper and less variable. Sediments appear in the basins and the troughs. In the central part of the fjord there are some raised areas due to undulating bedrock.

The sediment thickness in Bjørnafjorden varies from >60 m in the deepest areas to about 5-20 m at the mid to lover parts of the slope. On the shallower and steeper areas there are little or no sediments (Figure 2). The sediments are quite homogeneous throughout the crossing area and very little variation laterally and vertically. The sediments are mainly composed of clay in the deeper areas.

Page 98: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 4 of 21

Figure 2: Isopach map with depth contours and coloured sediment thicknesses, ranging from 0 m at

the shallow areas to 60 m in the deepest areas /Ref. 3/

Sub-bottom data suggest that the majority of the sediments in Bjørnafjorden were deposited during the last deglaciation. A somewhat lesser part of the sediments was deposited after the deglaciation, which is typical for most Norwegian fjords. The sub-bottom data provide evidence of slope failures (Figure 3). All of the identified slope failures have slipped at the interphase to assumed bedrock (acoustic basement) and it is not observed sedimentary slide planes /Ref. 3/.

Page 99: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 5 of 21

Figure 3: Example of a sub-bottom profile showing sediments on the slope above acoustic basement.

The unit is up to 20 m (25 ms TWT) on the slide headwall (modified from /Ref. 1/).

The acoustic survey revealed 45 slides in the survey area /Ref. 3/. In 2016, one core was collected from the Bjørnafjorden basin by University of Bergen (Figure 4 and 5). Two recent slides have been radiocarbon dated showing that two slide events in Bjørnafjorden occurred about 500 and 1200 years ago /Ref. 4 and 5/. The source areas are not known since the youngest debris deposit was too thin to be identified in the subbottom profiles; the debris deposit at about 500 yrs BP were 30 cm thick. The oldest debris lobe deposited at 1200 yrs BP were 1.5 m thick and may be possible to identify in the SBP data (work in progress). The largest slide lobe seem to have appeared before the two dated slides. The sediment core collected from Bjørnafjorden contain undisturbed sediments at 2.8 m depth. These sediments have been sent for radiocarbon dating and results are in progress. This may indicate a maximum age of the large debris lobe (Figure 4).

Page 100: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 6 of 21

Figure 4: illustrating the biggest debris lobe observed in the Bjørnafjorden basin, the approximate

thickness is indicated in the sub bottom data, suggesting a thickness of about 7-8 meters (Modified figure from M. Vanneste, NGI)

2.3 Geotechnical properties Several geotechnical cores and analyses give a good impression of the general properties of the sediments in the area. See Figure 5 and 6 for geotechnical sampling locations.

Location of sediment core used for radiocarbon dating

Page 101: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 7 of 21

Gravity cores 2012 Multiconsult/University of Bergen. Geotechnical Gravity core 2016 University of Bergen Radiocarbon dating Bore holes 2016 NGI/Fugro Geotechnical

Figure 5: Core locations and bore holes from the central part of Bjørnafjorden /Ref. 7, 8, 9 and 10/.

Page 102: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 8 of 21

Figure 6: Shallow geotechnical boring locations /Ref. 11, 12 and 13/. Contour lines in 5 m increments.

The geotechnical results show that the sediments consist of normal consolidated clay with extremely low to high shear strength (Figure 7). Just above the assumed bedrock, a relatively thin layer of sandy, silty clayey material is observed. The preformed geotechnical analyses are listed below with references to the relevant reports:

• 4 sediment cores of about 3 m length from the basin, retrieved in phase 1 /Ref. 7/ • 5 boreholes in the deeper flat areas: Combined CPT and coring down to assumed

bedrock, retrieved in phase 2. Drilling depths ranges between 22.5 m to 45.9 m below the seabed. Water depth at the drilling locations varies between 463.8 m to 561.2 m./Ref. 8, 9 and 10/

• 12 CPT in the northern near-shore areas, retrieved in phase 2 /Ref. 11, 12 and 13/

