90
Short MATLAB Tutorial Covered by: Dan Negrut University of Wisconsin, Madison

Short M ATLAB Tutorial

  • Upload
    rayya

  • View
    127

  • Download
    7

Embed Size (px)

DESCRIPTION

Short M ATLAB Tutorial. Covered by: Dan Negrut University of Wisconsin, Madison. Before getting started …. Acknowledgement: Almost entirely, this tutorial compiled from bits of information gathered from various internet sources - PowerPoint PPT Presentation

Citation preview

ShortMATLAB Tutorial

Covered by: Dan NegrutUniversity of Wisconsin, Madison

Before getting started… Acknowledgement:

Almost entirely, this tutorial compiled from bits of information gathered from various internet sources

It is available for download from SBEL website in PPT format for other to be able to save, edit, and distribute as they see fit

Please let me know of any mistakes you find email me at my [email protected]

The right frame of mind: You will not be able to say at the end of workshop that you know

MATLAB but rather that you have been exposed to MATLAB (I don’t know MATLAB myself, I’m just using it…)

Use MATLAB’s “help”, this is your first stop Second stop: search the web for examples that come close to

what you need You learn how to use MATLAB by using it, that’s why the start might

be slow and at times frustrating

Contents – 1 1. First hour of workshop

What is Matlab? MATLAB Components MATLAB Desktop Matrices Importing and Exporting Data Elementary math with MATLAB

Contents – 2

2. Second hour of workshop M-file Programming

Functions vs. Scripts Variable Type/Scope Debugging MATLAB functions Flow control in MATLAB

Other Tidbits Function minimization Root finding Solving ODE’s

Graphics Fundamentals Data Types most likely won’t have time for it

What is MATLAB?

Integrated Development Environment (IDE)

Programming Language

Collection of Toolboxes

Excellent Linear Algebra support

MATLAB as an IDE

Integrated development environment (IDE)

Write your own code for computation Good visualization (plotting) tools Easy-to-use environment

Command Window

Command History

Help Browser

Workspace Browser

Editor/Debugger

MATLAB Desktop Tools

MATLAB as Programming Language

High-level language Data types Functions Control flow statements Input/output Graphics Object-oriented programming

capabilities

Toolboxes

Collections of functions to solve problems from several application fields. DSP (Digital Signal Processing) Toolbox Image Toolbox Wavelet Toolbox Neural Network Toolbox Fuzzy Logic Toolbox Control Toolbox Multibody Simulation Toolbox And many many other… (Visit for instance

http://www.tech.plym.ac.uk/spmc/links/matlab/matlab_toolbox.html, amazing number of toolboxes available: if you need something, it’s out there somewhere available for download)

MATLAB for [Linear] Algebra

Calculations at the Command Line

» a = 2;

» b = 5;

» a^b

ans =

32

» x = 5/2*pi;

» y = sin(x)

y =

1

» z = asin(y)

z =

1.5708

» a = 2;

» b = 5;

» a^b

ans =

32

» x = 5/2*pi;

» y = sin(x)

y =

1

» z = asin(y)

z =

1.5708

Results assigned to “ans” if name not specified

() parentheses for function inputs

Semicolon suppresses screen output

MATLAB as a calculator Assigning Variables

A Note about Workspace:Numbers stored in double-precision floating point format

» -5/(4.8+5.32)^2ans = -0.0488» (3+4i)*(3-4i)ans = 25» cos(pi/2)ans = 6.1230e-017» exp(acos(0.3))ans = 3.5470

» -5/(4.8+5.32)^2ans = -0.0488» (3+4i)*(3-4i)ans = 25» cos(pi/2)ans = 6.1230e-017» exp(acos(0.3))ans = 3.5470

General Functions

whos: List current variables and their sizeclear: Clear variables and functions from memorycd: Change current working directorydir: List files in directorypwd: Tells you the current directory you work inecho: Echo commands in M-filesformat: Set output format (long, short, etc.)diary(foo): Saves all the commands you type in in a file in the current directory called “foo”

Getting help

help command (>>help)

lookfor command (>>lookfor)

Help Browser (>>doc)

helpwin command (>>helpwin)

Search EnginePrintable Documents “Matlabroot\help\pdf_doc\”

Link to The MathWorks

Handling Matrices in Matlab

Matrices

Entering and Generating MatricesSubscriptsScalar ExpansionConcatenationDeleting Rows and ColumnsArray ExtractionMatrix and Array Multiplication

