60
167 BIBLIOGRAPHY 1. Abe H., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi- Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 15: 63–78. 2. Agarwal P.K., Agarwal P., Reddy M.K. and Sopory S.K. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25: 1263-1274. 3. Alber T. 1992. Structure of the leucine zipper. Current Opinion in Genetics & Development, 2: 205-210. 4. Albrecht V., Weinl S., Blazevic D.D., Angelo C., Batistic O., Kolukisaoglu U., Bock R., Schulz B., Harter K. and Kudla J. 2003. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant Journal 36: 457-470. 5. Allen L.B. Jr, Boote K.J. and Hammond L.C. 1976. Peanut stomatal diffusion resistance affected by soil water and solar radiation. Proceedings of the Soil and Crop Science Society, Florida, 35: 42±46. 6. Amato M. and Ritchie J.T. 2002. Spatial distribution of roots and water uptake of maize (Zea mays L.) as affected by soil structure. Crop Science, 42:773–780. 7. Ameglio T., Roux X.L., Mingeau M. and Perrier C. 2000. Water relations of high bush blueberry under drought conditions. Acta Horticulturae, 537: 273-279. 8. Anuradha T.S., Jami S.K., Datta R.S. and Kirti P.B. 2006. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoter-less gus: nptII fusion gene based vector. Journal of Biosciences, 31: 235-246.

Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

Embed Size (px)

Citation preview

Page 1: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

167

BIBLIOGRAPHY

1. Abe H., Urao T., Ito T., Seki M., Shinozaki K. and Yamaguchi-

Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2

(MYB) function as transcriptional activators in abscisic acid

signaling. Plant Cell, 15: 63–78.

2. Agarwal P.K., Agarwal P., Reddy M.K. and Sopory S.K. 2006.

Role of DREB transcription factors in abiotic and biotic stress

tolerance in plants. Plant Cell Reports, 25: 1263-1274.

3. Alber T. 1992. Structure of the leucine zipper. Current Opinion

in Genetics & Development, 2: 205-210.

4. Albrecht V., Weinl S., Blazevic D.D., Angelo C., Batistic O.,

Kolukisaoglu U., Bock R., Schulz B., Harter K. and Kudla J.

2003. The calcium sensor CBL1 integrates plant responses to

abiotic stresses. Plant Journal 36: 457-470.

5. Allen L.B. Jr, Boote K.J. and Hammond L.C. 1976. Peanut

stomatal diffusion resistance affected by soil water and solar

radiation. Proceedings of the Soil and Crop Science Society,

Florida, 35: 42±46.

6. Amato M. and Ritchie J.T. 2002. Spatial distribution of roots

and water uptake of maize (Zea mays L.) as affected by soil

structure. Crop Science, 42:773–780.

7. Ameglio T., Roux X.L., Mingeau M. and Perrier C. 2000. Water

relations of high bush blueberry under drought conditions. Acta

Horticulturae, 537: 273-279.

8. Anuradha T.S., Jami S.K., Datta R.S. and Kirti P.B. 2006.

Genetic transformation of peanut (Arachis hypogaea L.) using

cotyledonary node as explant and a promoter-less gus: nptII

fusion gene based vector. Journal of Biosciences, 31: 235-246.

Page 2: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

168

9. Araus J.L., Reynolds M.P. and Acevedo E. 1993. Leaf posture,

grain yield, growth, leaf structure, and carbon isotope

discrimination in wheat. Crop Science, 33: 1273–1279.

10. Araus J.L., Slafer G.A., Reynolds M.P. and Royo C. 2002. Plant

breeding and drought in C3 cereals: What should we breed for?

Annals of Botany (London), 89: 925–940.

11. Ashraf M. 2010. Inducing drought tolerance in plants: recent

advances. Biotechnology Advances, 28: 169-183.

12. Babu V.R. and Rao D.V.M. 1983. Water stress adaptations in

the groundnut (Arachis hypogaea L.) foliar characteristics and

adaptations to moisture stress. Plant Physiology and

Biochemistry, 10: 64-80.

13. Bacon M.A. 2004. Water-use efficiency in plant biology. In:

Bacon, M.A. (Ed.), Water-Use Efficiency in Plant Biology.

Blackwell, pp: 1–26.

14. Baker C.M. and Wetzstein H.Y. 1992. Somatic embryogenesis

and plant regeneration from leaflets of peanut, Arachis

hypogaea. Plant Cell Reports, 11: 71-75.

15. Baker S.S., Wilhelm K.S. and Thomashow M.F. 1994. The 5’-

region of Arabidopsis thaliana cor15a has cis-acting elements

that confer cold-, drought- and ABA-regulated gene expression.

Plant Molecular Biology, 24: 701-713.

16. Bänziger M. and Araus J.L. 2007. Recent advances in breeding

maize for drought and salinity stress tolerance. In Molecular

Breeding Towards Salinity and Drought Tolerance (Jenks M.A.,

Hasegawa P.M. and Jain S.M. eds.). Dordretch, Netherlands:

Springer, pp: 587-601.

17. Bartels D. and Sunkars R. 2005. Drought and salt tolerance in

plants. Critical Reviews in Plant Science, 24: 23-58.

18. Bartels D., Velasco R., Schneider K., Forlani F., Furini A. and

Salamini F. 1993. In: Mabry T.J., Nguyen H.T., Dixon R.A.,

Bonness M.S. (eds) Biotechnology for Arid land Plants.

IC~Institute Austin, Texas, pp: 47-58.

Page 3: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

169

19. Bates L.S., Waldren R.P. and Teare I.D. 1973. Rapid

determination of free proline for water-stress studies. Plant and

Soil, 39: 205-207.

20. Beatriz Xoconostle-Cázares, Francisco Arturo Ramirez-Ortega,

Leonardo Flores-Elenes and Roberto Ruiz-Medrano 2011.