Soil material may generally be described as normal- or moderately over-consolidated clay with very low to high strength [NGF melding no. 2]. Water contents varies from 13 % to 92%. In the bottom of these boreholes a layer of sand silty clayey material is encountered. This

Page 103: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 9 of 21

interpretation is based on CPTU soundings, description of specimens and laboratory analyzes conducted both offshore and onshore. Offshore sampling comprises a total of 31 bag samples / plexiglass samples, 21 "Waxed subsamples" and 9 undisturbed cylinder samples for material classification and advanced laboratory tests. Performed laboratory tests onshore includes triaxial tests, cyclic direct shear tests, oedometer and index test.

The CPTU data indicate that the top 10-30 m of soil is essentially normally consolidated clay to silty clay. Beneath this clay layer the geophysical data shows an acoustic basement, which is interpreted as a stiff material. The data shows that the total unit weight varies from 15.6 kN/m3 to 18.0 kN/m3.

The undrained shear strength values (suC) from the CPTUs are based on Nkt = 14 and ϒ = 16.5 kN/m3. The undrained shear strength increases linearly with depth, from values of 0-10 kPa near the seafloor, to 50-60 kPa at 25 meters below the seafloor.

Results from the laboratory test show strain- softening in some of the soil samples.

Geotechnical results from subsea investigations in 2016 /Ref. 8, 9 and 10/ shall be used for this analysis.

Further geotechnical investigations on final anchor locations shall be carried out in detail design phase.

Page 104: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 10 of 21

Figure 7: results from geotechnical boreholes down to assumed bedrock at water depths ranging from

450-560 m /Ref. 8/

Page 105: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 11 of 21

3. Regulatory documents and standards Following handbooks published by Statens vegvesen will be used as design basis for geotechnical design wherever applicable. If there are strong arguments to deviate from the “handbook” regulations, this needs to be approved by the Road Directorate before it is used further. If there is any uncertainty related to the interpretation of the regulations, these uncertainties need to be raised and clarified with Statens Vegvesen.

General rules are as described below, listed as prioritized.

1) Handbook N200: Vegoverbygning (General rules for road construction, 2014) 2) Handbook N400: Bruprosjektering (Rules for bridge design, 2015) 3) Handbook V220: Geoteknikk I vegbygning (Guidelines for geotechnical design, 2014) 4) Handbook V221: Grunnforsterkning, fyllinger og skråninger (Ground improvement,

fillings and slopes, 2014)

Other design requirements, which are not covered by these handbooks, will be referred to following design codes wherever relevant

1) NS-EN 1990:2002+A1:2005+NA:2016 Eurocode 0 Basis for structural design 2) NS-EN 1992-1-1:2004+NA:2008 Eurocode 2 Design of concrete structures: General

rules and rules for buildings + Amendment NS-EN 1992-1-1:2004/A1:2014 + Corrigendum NS-EN 1992-1-1:2004/AC:2010

3) NS-EN 1992-2:2005+NA:2010 Eurocode 2 Design of concrete structures: Bridges 4) NS-EN 1993-1-1:2005+A1:2014/AC:2015 Eurocode 3: Design of steel structures 5) NS-EN 1993-5:2007+NA:2010 Eurocode 3: Design of steel structures - Part 5: Piling

+ Corrigendum NS-EN 1993-5:2007/AC:2009 6) NS-EN 1997-1:2004+A1:2013+NA:2016: Eurocode 7: Geotechnical design – Part 1:

General rules 7) NS-EN 1997-2:2007+NA:2008: Eurocode 7: Geotechnical design - Part 2: Ground

investigation and testing + Corrigendum NS-EN 1997-2:2007/AC:2010 8) NS-EN 1998-1:2004+A1:2013+NA:2014: Eurocode 8 Design of structures for

earthquake resistance - Part 1: General rules, seismic actions and rules for buildings 9) NS-EN 1998-2:2005+A1:2009+A2:2011+NA:2014 Eurocode 8: Design of structures

for earthquake resistance - Part 2: Bridges 10) NS-EN 1998-5:2004+NA:2014 Eurocode 8: Design of structures for earthquake

resistance - Part 5: Foundations, retaining structures and geotechnical aspects

In addition to above design codes, special design requirements for offshore structures shall be covered by following standards

1) Offshore standard DNVGL-OS-C101: Design of offshore steel structures, general - LRFD method, April 2016

2) Offshore standard DNVGL-OS-C105: Structural design of TLPs-LRFD method, July 2015

3) Offshore standard DNV-OS-C502: Offshore Concrete Structures, September 2012 4) Offshore standard DNV-OS-E301: Position mooring, July 2015 5) DNV-RP-E303: Design of suction anchors: DNVGL recommended practice, October

2005 6) ISO 19901-8:2014 Marine soil investigations 7) ISO 19901-4:2016 Geotechnical and foundation design considerations in offshore

construction 8) ISO 19901-7:2013 Stationkeeping systems for floating offshore structures 9) Offshore geohazards: NORSOK standard Z-013. Risk and emergency preparedness

analysis

Page 106: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 12 of 21

Other design requirements, which are not covered by any of above, shall be determined in agreement with Statens vegvesen.

4. Geotechnical project category 4.1 Consequence class A general consequence class for the project is defined in accordance with Handbook V220 figure 0.1 to be CC3, which is described as “Large consequence in form of loss of human lives, or extremely large economic, social or environmental consequences”

Figure 8: Definition of consequence classes according to Eurocode 0.

For other less complicated components of the project, a lower consequence class can also be assessed.

4.2 Reliability class Reliability class is defined in accordance with Handbook V220 figure 0.7. For road and railway bridges it requires reliability class to be RC3. That also applies to subsea fillings.

Figure 9: Guiding example for classification of structures and structural parts (Handbook V220, fig.

0.7)

For other less complicated components of the project, a lower reliability class can also be assessed.

4.3 Control/review of geotechnical design Reliability class together with consequence class CC3/RC3 gives control class U.

Page 107: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 13 of 21

Figure 10: Requirements for design and execustion supervision (Handbook V220, fig. 0.8)

Regarding 1.2.1 and 1.2.2: In case of other consequence class and reliability class, relevant control class will be assessed in collaboration with Statens vegvesen

Structures with reliability class 3 will be defined under geotechnical category 3, which requires extended/independent control. An independent control of the work carried out in phase 3 of the project is not part of the delivery from consultants. Statens vegvesen is responsible for execution of this activity.

5. Geotechnical material/partial factors The project shall use material/partial factors defined on basis of definitions given in Håndbok V220 and relevant Eurocodes.

For design of anchors in ground for Side Anchored Floating Bridge and TLP-bridge, material/partial factors defined in relevant DNVGL codes shall be used (see section 1.8 of this document).

5.1 Deterministic analysis Handbook V220 describes the method of selecting material/partial factors for deterministic design as following

“Partial factors shall be selected with regard to how soil strength is determined, how the failure mechanism is working and what is recognized practice. Note that the partial factors shall increase when the risk of progressive failure development in the brittle failure materials (Sprøbruddmaterialer) are considered to be present, and when it is required to bring it in accordance with the recognized practice of the analysis method and the problem to be addressed.”

Figure 11: Partial factor ϒM for effective stress and total stress analysis (Handbook V220, fig. 0.3)

Håndbok V220: CC3/RC3 for material with contracting behavior sets partial factor ϒM 1.6 for total stress analysis and local stability in foundation area. Partial factor ϒM for global stability (områdestabilitet) in this case is set to be 1.4. An illustration of safety philosophy regarding local and global stability is shown at figure 12. Higher factor of safety for local stability is used since there are uncertainties related to the seabed properties. As the project

Page 108: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 14 of 21

progresses and more certainty is added, this might change. The partial factors described here govern local and global stability in the soil, but not the anchor capacity calculations.