NOTE: we don’t have time to carefully look at all these topics. I want you to be aware that these facilities exist in MATLAB, and that you can access them when needed by first doing a “help” on that command

» a=[1 2;3 4]

a =

1 2

3 4

» b=[-2.8, sqrt(-7), (3+5+6)*3/4]

b =

-2.8000 0 + 2.6458i 10.5000

» b(2,5) = 23

b =

-2.8000 0 + 2.6458i 10.5000 0 0

0 0 0 0 23.0000

» a=[1 2;3 4]

a =

1 2

3 4

» b=[-2.8, sqrt(-7), (3+5+6)*3/4]

b =

-2.8000 0 + 2.6458i 10.5000

» b(2,5) = 23

b =

-2.8000 0 + 2.6458i 10.5000 0 0

0 0 0 0 23.0000

•Any MATLAB expression can be entered as a matrix element (internally, it is regarded as such)

•In MATLAB, the arrays are always rectangular

Entering Numeric Arrays

NOTE: 1) Row separatorsemicolon (;)

2) Column separatorspace OR comma (,)

Use square brackets [ ]

The Matrix in MATLAB

4 10 1 6 2

8 1.2 9 4 25

7.2 5 7 1 11

0 0.5 4 5 56

23 83 13 0 10

1

2

Rows (m) 3

4

5

Columns(n)

1 2 3 4 51 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

A = A (2,4)

A (17)

Rectangular Matrix:Scalar: 1-by-1 arrayVector: m-by-1 array

1-by-n arrayMatrix: m-by-n array

» w=[1 2;3 4] + 5w = 6 7 8 9» x = 1:5

x = 1 2 3 4 5» y = 2:-0.5:0

y = 2.0000 1.5000 1.0000 0.5000 0 » z = rand(2,4)

z =

0.9501 0.6068 0.8913 0.4565 0.2311 0.4860 0.7621 0.0185

» w=[1 2;3 4] + 5w = 6 7 8 9» x = 1:5

x = 1 2 3 4 5» y = 2:-0.5:0

y = 2.0000 1.5000 1.0000 0.5000 0 » z = rand(2,4)

z =

0.9501 0.6068 0.8913 0.4565 0.2311 0.4860 0.7621 0.0185

Scalar expansion

Creating sequences:colon operator (:)

Utility functions for creating matrices.

Entering Numeric Arrays

Numerical Array Concatenation(Tiling)

» a=[1 2;3 4]

a =

1 2

3 4

» cat_a=[a, 2*a; 3*a, 4*a; 5*a, 6*a]cat_a = 1 2 2 4 3 4 6 8 3 6 4 8 9 12 12 16 5 10 6 12 15 20 18 24

» a=[1 2;3 4]

a =

1 2

3 4

» cat_a=[a, 2*a; 3*a, 4*a; 5*a, 6*a]cat_a = 1 2 2 4 3 4 6 8 3 6 4 8 9 12 12 16 5 10 6 12 15 20 18 24

Use [ ] to combine existing arrays as matrix “elements”

Row separator:semicolon (;)

Column separator:space / comma (,)

Use square brackets [ ]

Note:The resulting matrix must be rectangular

4*a

Array Subscripting / Indexing

4 10 1 6 2

8 1.2 9 4 25

7.2 5 7 1 11

0 0.5 4 5 56

23 83 13 0 10

1

2

3

4

5

1 2 3 4 51 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

A =

A(3,1)A(3)

A(1:5,5)A(:,5) A(21:25)

A(4:5,2:3)A([9 14;10 15])

A(1:end,end) A(:,end)A(21:end)’

Deleting Rows and Columns

» A=[1 5 9;4 3 2.5; 0.1 10 3i+1]

A =

1.0000 5.0000 9.0000

4.0000 3.0000 2.5000

0.1000 10.0000 1.0000+3.0000i

» A(:,2)=[]

A =

1.0000 9.0000

4.0000 2.5000

0.1000 1.0000 + 3.0000i

» A(2,2)=[]

??? Indexed empty matrix assignment is not allowed.