Drought tolerance in crop plants. American Journal of Plant

Physiology, 1(16): 1557-4539

21. Behnam B., Kikuchi A., Celebi-Toprak F., Yamanaka S., Kasuga

M., Yamaguchi-Shinozaki K. and Watanabe K.N. 2006. The

Arabidopsis DREB1A gene driven by the stress-inducible rd29A

promoter increases salt-tolerance in proportion to its copy

number in tetrasomic tetraploid potato (Solanum tuberosum).

Plant biotechnology, 23: 169-177.

22. Bell M. 1986. Effect of sowing date on growth and development

of irrigated peanuts (Arachis hypogaea L. cv. Early Bunch) in a

monsoonal tropical environment. Australian Journal of

Agricultural Research, 37: 361-373.

23. Benedict C., Skinner J.S., Meng R., Chang Y., Bhalerao R.,

Huner N.P.A., Finn C.E., Chen T.H.H. and Hurry V. 2006. The

CBF1-dependent low temperature signalling pathway, regulon

and increase in freeze tolerance are conserved in Populus spp.

Plant Cell and Environment, 29: 1259-1272.

24. Bennett J.M., Sexton P.J. and Boote K.J. 1990. A root tube-

pegging pan apparatus: preliminary observations and effects of

soil water in the pegging zone. Peanut Science, 17: 68–72.

25. Beringer H. and Taha M.A. 1976. Calcium absorption by two

cultivars of groundnut. Experimental Agriculture, 12: 107–111.

26. Bernardo R. 2008. Molecular markers and selection for complex

traits in plants: learning from the last 20 years. Crop Science,

48:1649–1664.

27. Bernardo R. and Charcosset A. 2006. Usefulness of gene

information in marker-assisted recurrent selection: a simulation

appraisal. Crop Science, 46: 614–621.

Page 4: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

170

28. Bernardo R. and Yu J. 2007 Prospects for genome-wide

selection for quantitative traits in maize. Crop Science, 47:

1082–1090.

29. Bertioli D.J., Leal-Bertioli S.C.M., Lion M.B., Santos V.L.,

Pappas Jr. G., Cannon S.B. and Guimaraes P.M., 2003. A large

scale analysis of resistance gene homologues in Arachis.

Molecular Genetics and Genomics, 270: 34-45.

30. Bevan M.W. 1984. Binary Agrobacterium vectors for plant

transformation. Nucleic Acids Research, 12: 8711-8721.

31. Bhagsari A.S., Brown R.H. and Schepers J.S. 1976. Effect of

moisture stress on photosynthesis and some related

physiological characteristics in peanut. Crop Science, 16: 112–

115.

32. Bhan S. and Misra D.K. 1970. Water utilization by groundnut

(Arachis hypogaea L.) as influenced due to variety, plant

population and soil fertility level under arid zone conditions.

Indian Journal of Agronomy, 15: 258-263.

33. Bhatnagar-Mathur P., Anjaiah V. and Sharma K.K. 2008a.

Agrobacterium-mediated genetic transformation of groundnut.

Handbook of new technologies for genetic improvement of

legumes, CRC Press, pp 227-251.

34. Bhatnagar-Mathur P., Devi M. J., Serraj R., Yamaguchi-

Shinozaki K., Vadez V. and Sharma K.K. 2004. Evaluation of

transgenic groundnut lines under water limited conditions.

International Arachis Newsletter, 24: 33–34.

35. Bhatnagar-Mathur P., Jyostna Devi M., Vadez V and Sharma

K.K. 2009. Differential antioxidative responses in transgenic

peanut bear no relationship to their superior transpiration

efficiency under drought stress. Journal of Plant Physiology,

166: 1027-1217.

36. Bhatnagar-Mathur P., Rao J.S., Vadez V. and Sharma K.K.

2010. 'Transgenic Strategies for Improved Drought Tolerance in

Page 5: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

171

Legumes of Semi-Arid Tropics', Journal of Crop Improvement, 24:

1, 92-111.

37. Bhatnagar-Mathur P., Reddy D.S., Lavanya M., Yamaguchi-

Shinozaki K. and Sharma K.K. 2007. Stress-inducible

expression of Arabidopsis thaliana DREB1A in transgenic

peanut (Arachis hypogaea L.) increases transpiration efficiency

under water-limiting conditions. Plant Cell Reports, 26: 2071–

82.

38. Bhatnagar-Mathur P., Vadez V and Sharma K.K. 2008b.

Transgenic approaches for abiotic stress tolerance in plants:

Retrospect and prospects. Plant Cell Reports, 27: 411-424.

39. Billaz R. and Ochs R. 1961. Stages of susceptibility of

groundnuts to drought. Stades de sensibilite de l'arachidea la

secheresse. ( In Fr.) Oleagineux, 16: 605-611.

40. Birch R.G. 1997. Plant transformation: Problems and strategies

for practical application. Annual Review of Plant Physiology and

Plant Molecular Biology, 48: 297-326.

41. Black C.R., Tang T.Y., Ong C.K., Solon A. and Simmonds L.P.

1985. Effect of soil moisture stress on the water relations and

water use of groundnut stands. New Phytology, 100: 313–328.

42. Blum A 1988. ‘Plant breeding for stress environments.’ (CRC

Press:Boca Raton, FL).

43. Blum A. 1998. Improving wheat grain filling under stress by

stem reserve mobilization. Euphytica, 100: 77–83.

44. Blum A. 2009. Effective use of water (EUW) and not water use

efficiency (WUE) is the target of crop yield improvement under

drought stress. Field Crops research, 112: 119-123.

45. Blum A., 2005. Drought resistance, water-use efficiency, and

yield potential—are they compatible, dissonant, or mutually

exclusive? Australian Journal of Agricultural Research, 56: 1159–

1168.