These material factors are also applicable to stability analysis with dead weight of anchors and rockfills under gravity anchors.

Figure 12: Illustration of safety philosophy for sub-marine slope failure (Based on NIFS Report no. 15-2016)

5.2 Sensitivity analysis Sensitivity analysis for important seabed parameters shall be performed.

Geotechnical results from subsea investigations in 2016 /Ref. 8, 9 and 10/ shall be used for this analysis. 6. Considerations for seismic loadsSeismic class shall be determined in accordance with Table NA.4 (902) in Eurocode 8-1 foreach construction, and for bridges specifically according to Table NA.2 (901) in Eurocode 8-2.

The bridge structure is placed in Seismic Class IV (structure with total length over 600 m Ref. Table NA.2 (901) in Eurocode 8-2). This seismic class IV is also valid for associated structures which can affect the global stability of the bridge. A lower seismic class can be considered for the structures planned to be built independent of the main structures. This is expected to apply for the culvert with accessories on northern end of planned bridge.

Ground type and seismic amplification factor with parameters corresponding response spectrum shall be determined in accordance with Eurocode 8-1 and associated guidelines.

A bedrock acceleration ag40Hz = 0.83 m/s2 shall be used for assessment of exclusion criteria and/or any earthquake calculations; ref. Figure NA.3 (901) in Eurocode 8-1.

Ground type for the ground where clay sediments are present must be established via calculation of vs,30 for the actual soil profile in question. Ground type A shall be used for foundations directly on rock (Ref. NS-EN 1998-1:2004+A1:2013+NA:2014, table 3.1).

According to NA.3.1 (3) in Eurocode 8-5 (2014), the following material / partial factors on soil strength are required:

For Cu analysis: ϒcu = 1.1 for clays

For aϕ analysis: ϒaϕ = 1.2 for fill materials and 1.1 for other materials

Page 109: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 15 of 21

According to NA.4.1.4 (11) in Eurocode 8-5 (2014) will parameter λ = 0.80 for saturated cohesionless materials that may get into the liquefaction. This corresponds to a requirement for safety / material factor of 1.25 against such behavior could occur.

For analyses that requires the input from a response spectrum it is recommended that information given in chapter 3.2.2 in Eurocode 8, part 1 is used.

Eurocode 8 specifies the control for prevention of global structural collapse under a “very rare event”, return period with seismic class IV corresponds to 2750 years. In addition to that a sensitivity analysis for seismic event with return period 10 000 years shall be carried out.

For dynamic analysis, maximum allowable shear strain for clay without causing a slope failure is 3% /Ref. 20/.

Page 110: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 16 of 21

7. Geohazard analysis A detailed geohazard analysis for all foundation areas shall be carried out. Risk analysis framework presented in NORSOK standard Z-013 Risk and emergency preparedness analysis shall be used. A specific Geohazard risk analysis framework based on NORSOK Z-013 is presented in International Association of Oil and Gas Producers report no. 425.

Geohazards analysis can be carried out according to guidelines provided in OGP report no. 425 as presented in figure 13.

Figure 13: Example of geohazard risk analysis framework (OGP report 425)

Geotechnical assessments related geohazard analysis for earthquake generated slides shall be carried in accordance with Eurocode 8. Seismic class IV shall be used. Ground type for each foundation and area around it shall be assessed according to ground condition described in geotechnical investigation reports [Ref. 8, 9 and 10].

In case of probabilistic analysis, probability of failure for a global failure shall be 10-5.

Page 111: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 17 of 21

8. Slope stability Stability of the seabed shall always be checked when either stability of a natural slope can be affected by foundation or environmental loads or a failure in natural slope can hit a foundation and cause destruction of anchor(s). Deterministic slope stability analysis shall be carried out to fulfil safety requirements given in section 1.3.1 and 1.5 of this document.