» A=[1 5 9;4 3 2.5; 0.1 10 3i+1]

A =

1.0000 5.0000 9.0000

4.0000 3.0000 2.5000

0.1000 10.0000 1.0000+3.0000i

» A(:,2)=[]

A =

1.0000 9.0000

4.0000 2.5000

0.1000 1.0000 + 3.0000i

» A(2,2)=[]

??? Indexed empty matrix assignment is not allowed.

“:” is a VERY important construct in MATLAB

Matrix Multiplication» a = [1 2 3 4; 5 6 7 8];

» b = ones(4,3);

» c = a*b

c =

10 10 10 26 26 26

» a = [1 2 3 4; 5 6 7 8];

» b = ones(4,3);

» c = a*b

c =

10 10 10 26 26 26

[2x4]

[4x3]

[2x4]*[4x3] [2x3]

a(2nd row).b(3rd column)

» a = [1 2 3 4; 5 6 7 8];

» b = [1:4; 1:4];

» c = a.*b

c =

1 4 9 16 5 12 21 32

» a = [1 2 3 4; 5 6 7 8];

» b = [1:4; 1:4];

» c = a.*b

c =

1 4 9 16 5 12 21 32 c(2,4) = a(2,4)*b(2,4)

Array Multiplication (componentwise operation)

Matrix Manipulation Functions• zeros: Create an array of all zeros

• ones: Create an array of all ones

• eye: Identity Matrix

• rand: Uniformly distributed random numbers

• diag: Diagonal matrices and diagonal of a matrix

• size: Return array dimensions • fliplr: Flip matrices left-right

• flipud: Flip matrices up and down

• repmat: Replicate and tile a matrix

Matrix Manipulation Functions

• transpose (’): Transpose matrix • rot90: rotate matrix 90

• tril: Lower triangular part of a matrix

• triu: Upper triangular part of a matrix

• cross: Vector cross product

• dot: Vector dot product

• det: Matrix determinant

• inv: Matrix inverse

• eig: Evaluate eigenvalues and eigenvectors

• rank: Rank of matrix

Exercise 1 (10 minutes)Define a matrix A of dimension 2 by 4 whose (i,j) entry is A(i,j)=i+jExtract two 2 by 2 matrices A1 and A2 out of the matrix A. A1 contains the first two columns of A, A2 contains the last two columns of ACompute the matrix B to be the sum of A1 and A2Compute the eigenvalues and eigenvectors of B Solve the linear system Bx=b, where b has all the entries equal to 1Compute the determinant of BCompute the inverse of BCompute the condition number of BNOTE: Use only MATLAB native functions for all operations

Elementary Math

Elementary Math

Logical Operators

Math Functions

Polynomial and

Interpolation

Logical Operations

» Mass = [-2 10 NaN 30 -11 Inf 31];» each_pos = Mass>=0each_pos = 0 1 0 1 0 1 1» all_pos = all(Mass>=0)all_pos = 0» all_pos = any(Mass>=0)all_pos = 1» pos_fin = (Mass>=0)&(isfinite(Mass))pos_fin = 0 1 0 1 0 0 1

» Mass = [-2 10 NaN 30 -11 Inf 31];» each_pos = Mass>=0each_pos = 0 1 0 1 0 1 1» all_pos = all(Mass>=0)all_pos = 0» all_pos = any(Mass>=0)all_pos = 1» pos_fin = (Mass>=0)&(isfinite(Mass))pos_fin = 0 1 0 1 0 0 1

= = equal to

> greater than

< less than

>= Greater or equal

<= less or equal

~ not

& and

| or

isfinite(), etc. . . .

all(), any()

find

Note:• 1 = TRUE• 0 = FALSE

Elementary Math Function

• abs, sign: Absolute value and Signum Function• sin, cos, asin, acos…: Triangular functions• exp, log, log10: Exponential, Natural and

Common (base 10) logarithm• ceil, floor: Round to integer, toward +/-infinity• fix: Round to integer, toward zero

Elementary Math Function

round: Round to the nearest integer gcd: Greatest common divisor lcm: Least common multiple sqrt: Square root function real, imag: Real and Image part of complex rem: Remainder after division

Elementary Math Function Operating on Arrays

• max, min: Maximum and Minimum of arrays• mean, median: Average and Median of arrays • std, var: Standard deviation and variance • sort: Sort elements in ascending order• sum, prod: Summation & Product of Elements• trapz: Trapezoidal numerical integration• cumsum, cumprod: Cumulative sum, product• diff, gradient: Differences and Numerical