Page 6: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

172

46. Blum A., Mayor J. and Golan G. 1982. Infrared thermal sensing

of plant canopies as a screening techniques for dehydration

avoidance in wheat. Field Crops research, 5: 137-146.

47. Bohnert H.J., Nelson D.E. and Jensen R.G. 1995. Adaptations

to environmental stress. Plant Cell, 7: 1099-1111.

48. Boote K.J. and Hammond L.C. 1981. Effect of drought on

vegetative and reproductive development of groundnut.

Proceedings of American Peanut Research and Education

Society 13, pp: 86.

49. Boote K.J. and Ketring D.L. 1990. Peanut production,

utilization, and trade in the 1980s. In: Nigam S.N. (ed.) Nielson

D.R. (eds), Irrigation of Agricultural Crops. ASA- Groundnut - A

Global Perspective. International Crops Research CSSA-SSSA,

Madison.

50. Boote K.J., Stansell J.R., Schubert A.M.L. and Stone J.F. 1982.

Irrigation, water use, and water relations. In Peanut science and

technology (Pattee H.E. and Young C.T. eds.). Yoakum, Texas,

USA: American Peanut Research and Education Society, pp

164-205.

51. Boote K.J., Varmell R.J. and Duncan W.G. 1976. Relationships

of size, osmotic concentration and sugar concentration of

peanut pods to soil water. Proceedings, Soil and Crop Science

Society of Florida 35:47-50.

52. Borlaug N.E. 1997. Feeding a world of 10 billion people: then

miracle ahead. Plant Cell Tissue Culture and Biotechnology, 3:

119-127.

53. Borlaug N.E. 2000. Ending world hunger: The promise of

biotechnology and the threat of antiscience zealotry. Plant

Physiology, 124: 487- 490.

54. Boyce J.M., Knight H., Deyholos M., Openshaw M.R., Galbraith

D.W., Warren G. and Knight M.R. 2003. The sfr6 mutant of

Arabidopsis is defective in transcriptional activation via

Page 7: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

173

CBF/DREB1 and DREB2 and shows sensitivity to osmotic

stress. Plant Journal, 34: 395-406.

55. Boyer J.S. 1982. Plant productivity and environment. Science,

218 (4571), 443-448.

56. Branch W.D. and Kvein C.K. 1992. Peanut breeding for drought

resistance. Peanut Science, 19: 44-46.

57. Branch W.D., and Hilderbrand G.L. 1989. Pod yield comparison

of pure-line peanut selections simultaneously developed from

Georgia and Zimbabwe breeding programs. Plant Breeding, 102:

260–263.

58. Brar G.S., Cohen B.A., Vick C.L., Johnson G.W. 1994 Recovery

of transgenic peanut (Arachis hypogaea L.) plants from elite

cultivars utilizing ACCELL technology. Plant Journal 5, 745-753.

59. Brasileiro A.C.M. and Dusi. D.M.A. 1999. Transformação

genética de plantas. In Torres, A.C., I.S. Caldas, and J.A. Buso

(eds.) Cultura de teçidose tranformação genética de plantas.

EMBRAPA, SPI, Brasilia. Embrapa Hortaliças, 2: 679-735.

60. Brautigam M., Lindlof A., Zakhrabekova S., Gharti-Chhetri G.,

Olsson B. and Olsson O. 2005. Generation and analysis of 9792

EST sequences from cold acclimated oat, Avena sativa. BMC

Plant Biology, 5: 18

61. Bray E.A. 1993 Molecular responses to water deficit. Plant

Physiology, 103: 1035–1040.

62. Bray E.A. 1997. Plant responses to water deficit. Trends in Plant

Science, 2: 48-54.

63. Bray E.A. 2004. Genes commonly regulated by water-deficit

stress in Arabidopsis thaliana. Journal of Experimental Botany

55: 2331-2341.

64. Bray E.A., Bailey‐Serres J. and Weretilnyk E. 2000. Responses

to abiotic stress. In: Buchanan B.B., Gruissem W, Jones R.L.,

eds. Biochemistry and molecular biology of plants. Rockville:

American Society of Plant Physiologists, pp: 1158–1203.

Page 8: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

174

65. Byrne P.F. and McMullen M.D. 1996. Defining genes for

agricultural traits: QTL analysis and the candidate gene

approach. Probe, 7: 24-27.

66. C. Lacorte, F. J. L. Aragão, E. R. Almeida, E. L. Rech and E.

Mansur. 1997. Transient expression of GUS and the 2S albumin

gene from Brazil nut in peanut (Arachis hypogaea L.) seed

explants using particle bombardment. Plant Cell Reports

Volume 16, Number 9, 619-623, DOI: 10.1007/BF01275502

67. Cao Z.F., Li J., Chen F., Li Y.Q., Zhou H.M. and Liu Q. 2001.

Effect of two conserved amino acid residues on DREB1A

function. Biochemistry (Moscow), 66: 623-627.

68. Catala R., Santos E., Alonso J.M., Ecker J.R., Martinez-Zapater

J.M. and Salinas J. 2003. Mutations in the Ca2+/H+

transporter CAX1 increase CBF/DREB1 expression and the

cold-acclimation response in Arabidopsis. Plant Cell, 15: 2940-

2951.

69. Cattivelli L., Rizza F., Badeck F.W., Mazzucotelli, E.,

Mastrangelo, A.M., Francia, E., Mar`e C., Tondelli A. and Stanca

A.M. 2008. Drought tolerance improvement in crop plants: An

integrated view from breeding to genomics. Field Crop Research,

115: 1–14.

70. Chaiappetta L. 2002. Ottenimento di piante transegniche di

mais tolleranti al freddo. Ph.D. thesis. University of Bologna,

Bologna, Italy.