Identification of critical profiles shall be selected from spatial investigation that identifies potential release-areas

8.1 Identification of critical profiles Areas above the anchor locations shall be assessed for potential slope failure initiations which can strike anchoring structures.

Critical stability analysis profile(s) shall be selected from spatial investigation the identified areas.

8.2 Selection of static design shear strength profile Design profile for active shear strength shall be selected considering all available data from geotechnical investigations. Quality of gathered data shall be kept in focus and only good quality data from field and laboratory investigations shall be used for selection of design shear strength profile. Guidelines provided in ISO 1991-8:2014 shall be used for such process.

As a part of the soil investigation performed in phase 2 of the project NGI prepared a soil parameter report [Ref. 8] that contains recommended static design shear strength profile which can be used for further analysis.

8.3 Selection of material model for stability and deformation analysis Material model for modelling and analysis shall be selected keeping in view the soil behavior defined by the results of the field and laboratory testing. Sample quality and subsequent result shall be considered for selection of material model.

8.4 Consideration of 3D effects for 2D analysis Stability analysis shall be carried out by 2D plain strain analysis program. In cases where results from the 2D analysis gives marginally low safety, 3D effects of the analyzed geometry shall be considered and documented.

Page 112: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 18 of 21

9. Design of anchors Anchoring system shall be designed for general requirements given in section 13.12.7 Forankringssystem in handbook N400. Design requirement from this section is translated as under

“Layout and design of anchoring systems which have high permanent tension and are subjected to cyclic loads shall be carried out so that satisfactory safety against global collapse is achieved.”

Design of foundation anchors for TLP Bridge shall be carried out according to Chapter 2 Section 5 subsection 6 Foundations in offshore standard DNVGL -OS-C105 Structural design of TLPs - LRFD method. Anchors shall be designed for loads with load factors for design limit states given in Chapter 2 Section 10 subsection 5 in Offshore Standard DNVGL-OS-C101 Design of offshore steel structures, general - LRFD method. Settlements of the anchors prior to hook-up shall be estimated. The permanent tension shall be compensated by ballast or by a combination of long term outside skirt wall friction resistance and submerged weight of foundation including ballast.

Difference between the lengths of the tethers for adjacent foundation upto 5 m is accepted.

Design of anchors for Side Anchored Floating Bridge shall be carried out according to Chapter 2 Section 4 in Offshore Standard DNVGL-OS-E301 Position. Anchors shall be designed for loads with load factors for design limit states given in Chapter 2 Section 10 subsection 5 in Offshore Standard DNVGL-OS-C101 Design of offshore steel structures, general - LRFD method. Anchoring system shall be designed for redundancy requirements prescribed in MOANO374/STOR/72400000-J-5730/Rev. 1 Design basis for Mooring system, dated 01.12.2016.

In following cases slope stability analysis for local and global stability of ground in anchoring locations shall be carried out according to methods and provisions provided in section 4 – 8 of this document.

1) Dead weight of anchors before hook-up 2) Rockfill under gravity anchors 3) Rockfill as mitigatory measure around anchors

Preliminary general criteria (figure 14) for various types of anchors in relation to necessary soil thickness and maximum allowable seabed slope for each anchor type is provided. It must be noted that this is only preliminary criteria and can be subjected to change as the location specific anchor stability analyses and assessments proceed.

Anchor type Maximum seabed slope [°]

Soil thickness [m]

Suction anchors <10 >10

Gravity anchors <5 <100

Bedrock anchors <20 <5

Figure 14: Summary of limiting conditions used in general screening for the different anchor types

Apart from these traditional anchor types, combination of these anchor types can also be used. The base-case anchor types are gravity, suction or skirted gravity anchor. Bedrock anchors need to technology qualified. Bedrock anchor can be considered as an alternative solution when the base cases are documented to be non-feasible.