Gradient

Polynomials and Interpolation

Polynomials Representing Roots (>> roots) Evaluation (>> polyval) Derivatives (>> polyder) Curve Fitting (>> polyfit) Partial Fraction Expansion

(>>residue)

Interpolation One-Dimensional (interp1) Two-Dimensional (interp2)

polysam=[1 0 0 8];roots(polysam)ans = -2.0000 1.0000 + 1.7321i 1.0000 - 1.7321ipolyval(polysam,[0 1 2.5 4 6.5])ans = 8.0000 9.0000 23.6250 72.0000 282.6250polyder(polysam)ans = 3 0 0[r p k]=residue(polysam,[1 4 3])r = 9.5 3.5p = -3 -1k = 1 -4

polysam=[1 0 0 8];roots(polysam)ans = -2.0000 1.0000 + 1.7321i 1.0000 - 1.7321ipolyval(polysam,[0 1 2.5 4 6.5])ans = 8.0000 9.0000 23.6250 72.0000 282.6250polyder(polysam)ans = 3 0 0[r p k]=residue(polysam,[1 4 3])r = 9.5 3.5p = -3 -1k = 1 -4

Example

x = [0: 0.1: 2.5];y = erf(x); p = polyfit(x,y,6)p = 0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

x = [0: 0.1: 2.5];y = erf(x); p = polyfit(x,y,6)p = 0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

Curve fitting

interp1(x,y,[0.45 0.95 2.2 3.0])ans = 0.4744 0.8198 0.9981 NaN

interp1(x,y,[0.45 0.95 2.2 3.0])ans = 0.4744 0.8198 0.9981 NaN

polyfit(X,Y,N) - finds the coefficients of a polynomial P(X) of degree N that over the points X fits the data Y best in a least-squares sense

Exercise 2 (10 minutes)

Let x be an array of values from 0 to 2, equally spaced by 0.01 Compute the array of exponentials corresponding

to the values stored in x Find the polynomial p of degree 5 that is the best

least square approximation to y on the given interval [0,2]

Evaluate the polynomial p at the values of x, and compute the error z with respect to the array y

Interpolate the (x,z) data to approximate the value of the error in interpolation at the point .9995

ENDMATLAB for [Linear] Algebra

Programming andApplication Development

Topics discussed…The concept of m-file in MATLAB

Script versus function files

The concept of workspace

Variables in MATLAB Type of a variable Scope of a variable

Flow control in MATLAB

The Editor/Debugger

Before Getting Lost in Details…

Obtaining User Input “input” - Prompting the user for input

>> apls = input( ‘How many apples? ‘ )

“keyboard” - Pausing During Execution (when in M-file)

Shell Escape Functions (! Operator)

Optimizing MATLAB Code Vectorizing loops Preallocating Arrays

Function M-file

function r = ourrank(X,tol)

% rank of a matrix

s = svd(X);

if (nargin == 1)

tol = max(size(X)) * s(1)* eps;

end

r = sum(s > tol);

function r = ourrank(X,tol)

% rank of a matrix

s = svd(X);

if (nargin == 1)

tol = max(size(X)) * s(1)* eps;

end

r = sum(s > tol);

function [mean,stdev] = ourstat(x)[m,n] = size(x);if m == 1

m = n;endmean = sum(x)/m;stdev = sqrt(sum(x.^2)/m – mean.^2);

function [mean,stdev] = ourstat(x)[m,n] = size(x);if m == 1

m = n;endmean = sum(x)/m;stdev = sqrt(sum(x.^2)/m – mean.^2);

Multiple Input Argumentsuse ( )

Multiple Output Arguments, use [ ]

»r=ourrank(rand(5),.1);

»[m std]=ourstat(1:9);

Basic Parts of a Function M-File

function y = mean (x)

% MEAN Average or mean value.

% For vectors, MEAN(x) returns the mean value.

% For matrices, MEAN(x) is a row vector

% containing the mean value of each column.