71. Chandra A. and Pental D. 2003. Regeneration and genetic

transformation of grain legumes: An overview. Current. Science,

84: 381–387.

72. Chapman, C.A. 1989. Primate seed dispersal: the fate of

dispersed seeds. Biotropica 21,: 341–356.

73. Charmet G., Robert N., Perretant M.R., Gay G., Sourdille P.,

Groos C., et al. 1999. Marker-assisted recurrent selection for

cumulating additive and interactive QTLs in recombinant inbred

lines. Theoretical and Applied Genetics, 99: 1143-1148.

Page 9: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

175

74. Chaves M.M. and Oliveira M.M. 2004. Mechanisms underlying

plant resilience to water deficits: prospects for water-saving

agriculture. Journal of Experimental. Botany, 55, 2365-2384.

75. Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo

C.P.P., Osorio M.L., Carvalho I., Faria T. and Pinheiro C. 2002.

How plants cope with water stress in the field. Photosynthesis

and growth. Annals of Botany, 89: 907-916.

76. Chen P.Y., Wang C.K., Soong S.C. and To K.Y. 2003. Complete

sequence of the binary vector pBI121 and its application in

cloning T-DNA insertion from transgenic plants. Molecular

Breeding, 11: 287-293.

77. Cheng M., Jarret R.L., Li Z. and Demski J.W. 1997. Expression

and inheritance of foreign genes in transgenic peanut plants

generated by Agrobacterium mediated transformation. Plant Cell

Reports, 16: 541-544.

78. Cheng M., Robert L.J., Xing Z., Li A. and Demski J.W. 1996.

Production of fertile transgenic peanut (Arachis hypogaea L.)

plants using Agrobacterium tumefaciens. Plant Cell Reports, 15:

653-657.

79. Chengalrayan K., Mhaske V.B. and Hazra S. 1997. High

frequency conversion of abnormal peanut somatic embryos.

Plant Cell Reports, 16: 783-786.

80. Chengalrayan K., Sathaye S.S. and Hazra S. 1994. Somatic

embryogenesis from mature embryo-derived leaflets of peanut

(Arachis hypogaea L.). Plant Cell Reports, 13: 578-581.

81. Chinnusamy V., Jagendorf A. and Zhu J.K. 2005.

Understanding and Improving Salt Tolerance in Plants. Crop

Science, 45: 437-448.

82. Chinnusamy V., Ohta M., Kanrar S., Lee B., Hong X., Agarwal

M. and Zhu J.K. 2003a. ICE1: a regulator of cold-induced

transcriptome and freezing tolerance in Arabidopsis. Genes &

Development, 17: 1043-1054.

Page 10: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

176

83. Chinnusamy V., Ohta M., Kanrar S., Lee B.H., Hong X., Agarwal

M. and Zhu J.K. 2003b. ICE1, a master regulator of cold

induced transcriptome and freezing tolerance in Arabidopsis.

Genes & Development, 17:1043-1054.

84. Chinnusamy V., Schumaker K.and Zhu J.K. 2004. Molecular

genetic perspectives on cross-talk and specificity in abiotic

stress signaling in plants. Journal of Experimental Botany, 55:

225–236.

85. Choi D.W., Rodriguez E.M. and Close T.J. 2002. Barley CBF3

gene identification, expression pattern, and map location. Plant

Physiology, 129: 1781-1787.

86. Clemente T.E., Robertson D., Isleib T.G., Beute M.K., Weissinger

A.K. 1992 Transgenic Research, 1: 275-284.

87. Clifton R., Lister R., Parker K.L., Sappl P.G., Elhafez D., Millar

A.H., Day D.A. and Whelan J. 2005. Stress-induced co-

expression of alternative respiratory chain components in

Arabidopsis thaliana. Plant Molecular Biology, 58: 193-212.

88. Collins N.C., Tardieu F. and Tuberosa R. 2008. Quantitative

trait loci and crop performance under abiotic stress: where do

we stand? Plant Physiology, 147:469–486.

89. Condon A.G., R.A. Richards G.J., Rebetzke and G.D. Farquhar.

2002. Improving intrinsic water-use efficiency and crop yield.

Crop Science, 42.

90. Cooper M. and Hammer G.L. 1996. Synthesis of strategies for

crop improvement In: Cooper M. and Hammer G.L. (Eds). Plant

adaptation and crop improvement CAB International, ICRISAT

and IRRI, pp: 591-623.

91. Cox F.R., Sullivan G.A. and Martin C.M. 1976. Effect of calcium

and nitrogen treatments on peanut yield, grade and seed

quality. Peanut Science, 3: 81–85.

92. Craufurd P., Dorward P., Opoku-Apau A., Dartey K., Bimpong I.

and Marfo K. 2000. Testing drought-tolerant plant types of

upland rice in Ghana using participatory methods. DFID Plant

Page 11: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

177

Sciences Research Programme, Final Technical Report, project

R6826. University of Reading, Reading, UK, pp: 70.

93. Daniell H., Khan M.S., and Allison L. 2002. Milestones in

chloroplast genetic engineering: an environmentally friendly era

in biotechnology. Trend in Plant Science, 7: 84-91.

94. Dardanelli J.L., Ritchie J.T., Calmon M., Andriani J.M. and

Collino D.J. 2004. An empirical model for root water uptake.

Field Crops Research, 87: 59–71.

95. Davies W.J., Tardieu F. and Trejo C.L. 1994. How do chemical

signals work in plants that grow in drying soil? Plant Physiology,

104: 309-314.

96. Davies W.J., Wilkinson S. and Loveys B. 2002. Stomatal control

by chemical signalling and the exploitation of this mechanism to

increase water use efficiency in agriculture. New Phytologist,

153: 449–460.

97. De Vries J.D., Bennett J.M., Albrecht S.L. and Boote K.J.

1989a. Water relations, nitrogenase activity and root

development of three grain legumes in response to soil water

deficits. Field Crops Research, 21:215–226.