Specific requirements for different types of anchors is given below

Page 113: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 19 of 21

9.1 Suction anchors Design of suction anchors shall be carried out according to the DNV recommended practice DNV-RP-E303. In the calculation of the anchor resistance, strength anisotropy and the effects of cyclic loading on the undrained shear strength shall be accounted for. The characteristic undrained shear strength shall be taken as the mean value with due account of the quality and complexity of the soil conditions.

Settlements under the suction anchors in relation to allowable deformations in anchoring system shall be studied. Lateral deformation due to creep and permanent horizontal post-tension load shall be studied to a level that is necessary for feasibility phase.

Installation analysis shall be carried out according to DNV recommended practice DNV-RP-E303.

9.1.1 Installation tolerances Installation tolerances prescribed for suctions anchors for Side Anchored Floating Bridge are as follows

Position (tolerance radius) = ± 5 m

Orientation (heading) = 0 – 5 degrees

Verticality = ± 5 degrees

Installation tolerances prescribed for suctions anchors for Multispan hanging bridge on TLP – foundations are as follows

- Reference point location (center of foundation) within 1m radius of target position relatively to the TTR template installed position

- Orientation within ± 2 degrees Relatively to the TTR template installed orientation

Local tolerances

- Orientation within ± 2 degrees in yaw. - Initial levelness <1 degrees

9.2 Gravity anchors This applies to anchors which rely on their self weight to provide resistance to vertical, lateral and torsional loading. Gravity anchors may be provided with skirts which penetrate the seabed to provide increased lateral resistance through mobilization of additional seabed strata.

Self-settlements in filling under gravity anchors in case of gravity anchors founded on a stone filling shall be taken into account.

For under water filling on rock surface maximum filling slope angle shall be 1:3.

Filling over sloping underwater rock surface and filling over clay sediment shall be checked for short-term and long-term stability.

9.3 Bedrock anchor Design of bedrock anchors in case of pure axial loading shall be carried out in accordance with chapter 8 in Eurocode 7 NS-EN 1997-1:2004+A1:2013+NA:2016. Partial factors for materials, resistances and creep limit criteria according to national annexure NA.A.6

Anchors shall be design for both static and dynamic loads. Anchors shall also be designed to sustain accidental loads from slope/debris failure.

Page 114: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 20 of 21

Loss of post-tensioning due to creep in steel material and/or between grout and rock material shall be studied.

Calculations of drilling and grouting depth for installation of anchors, as regards rock mechanical properties shall be carried out according to chapter 10.5.2.1 in Handbook V220 Geoteknikk i vegbygging, Vegdirektoratet June 2014.

Design of bedrock anchors in case of fully or partially laterally loaded pile shall be carried out in accordance with chapter 7 and relevant national requirements in Eurocode 7 NS-EN 1997-1:2004+A1:2013+NA:2016.

Fatigue in rock surrounding upper part of the pile and pile structure due to dynamic loading shall be studied and documented.

10. Foundations in shallow water and on land This section applies to fillings in water (sea) and on the land on south and north side of main bridge.

10.1 Road filling in shallow water Road fillings in water(sea) are classified in geotechnical category 3 according to section 202.2, Handbook N200. Maximum slope of filling in the water is dependent upon stone quality, stone size and method of filling given that filling is founded on competent ground. Maximum slope for underwater filling given according to figure 2-3-3 in handbook V221 is 1:1,3 (for water depth upto 10 m). For filling in water depth more than 10 m, slope of filling shall not be steeper than 1:1,8. Slope angle shall be verified by stability analysis.

10.1.1 Stability of filling Stability of filling in sea shall be documented by stability analysis.

Geotechnical category 3 with CC3/RC3 for material with dilatant behavior sets partial factor ϒM 1.4 for effective stress analysis. This applies to stability of filling in water and on land.

10.1.2 Settlements in fillings Maximum allowable settlements in longitudinal and cross-sectional direction for road filling shall be calculated according to section 205.1 in handbook N200. Fixed value in this case cannot be given as it depends upon the various variables.