[m,n] = size(x);

if m == 1

m = n;

end

y = sum(x)/m;

Output Arguments Input ArgumentsFunction Name

Online Help

Function Code

Script and Function Files

• Script Files• Work as though you typed commands into

MATLAB prompt

• Variable are stored in MATLAB workspace

• Function Files• Let you make your own MATLAB Functions

• All variables within a function are local

• All information must be passed to functions as parameters

• Subfunctions are supported

The concept of Workspace

• At any time in a MATLAB session, the code has a workspace associated with it

• The workspace is like a sandbox in which you find yourself at a certain point of executing MATLAB

• The “Base Workspace”: the workspace in which you live when you execute commands from prompt

• Remarks:

• Each MATLAB function has its own workspace (its own sandbox)

• A function invoked from a calling function has its own and separate workspace (sandbox)

• A script does not lead to a new workspace (unlike a function), but lives in the workspace from which it was invoked

Variable Types in MATLAB• Local Variables

• In general, a variable in MATLAB has local scope, that is, it’s only available in its workspace

• The variable disappears when the workspace ceases to exist

• Recall that a script does not define a new workspace – be careful, otherwise you can step on variables defined at the level where the script is invoked

• Since a function defines its own workspace, a variable defined in a function is local to that function

• Variables defined outside the function should be passed to function as arguments. Furthermore, the arguments are passed by value

• Every variable defined in the subroutine, if to be used outside the body of the function, should be returned back to the calling workspace

Variable Types in MATLAB• Global Variables

• These are variables that are available in multiple workspaces

• They have to be explicitly declared as being global

• Not going to expand on this, since using global variables is a bad programming practice

• A note on returning values from a function• Since all variables are local and input arguments are passed by value,

when returning from a function a variable that is modified inside that function will not appear as modified in the calling workspace unless the variable is either global, or declared a return variable for that function

if ((attendance >= 0.90) & (grade_average >= 60))

pass = 1;

end;

if ((attendance >= 0.90) & (grade_average >= 60))

pass = 1;

end;

eps = 1;

while (1+eps) > 1

eps = eps/2;

end

eps

eps = 1;

while (1+eps) > 1

eps = eps/2;

end

eps

if Statement

while Loops

Flow Control Statements

a = zeros(k,k) % Preallocate matrix

for m = 1:k

for n = 1:k

a(m,n) = 1/(m+n -1);

end

end

a = zeros(k,k) % Preallocate matrix

for m = 1:k

for n = 1:k

a(m,n) = 1/(m+n -1);

end

end

method = 'Bilinear';

... (some code here)...

switch lower(method)

case {'linear','bilinear'}

disp('Method is linear')

case 'cubic'

disp('Method is cubic')

otherwise

disp('Unknown method.')

end

Method is linear

method = 'Bilinear';

... (some code here)...

switch lower(method)

case {'linear','bilinear'}

disp('Method is linear')

case 'cubic'

disp('Method is cubic')

otherwise

disp('Unknown method.')

end

Method is linear

for Loop:

switch Statement:

Flow Control Statements

Editing and Debugging M-Files

The Editor/Debugger

Debugging M-Files Types of Errors (Syntax Error and Runtime Error)

Using keyboard and “ ; ” statement

Setting Breakpoints

Stepping Through Continue, Go Until Cursor, Step, Step In, Step Out

Examining Values Selecting the Workspace Viewing Datatips in the Editor/Debugger Evaluating a Selection

Debugging

Select Workspace

Set Auto-Breakpoints

tips

Importing and Exporting Data

Using the Import Wizard

Using Save and Load command

load fnameload fname x y zload fname -asciiload fname -mat

load fnameload fname x y zload fname -asciiload fname -mat

save fnamesave fname x y zsave fname -asciisave fname -mat

save fnamesave fname x y zsave fname -asciisave fname -mat

•Read formatted data, reusing the format string N times.

•Import and Exporting Numeric Data with General ASCII delimited files

»[A1…An]=textread(filename,format,N)»[A1…An]=textread(filename,format,N)

Input/Output for Text File

» M = dlmread(filename,delimiter,range)» M = dlmread(filename,delimiter,range)

Suppose the text file stars.dat contains data in the following form:Jack Nicholson 71 No Yes 1.77Helen Hunt 45 No No 1.73

Read each column into a variable[firstname, lastname, age, married, kids, height] = textread('stars.dat','%s%s%d%s%s%f');

Input/Output for Binary File

fopen: Open a file for input/output fclose: Close one or more open files fread: Read binary data from file fwrite: Write binary data to a file fseek: Set file position indicator

» fid= fopen('mydata.bin' , 'wb');» fwrite (fid,eye(5) , 'int32');» fclose (fid);» fid= fopen('mydata.bin' , 'rb');» M= fread(fid, [5 5], 'int32')» fclose (fid);