98. Dellaporta S.L., Wood J. and Hicks J.B. 1983 A plant DNA

minipreparation: Version II. Plant Molecular Biology Report, 1(4):

19.

99. Deng X.Y., Wei Z.M. and AN H.L. 2001.Transgenic peanut

plants obtained by particle bombardment via somatic

embryogenesis regeneration system. Cell Research, 11(2): 156-

160.

100. Devi J.M. 2008. Identification of mechanisms for drought

response in groundnut (Arcahis hypogaea L.), Ph.D thesis

Submitted to department of genetics and bitoechnology, O.U.

101. Devi M.J., Sinclair T.R. and Vadez V. 2010. Genotypic variation

in peanut for transpiration response to vapor pressure deficit.

Crop Science, 50(1): 191-196.

Page 12: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

178

102. DeVries J.D., Bennett J.M., Boote K.J., Albrecht S.L. and

Maliro, C.E. 1989b. Nitrogen accumulation and partitioning by

three grain legumes in response to soil water deficits. Field

Crops Research, 22: 33-44.

103. Dita M.A., Rispail N., Prats E., Rubiales D. and Singh K.B.

2006. Biotechnology approaches to overcome biotic and abiotic

stress constraints in legumes. Euphytica, 147: 1-24.

104. Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G.,

Miura S., Seki M., Shinozaki K. and Yamaguchi-Shinozaki K.

2003. OsDREB genes in rice, Oryza sativa L., encode

transcription activators that function in drought-, high-salt-

and cold-responsive gene expression. Plant Journal, 33: 751-

763.

105. Duncan W.G., McCloud D.E., McGraw R.L. and Boote K.J.

1978. Physiological aspects of peanut yield improvement. Crop

Science, 18:1015-1020.

106. Dwivedi S.L., Crouch J.H., Nigam S.N., Ferguson M.E. and

Paterson A.H. 2003. Molecular breeding of groundnut for

enhanced productivity and food security in the semi-arid

tropics: opportunities and challenges. Advances in Agronomy,

80: 153-221.

107. Eapen Susan and George Leela. 1994. Agrobacterium

tumefaciens mediated gene transfer in peanut (Arachis

hypogaea L.). Plant Cell Reports, 582-586.

108. Egnin M., Mora A. and Prakash C. 1998. Factors enhancing

Agrobacterium tumefaciens mediated gene transfer in peanut

(Arachis hypogaea L.). In Vitro Cellular and Developmental Plant

Biology, 34: 310-318.

109. Erickson P.I. and D.L. Ketring. 1985. Evaluation of peanut

genotypes for resistance to water stress in situ. Crop Science, 25:

870-876.

Page 13: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

179

110. FAO. 2000. Food and Agricultural Organization, United Nations

Statistical Database. http://faostat.fao.org/faostat/collections?

Subset =agriculture.

111. FAO. 2004 Food and Agricultural Organization, United Nations

Statistical Database. http://faostat.fao.org/faostat/collections?

Subset =agriculture.

112. FAO. 2005 Food and Agricultural Organization, United Nations

Statistical Database. http://faostat.fao.org/faostat/collections?

Subset =agriculture.

113. FAO. 2008. Food and Agricultural Organization, United Nations

Statistical Database. http://faostat.fao.org/faostat/collections?

Subset =agriculture.

114. FAO. 2009. Food and Agricultural Organization, United Nations

Statistical Database. http://faostat.fao.org/faostat/collections?

Subset =agriculture.

115. Feng J.X., Liu D., Pan Y., Gong W., Ma L.G., Luo J.C., Deng

X.W. and Zhu Y.X. 2005. An annotation update via cDNA

sequence analysis and comprehensive profiling of

developmental, hormonal or environmental responsiveness of

the Arabidopsis AP2/EREBP transcription factor gene family.

Plant Molecular Biology, 59: 853-868.

116. Fischer G., Shah M., van Velthuizen H. and Nachtergaele F.O.

2001. Global agro-ecological assessment for agriculture in the

21stCentury. IIASA Research Report 02-02, International

Institute for Applied Systems Analysis, Laxenburg, Austria, pp:

119.

117. Fischer R.A., Rees D., Sayre K., Lu Z., Condon A.J., Larque

Saavedra A. and Zeiger E. 1998. Wheat yield progress associate

with higher stomatal conductance and photosynthetic rate, and

cooler canopies. Crop Science, 38:1467–1475.

118. Flor H.H. 1971. Current status of the gene-for-gene concept.

Annual Review of Phytopathology, 9: 275-296.

Page 14: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

180

119. Fowler S. and Thomashow M.F. 2002. Arabidopsis

transcriptome profiling indicates that multiple regulatory

pathways are activated during cold acclimation in addition to

the CBF cold response pathway. Plant Cell, 14: 1675-1690.

120. Frank A.B., Ray I.M., Berdahl J.D. and Karn J.F. 1997. Carbon

isotope discrimination ash and canopy temperature in three

wheatgrass species. Crop Science, 7: 1573–1576.

121. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K.,

Ohme-Takagi, M., Tran, L.S.P., Shinozaki, K. and Yamaguchi-

Shinozaki, K. 2004. A dehydration-induced NAC protein, RD 26

is involved in ABA-dependent stress signaling pathway. Plant

Journal, 39, 863-876.

122. Gamborg O.L., Mlller R.A. and Oiima K. 1968. Nutrient

requirements of suspension cultures of soybean root cells.

Experimental. Cell Research, 50: 151-158.

123. Gao M.J., Allard G., Byass L., Flanagan A.M. and Singh J.

2002. Regulation and characterization of four CBF transcription

factors from Brassica napus. Plant Molecular Biology, 49: 459-

471.