Requirements for settlements for structure on land shall be considered according to section 11.1.7 handbook N400.

Settlements and time required for settlements for the fillings shall be calculated and documented. Creep settlements in the rockfill itself shall be considered.

Page 115: Side - and end anchored floating bridge SBJ -32 -C3 -SVV ... Splash zone shall be calculated according to DNV GL-OS-C101, see 5.4.2. Design Basis Bjørnafjorden Page 5 Date: 07.03.2017

Appendix A-3 Design Basis for Geotechnical Design Page 21 of 21

11. References

Following documentation and reports from the previous studies are available.

1. Report 12149-OO-R-011 Rev. 01 Engineering geology evaluations for Bjørnafjord Submerged Floating Tube Bridge, Reinesrtsen/Dr. Techn. Olav Olsen/Norconsult, dated 16.06.2015

2. Befaringsrapport Bjornafjorden, Berggrunnsundesøkelser, Statens vegvesen, dated 14.04.2016

3. Report 6000308-SV-CL-403-0001 Rev. 01 Marine Grunnundersøkelser i Bjørnafjorden, DOF subsea, dated 05.09.2015

4. Landslide dating results GS16-200-08GC, Statens vegvesen, dated 09.09.2016 5. Analysis report GS16-200-08GC Litostratigrafi, University of Bergen, dated

22.06.2016 6. Report 2016-0744 rev. 1 Verifikasjon grunnundersøkelser Fjordkryssningsprosjektet,

DNVGL dated 06-10-2016 7. Report 613863-001 Bunn-og grunnundersøkelser, Multiconsult AS, dated 25.06.2012 8. Report SBT-PGR-RE-203-010-0 Soil investigation – Data interpretation and

evaluation of representative geotechnical parameters, Norwegian Geotechnical Institute, dated 26.08.2016

9. Report SBT-PGR-RE-203-009-0 Soil Investigation Measured and Derived Geotechnical Parameters and Final Results, Norwegian Geotechnical Institute, dated 30.06.2016

10. Report SBT-PGR-PR-203-008-1 Soil Investigation - Field Operations and Preliminary Results, Norwegian Geotechnical Institute, dated 16.06.2016

11. Report 5162689-Rig1 Version 2, E39 Stord-Os Geoteknisk Datarapport for overgang området, Norconsult AS, dated 26.05.2016

12. Report 5162689-Rig2, E39 Stord-Os Geoteknisk Datarapport for sjøfylling, Norconsult AS, dated 30.05.2016

13. Report 30130-GEOT-1 Geoteknisk rapport, KDP E39 Stord – Os, Statens vegvesen, dated 27.08.2016

14. Report 20140610-05-TN Feasible anchor locations for two alternative floating bridge crossings of Bjørnafjord, Norwegian Geotechnical Institute, dated 26.08.2016

15. Report SBT-PGR-TN-203-006-1 Feasible anchor locations and concept for TLP North location, Norwegian Geotechnical Institute, dated 26.08.2016

16. Report 20140610-04-TN Preliminary sizing of suction anchor, Norwegian Geotechnical Institute, dated 26.08.2016

17. Report SBT-PGR-TN-203-004-1 Feasibility study of drilled and grouted piles in bedrock for northern floater, Norwegian Geotechnical Institute, dated 06.10.2016

18. Report 12149-OO-R-301 rev01 Drilled and Grouted Pile Foundations for Tethers, Reinertsen AS/Dr. Techn. Olav Olsen/Norconsult AS, dated 10.11.2015

19. Report 613863-RIG-RAP-002 E39 Bjørnafjord – Ankerfeste for flytebru, Multiconsult AS, dated 02.07.2015

20. Rapport 20110943-01-R Jordskjelv design i Statens vegvesens handbook V220, Geotekniske krav og veiledninger, Norwegian Geotechnical Institute, dated 03.09.2015