» fid= fopen('mydata.bin' , 'wb');» fwrite (fid,eye(5) , 'int32');» fclose (fid);» fid= fopen('mydata.bin' , 'rb');» M= fread(fid, [5 5], 'int32')» fclose (fid);

Exercise 3: A debug session (10 minutes)

Use the function demoBisect provided on the next slide to run a debug session Save the MATLAB function to a file called

demoBisect.m in the current directory Call once the demoBisect.m from the MATLAB

prompt to see how it works>>help demoBisect>>demoBisect(0, 5, 30) Place some breakpoints and run a debug session

Step through the code, and check the values of variables

Use the MATLAB prompt to echo variables Use dbstep, dbcont, dbquit commands

function xm = demoBisect(xleft,xright,n)% demoBisect Use bisection to find the root of x - x^(1/3) - 2%% Synopsis: x = demoBisect(xleft,xright)% x = demoBisect(xleft,xright,n)%% Input: xleft,xright = left and right brackets of the root% n = (optional) number of iterations; default: n = 15%% Output: x = estimate of the root

if nargin<3, n=15; end % Default number of iterationsa = xleft; b = xright; % Copy original bracket to local variablesfa = a - a^(1/3) - 2; % Initial values of f(a) and f(b)fb = b - b^(1/3) - 2;fprintf(' k a xmid b f(xmid)\n');

for k=1:n xm = a + 0.5*(b-a); % Minimize roundoff in computing the midpoint fm = xm - xm^(1/3) - 2; % f(x) at midpoint fprintf('%3d %12.8f %12.8f %12.8f %12.3e\n',k,a,xm,b,fm); if sign(fm)==sign(fa) % Root lies in interval [xm,b], replace a a = xm; fa = fm; else % Root lies in interval [a,xm], replace b b = xm; fb = fm; endend

Other Tidbits

The “inline” Utility

• inline function » f = inline('3*sin(2*x.^2)','x')

f = Inline function: f(x) = 3*sin(2*x.^2)» f(2)ans = 2.9681

» f = inline('3*sin(2*x.^2)','x')

f = Inline function: f(x) = 3*sin(2*x.^2)» f(2)ans = 2.9681

Use char function to convert inline object to string

• Numerical Integration using quad» Q = quad('1./(x.^3-2*x-5)',0,2); » F = inline('1./(x.^3-2*x-5)'); » Q = quad(F,0,2);» Q = quad('myfun',0,2)

» Q = quad('1./(x.^3-2*x-5)',0,2); » F = inline('1./(x.^3-2*x-5)'); » Q = quad(F,0,2);» Q = quad('myfun',0,2)

function y = myfun(x)

y = 1./(x.^3-2*x-5);

Note:quad function use adaptive Simpson quadrature

Root Finding, Optimization…fzero finds a zero of a single variable function

fun is inline function or m-function

fminbnd minimize a single variable function on a fixed interval. x1<x<x2

fminsearch minimize function w/ several variables

Use optimset to determine options parameter.

[x,fval]= fzero(fun,x0,options)

[x,fval]= fminbnd(fun,x1,x2,options)

[x,fval]= fminsearch(fun,x0,options)

options = optimset('param1',value1,...)

Ordinary Differential Equations

(Solving Initial Value Problem)

An explicit ODE with initial value:

Using ode45 for non-stiff functions and ode23t for stiff functions.

[t,y] = solver(odefun,tspan,y0,options)

[initialtime finaltime]

Initialvluefunction dydt = odefun(t,y)

•Use odeset to define options parameter

ODE Example:

» [t,y]=ode45('myfunc',[0 20],[2;0])» [t,y]=ode45('myfunc',[0 20],[2;0])

function dydt=myfunc(t,y)dydt=zeros(2,1);dydt(1)=y(2);dydt(2)=(1-y(1)^2)*y(2)-y(1);

0 2 4 6 8 10 12 14 16 18 20-3

-2

-1

0

1

2

3

Note:Help on odeset to set options for more accuracy and other useful utilities like drawing results during solving.