124. Gates D.M. 1968 Transpiration and leaf temperature. Annual

Review of Plant Physiology, 19: 211-238.

125. Gibbons R.W. 1980. The ICRISAT groundnut program. In: Proc.

Int. Workshop on Groundnut. 13-17 Oct., pp: 12-16.

126. Gilmour S.J. and Thomashow M.F. 1991. Cold acclimation and

cold-regulated gene expression in ABA mutants of Arabidopsis

thaliana. Plant Molecular Biology, 17: 1233–1240.

127. Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D. and

Thomashow M.F. 2000. Overexpression of the Arabidopsis CBF3

transcriptional activator mimics multiple biochemical changes

associated with cold acclimation. Plant Physiology, 124: 1854-

1865.

128. Gilmour S.J., Zarka D.G. and Stockinger E.J. 1998. Low-

temperature regulation of the Arabidopsis CBF family of AP2

Page 15: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

181

transcriptional activators as an early step in cold-induced cor

gene-expression. Plant Journal, 16: 433-442.

129. Gong Z., Lee H., Xiong L., Jagendorf A., Stevenson B. and Zhu

J. 2002. RNA helicase-like protein as an early regulator of

transcription factors for plant chilling and freezing tolerance.

Proceedings of the National Academy of Sciences USA, 99:

11507-11512.

130. Gosti F, Bertauche N, Vartanian N, and Giraudat J. 1995.

Abscisic acid-dependent and -independent regulation of gene

expression by progressive drought in Arabidopsis thaliana.

Molecular and General Genetics, 246: 10–18.

131. Gregory W.C., Krapovickas A. and Gregory M.P. 1980.

Structure, variation and evolution and classification in Arachis.

In Advances in Legume Science (R.J. Summerfield and A.H.

Bunting, eds.). Royal Botanical Gardens, Kew, UK,: 469-481.

132. Guo Y., Xiong L., Ishitani M. and Zhu J.K. 2002. An Arabidopsis

mutation in translation elongation factor 2 causes super

induction of CBF/DREB1 transcription factor genes but blocks

the induction of their downstream targets under low

temperature. Proceedings of the National Academy of Sciences

USA, 99: 7786-7791.

133. Gupta Pushpendra K., Rustgi Sachin and Kulwal Pawan L.

2005. Linkage disequilibrium and association studies in higher

plants: present status and future prospects Plant Molecular

Biology, 57 (4): 461-485.

134. Haake V., Cook D., Riechmann J.L., Pineda O., Thomashow

M.F. and Zhang J.Z. 2002. Transcription factor CBF4 is a

regulator of drought adaptation in Arabidopsis. Plant

Physiology, 130: 639–648.

135. Hall A.E., Richards R.A., Condon A.G., Wright G.C. and

Farquhar G.D. 1994. Carbon isotope discrimination and plant

breeding. In: Janick J. ed. Plant Breeding Reviews. New York:

Wiley, 12: 81–113.

Page 16: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

182

136. Hallock D.L. and Allison A.H. 1980. Effect of three Ca sources

applied on peanuts productivity and seed quality. Peanut

Science, 7: 19-25.

137. Hamblin A. and Tennant D. 1987. Root length density and

water uptake in cereals and grain legumes: How well are they

correlated? Australian Journal of Agricultural Research, 38: 513-

527.

138. Hamill J.D., Rounsley S., Spencer A., Todd G. and Rhodes

M.J.C. 1991. The use of Polymerase chain reaction in plant

transformation studies. Plant Cell Reports, 10: 221-224.

139. Hammer G.L., Dong Z., McLean G., Doherty A., Messina C.,

Schussler J., Zinselmeier C., Paszkiewicz S. and Cooper M.

2009. Can changes in canopy and/or root systems architecture

explain historical maize yield trends in the U.S. Corn Belt? Crop

Science, 49: 299–312.

140. Hammond C., Boote K.J., Varnell R.J. and Robertson W.K.

1978. Water use and yield of peanuts on a well drained sandy

soil. Proceedings of American Peanut Research and Education

Association, 10: 73.

141. Hammons, R. O. 1982. Origin and early history of the peanut.

pp. 1-20, in H. E. Pattee and C. T. Young [Eds.], Peanut Science

and Technology, Am. Peanut Res. Educ. Soc., Yoakum, TX.

Isleib et al., 1994.

142. Hanson J.B. 1984. The function of calcium in plant nutrition. In

Advances in Plant Nutrition, Volume 1, P.B. Tinker and A.

Lauchli (eds.) Prager, New York, pp: 149-208.

143. Harris M.J., Outlaw W.H., Mertens R. and Weiler E.W. 1988

Water stress induced changes in the abscisic acid content of

guard cells and other cells of Vicia faba L. as determined by

enzyme-amplified immunoassay. Proc Natl Acad Sci USA, 85:

2584-2588.

144. Hartung W., Schiller P. and Karl-Josef D. 1998. Physiology of

poikilohydric plants. Prog. Bot., 59: 299-327.

Page 17: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

183

145. Hasegawa P.M., Bressan R.A., Zhu J.K. and Bohnert H.J. 2000.

Plant cellular and molecular responses to high salinity. Annual

Review of Plant Physiology and Plant Molecular Biology, 51: 463-

499.

146. Hazra S., Sathaye S.S. and Mascarenhas F. 1989. Direct

somatic embrogenesis in peanut (Arachis hypogaea)

Biotechnology, 7: 949-951.

147. Hebbar K.P., Martel M.H. and Heulin T. 1994. Burkholderia

cepacia, a plant growth promoting rhizobacterial associate of

maize. In: Improving plant productivity with rhizosphere

bacteria. Edited by M.H. Ryder, P.M. Stephens, and G.D.

Bowen. Commonwealth Scientific and Industrial Research

Organisation, Adelaide, Australia, pp: 201–203.