Example 4: Using ODE45 (5 minutes)

Use the example on the previous page to solve the slightly different IVP on the interval [0,20] seconds:

21 1 1 1

1

1

(1 0.9 ) 0

(0) 2

(0) 0

y y y y

y

y

Graphics Fundamentals

Graphics and Plotting in MATLAB

Basic Plotting plot, title, xlabel, grid, legend, hold, axis

Editing Plots Property Editor

Mesh and Surface Plots meshgrid, mesh, surf, colorbar, patch, hidden

Handle Graphics

2-D Plotting

Syntax:

Example:

plot(x1, y1, 'clm1', x2, y2, 'clm2', ...)plot(x1, y1, 'clm1', x2, y2, 'clm2', ...)

x=[0:0.1:2*pi];y=sin(x);z=cos(x);plot(x,y,x,z,'linewidth',2)title('Sample Plot','fontsize',14);xlabel('X values','fontsize',14);ylabel('Y values','fontsize',14);legend('Y data','Z data')grid on

x=[0:0.1:2*pi];y=sin(x);z=cos(x);plot(x,y,x,z,'linewidth',2)title('Sample Plot','fontsize',14);xlabel('X values','fontsize',14);ylabel('Y values','fontsize',14);legend('Y data','Z data')grid on

color

line marker

Sample Plot

Title

Ylabel

Xlabel

Grid

Legend

Displaying Multiple PlotsNomenclature:

Figure window – the window in which MATLAB displays plots Plot – a region of a window in which a curve (or surface) is

displayed

Three typical ways to display multiple curves in MATLAB (other combinations are possible…)

One figure contains one plot that contains multiple curves Requires the use of the command “hold” (see MATLAB help)

One figure contains multiple plots, each plot containing one curve

Requires the use of the command “subplot” Multiple figures, each containing one or more plots, each

containing one or more curves Requires the use of the command “figure” and possibly “subplot”

SubplotsSyntax:

»subplot(2,2,1);

» …

»subplot(2,2,2)

» ...

»subplot(2,2,3)

» ...

»subplot(2,2,4)

» ...

»subplot(2,2,1);

» …

»subplot(2,2,2)

» ...

»subplot(2,2,3)

» ...

»subplot(2,2,4)

» ...

subplot(rows,cols,index)subplot(rows,cols,index)

The “figure” Command

Use if you want to have several figures open for plotting

The command by itself creates a new figure window and returns its handle>> figure

If you have 20 figures open and want to make figure 9 the default one (this is where the next plot command will display a curve) do >> figure(9)>> plot(…)

Use the command close(9) if you want to close figure 9 in case you don’t need it anymore

Surface Plot Examplex = 0:0.1:2;y = 0:0.1:2;[xx, yy] = meshgrid(x,y);zz=sin(xx.^2+yy.^2);surf(xx,yy,zz)xlabel('X axes')ylabel('Y axes')

x = 0:0.1:2;y = 0:0.1:2;[xx, yy] = meshgrid(x,y);zz=sin(xx.^2+yy.^2);surf(xx,yy,zz)xlabel('X axes')ylabel('Y axes')

3-D Surface Plottingcontourf-colorbar-plot3-waterfall-contour3-mesh-surf

Specialized Plotting Routinesbar-bar3h-hist-area-pie3-rose

Advanced Topics

Handle Graphics

Graphics in MATLAB consist of objects: root, figure, axes, image, line, patch,

rectangle, surface, text, lightCreating ObjectsSetting Object Properties Upon CreationObtaining an Object’s Handles Knowing Object PropertiesModifying Object Properties Using Command Line Using Property Editor

Rootobject

Figureobject

UIControlobjects

UIMenuobjects

Axes object

Figureobject

Surfaceobject

Lineobjects

Textobjects

UIControlobjects

UIMenuobjects

Axes object

Figureobject

Graphics Objects

1. Upon Creation

2. Utility Functions 0 - root object handle gcf - current figure handle gca - current axis handle gco - current object handle

3. FINDOBJ

Obtaining an Object’s Handle

h_obj = findobj(h_parent, 'Property', 'Value', ...)

h_line = plot(x_data, y_data, ...)

What is the current object? • Last object created

OR• Last object clicked

Default = 0 (root object)

Modifying Object Properties

• Obtaining a list of current properties:

• Obtaining a list of settable properties:

• Modifying an object’s properties Using Command Line

Using Property Editor

get(h_object)

set(h_object)

set(h_object,'PropertyName','New_Value',...)

Graphical User Interface

What is GUI?What is figure and *.fig file?Using guide commandGUI controlsGUI menus

Push ButtonsRadio Buttons

Frames

Checkbox Slider

Edit text

static textAxes

Guide Editor

Property Inspector

Result Figure

Character String Manipulation

Character Arrays (Strings)

» str = 'Hi there,'

str =

Hi there,

» str2 = 'Isn''t MATLAB great?'

str2 =

Isn't MATLAB great?

» str = 'Hi there,'

str =

Hi there,

» str2 = 'Isn''t MATLAB great?'

str2 =

Isn't MATLAB great?

1x9 vectorstr = H i t h e r e ,

» str ='Hi there,';

» str1='Everyone!';

» new_str=[str, ' ', str1]

new_str =Hi there, Everyone! » str2 = 'Isn''t MATLAB great?';

» new_str2=[new_str; str2]new_str2 =Hi there, Everyone!Isn't MATLAB great?

» str ='Hi there,';

» str1='Everyone!';

» new_str=[str, ' ', str1]

new_str =Hi there, Everyone! » str2 = 'Isn''t MATLAB great?';

» new_str2=[new_str; str2]new_str2 =Hi there, Everyone!Isn't MATLAB great?

1x19 vector

1x9 vectors

String Array Concatenation

Using [ ] operator:Each row must be same length

Row separator:semicolon (;)

Column separator:space / comma (,)

For strings of different length:• STRVCAT• char

» new_str3 = strvcat(str, str2)new_str3 =Hi there, Isn't MATLAB great?

» new_str3 = strvcat(str, str2)new_str3 =Hi there, Isn't MATLAB great?

2x19 matrix

2x19 matrix(zero padded)

1x19 vectors

Working with String Arrays

String Comparisons strcmp: compare whole strings strncmp: compare first ‘N’ characters findstr: finds substring within a larger string

Converting between numeric & string arrays: num2str: convert from numeric to string array str2num: convert from string to numeric array

Data Types

Data Types

Numeric Arrays Multidimensional Arrays Structures and Cell Arrays

Multidimensional Arrays

» A = pascal(4);» A(:,:,2) = magic(4)A(:,:,1) = 1 1 1 1 1 2 3 4 1 3 6 10 1 4 10 20A(:,:,2) = 16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1» A(:,:,9) =

diag(ones(1,4));

» A = pascal(4);» A(:,:,2) = magic(4)A(:,:,1) = 1 1 1 1 1 2 3 4 1 3 6 10 1 4 10 20A(:,:,2) = 16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1» A(:,:,9) =

diag(ones(1,4));

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Page N

Page 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

The first references array dimension 1, the row.

The second references dimension 2, the column.

The third references dimension 3, The page.

Structures•Arrays with named data containers called fields.

» patient.name='John Doe';» patient.billing = 127.00;» patient.test= [79 75 73; 180 178 177.5; 220 210 205];

» patient.name='John Doe';» patient.billing = 127.00;» patient.test= [79 75 73; 180 178 177.5; 220 210 205];

•Also, Build structure arrays using the struct function.•Array of structures

» patient(2).name='Katty Thomson';» Patient(2).billing = 100.00;» Patient(2).test= [69 25 33; 120 128 177.5; 220

210 205];

» patient(2).name='Katty Thomson';» Patient(2).billing = 100.00;» Patient(2).test= [69 25 33; 120 128 177.5; 220

210 205];

Cell Arrays•Array for which the elements are cells and can hold

other MATLAB arrays of different types.

» A(1,1) = {[1 4 3;0 5 8;7 2 9]};» A(1,2) = {'Anne Smith'};» A(2,1) = {3+7i};» A(2,2) = {-pi:pi/10:pi};

» A(1,1) = {[1 4 3;0 5 8;7 2 9]};» A(1,2) = {'Anne Smith'};» A(2,1) = {3+7i};» A(2,2) = {-pi:pi/10:pi};

•Using braces {} to point to elements of cell array

•Using celldisp function to display cell array

Conclusion

Matlab is a language of technical computing.

Matlab, a high performance software, a high-level language

Matlab supports GUI, API, and …

Matlab Toolboxes best fits different applications

Matlab …

Getting more help

• Contact http://www.mathworks.com/support • You can find more help and FAQ about

mathworks products on this page.• Contact comp.soft-sys.matlab Newsgroup• Use google to find more information (like the

content of this presentation, in the first place)

??