148. Henson I.E., Jensen C.R. and Turner N.C. 1989. Leaf gas

exchange and water relations of lupins and wheat. I. Shoot

responses to soil water deficits. Australian Journal of Plant

Physiology, 16: 401-413.

149. Higgins V.J., Lu H.G., Xing T., Gelli A. and Blumwald E. 1998.

The gene-for-gene concept and beyond: interactions and signals.

Canadian Journal of Plant Pathology, 20: 150-157.

150. Hobo T., Asada M., Kowyama Y. and Hattori T. 1999. ACGT-

containing abscisic acid response element (ABRE) and coupling

element 3 (CE3) are functionally equivalent. Plant Journal, 19:

679–689.

151. Hoekstra P.A., Golovina E.A. and Buitink J. 2001. Mechanisms

of plant dessication tolerance. Trends in Plant Science, 6:431-

438.

152. Hong J.P. and Kim W.T. 2005. Isolation and functional

characterization of the Ca-DREBLP1 gene encoding a

dehydration-responsive element binding-factor-like protein1 in

hot pepper (Capsicum annuum L. cv. Pukang). Planta, 220: 875-

888.

Page 18: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

184

153. Hopkins M.S., Casa A.M., Wang T., Mitchell, S.E., Dean R.E.,

Kochert G.D. and Kresovich S. 1999. Discovery and

characterization of polymorphic simple sequence repeats (SSRs)

in peanut. Crop Science, 39(4): 1243-1247.

154. Horie T., Matsuura, S., Takai, T., Kuwasaki, K., Ohsumi, A.,

Shiraiwa, T., 2006. Genotypic difference in canopy diffusive

conductance measured by a new remote-sensing method and its

association with the difference in rice yield potential. Plant Cell

Environment, 29: 653–660.

155. Horsch R.B., Fry J.E., Hoffman N.L., Eichholtz D., Rogers S.G.

and Fraley R.T. 1985. A simple and general method for

transferring genes into plants. Science, 227: 1229–1231.

156. Hsieh T.H., Lee J.T., Charng Y.Y. and Chan M.T. 2002a. Tomato

plants ectopically expressing Arabidopsis CBF1 show enhanced

resistance to water deficit stress. Plant Physiology, 130: 618-

626.

157. Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y.Y., Wang

Y.C. and Chan M.T. 2002b. Heterology expression of the

Arabidopsis C- repeat/ dehydration response element-binding

factor 1 gene confers elevated tolerance to chilling and oxidative

stresses in transgenic tomato. Plant Physiology, 129: 1086-

1094.

158. http://www.cgiar.org.

159. Hubick K.T., Farquhar G.D. and Shorter R. 1986. Correlation

between water use efficiency and carbon isotope discrimination

in diverse peanut (Arachis) germplasm. Australian Journal of

Plant Physiology, 13: 803-816.

160. Hubick K.T., Hammer G.L., Farquhar G.D., Wade L.J., von

Caemmerer S. and Henderson S.A. 1990. Carbon isotope

discrimination varies genetically in C3, species. Plant Physiology,

91: 534- 537.

Page 19: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

185

161. Hunter T. 1995. Protein kinases and phosphatases: The ying

and yang of protein phosphorylation and signaling. Cell, 80:

225-236.

162. Hurd P.D., Linsley Jr. E.G. and Michelbacher A. E. 1974.

Ecology of the squash and gourd bee, Peponapis pruinosa, on

cultivated cucurbits in California (Hymenoptera: Apoidea).

Smith. Contributions to Zoology, 168: 1-17.

163. Hussain S. S., Iqbal M. T., Arif M. A. and Amjad.M, 2011.

Beyond osmolytes and transcription factors: drought tolerance

in plants via protective proteins and aquaporins. Biologia

Plantarum, 55: 401-413.

164. Illingworth J.E. 1968. Peanuts from single de-embryonated

cotyledons. Horticulture Science, 3: 238.

165. Ishitani M., Xiong L., Lee H., Stevenson B. and Zhu J.K. 1998.

HOS1, a genetic locus involved in cold-responsive gene

expression in Arabidopsis. Plant Cell, 10: 1151-1161.

166. Ishitani M., Xiong L., Stevenson B. and Zhu J.K. 1997. Genetic

analysis of osmotic and cold stress signal transduction in

Arabidopsis thaliana: interactions and convergence of abscisic

acid-dependent and abscisic acid-independent pathways. Plant

Cell, 9: 1935-1949.

167. Isleib T. G., Wynne J. C and Nigam S. N. 1994. Groundnut

breeding. In "The Groundnut Crop: A Scientific Basis for

Improvement". (J. Smart, Ed.), Chapman and Hall, London, pp:

552-623.

168. Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M, Seki S.,

Shinozaki K. and Yamaguchi-Shinozaki K. 2006. Functional

analysis of rice DREB1/CBF type transcription factors involved

in cold responsive gene expression in transgenic rice. Plant Cell

Physiology, 47: 141–153.

Page 20: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

186

169. Izanloo A., Condon A.G., Langridge P., Tester M. and

Schnurbusch T. 2008. Different mechanisms of adaptation of

cyclic water stress in two South Australian bread wheat

cultivars. Journal of Experimental Botany, 59: 3327–3346.

170. Jackson P., Robertson M., Cooper M. and Hammer G. 1996. The

role of physiological understanding in plant breeding; from a

breeding perspective. Field Crop Research, 49: 11–37.

171. Jaglo K.R., Kleff S., Amundsen K.L., Zhang X., Haake V., Zhang

J.Z., Deits T. and Thomashow M.F. 2001. Components of the

Arabidopsis C- repeat/ dehydration -responsive element binding

factor cold-response pathway are conserved in Brassica napus

and other plant species. Plant Physiology, 127: 910-917.

172. Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O.

and Thomashow M.F. 1998. Arabidopsis CBF1 overexpression

induces COR genes and enhances freezing tolerance. Science,

280: 104-106.

173. Jahnavi M.R. and Murty U.R. 1985. Chromosome morphology

in species of the sections Erectoides and Extranervosae of the

genus Arachis L. Cytologia, 50: 747–758.

174. Jain L.L., Panda R.K. and Sharma C.P. 1997. Water Stress

response function for groundnut (Arachis hypogaea L.).

Agricultural Water Management, 32: 197–209.

175. James V.A., Neibaur I. and Altpeter F. 2008. Stress inducible

expression of the DREB1A transcription factor from xeric,

Hordeum spontaneum L. in turf and forage grass (Paspalum

notatum Flugge) enhances abiotic stress tolerance. Transgenic

Research, 17: 93–104.

176. James, C., 2009 Global Status of Commercialized Biotech/GM

Crops. International SeCarriere, Y., D. W. Crowder and B. E.

Tabashnik, 2010 Evolutionary ecology of insect adaptation to Bt

crops. Evolutionary Applications, 3: 561–573.

Page 21: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

187

177. Jiang C., Iu B. and Singh J. 1996. Requirement of a CCGAC cis-

acting element for cold induction of the BN115 gene from winter

Brassica napus. Plant Molecular Biology, 30: 679-684.

178. Jofuku K.D., den Boer B.G.W., Van Montagu M. and Okamuro

J.K. 1994. Control of Arabidopsis flower and seed development

by the homeotic gene APETALA2. Plant Cell, 6: 1211-1225.

179. Jones H.G. 1992. Plants and microclimate: A quantitative

approach to environmental plant physiology, 2nd ed Cambridge

University Press, New York.

180. Jones N, Ougham H and Thomas H. 1997. Markers and

mapping: we are all geneticists now. New Phytologist, 137: 165-

177

181. Jongrungklang, N., B. Toomsan, N. Vorasoot, S. Jogloy, T.

Kesmala and A. Patanothai, 2008. Identification of peanut

genotypes with high water use efficiency under drought stress

conditions from peanut germplasm of diverse origins. Asian

Journal of Plant Science, 7: 628-638.

182. Jorge Fernandez-Cornejo, Cassandra Klotz-Ingram and Sharon

Jans. 2002. Farm-Level Effects of Adopting Herbicide-Tolerant

Soybeans in the U.S.A. Journal of Agricultural and Applied

Economics, 34 (1):149-163.

183. Juenger , T. E. , J. K. McKay , N. Hausmann , J. J. B.

Keurentjes ,S. Sen , K. A. Stowe , T. E. Dawson , et al. 2005 .

Identifi cation and characterization of QTL underlying whole-

plant physiology in Arabidopsis thaliana: δ 13C, stomatal

conductance and transpiration efficiency. Plant, Cell and

Environment 28: 697 – 708.

184. Kang JY, Choi HI, Im MY, Kim SY. 2002. Arabidopsis basic

leucine zipper proteins that mediate stress-responsive abscisic

acid signaling. The Plant Cell 14, 343–357.

Page 22: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

188

185. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K. and

Shinozaki K. 1999. Improving plant drought, salt, and freezing

tolerance by gene transfer of a single stress inducible

transcription factor. Nature Biotechnology, 17: 287-291.

186. Kasuga M., Miura S., Shinozaki K. and Yamaguchi-Shinozaki K.

2004. A combination of the Arabidopsis DREB1A gene and

stress–inducible rd29A promoter improved drought–and low–

temperature stress tolerance in tobacco by gene transfer. Plant

and Cell Physiology, 45: 346-350.

187. Katayama K., Ito O., Adu-gyamfi J.J. and Rao T.P. 2000.

Analysis of Relationship between Root Length Density and

Water Uptake by roots of Five Crops Using Minirhizotron in the

Semi- Arid Tropics. Reprinted from Japan Agricultural Research

Quarterly (JARQ), 34 (2).

188. Kato Y., Hirotsu S., Nemoto K. and Yamagishi J. 2008.

Identification of QTLs controlling rice drought tolerance at

seedling stage in hydroponic culture. Euphytica, 160: 423–430.

189. Kaushik K.K. 1993, Growth and instability of oilseed production

in India, Indian Journal of Agricultural Economics, 48 (3): 334-

338.

190. Kayal W.E., Navarro M., Marque G., Keller G., Marque C. and

Teulieres C. 2006. Expression profile of CBF-like transcriptional

factor genes from Eucalyptus in response to cold. Journal of

Experimental Botany, 57: 2455-2469.

191. Kazuo Nakashima, Yusuke Ito and Kazuko Yamaguchi-

Shinozaki. 2009. Transcriptional Regulatory Networks in

Response to Abiotic Stresses in Arabidopsis and Grasses Plant

Physiology 149:88-95.

192. Ketring D.L. and Reid J.L.1993. Growth of Peanut Roots under

Field Conditions. Agronomy Journal, 85: 80—85.

Page 23: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

189

193. Ketring D.L., 1984. Root Diversity among peanut genotypes.

Crop Science, 24: 229—232.

194. Ketring D.L., Jordan W.R., Smith O.D. and Simpson C.E. 1982.

Genetic Variatibility in root and shoot growth characteristics of

peanut. Peanut Science, 9: 68—72.

195. Khandelwal, A., Vally, K.J.M., Geeta, N., Venkatachalam, P.,

Shaila, M.S. and Lakshmi Sita, G. 2003. Engineering

hemagglutinin (H) protein of rinder pest virus into peanut

(Arachis hypogaea L.) as a possible source of vaccine. Plant

Science, 165: 77

196. Kim H.J., Kim Y.K., Park J.Y. and Kim J. 2002. Light signalling

mediated by phytochrome plays an important role in cold-

induced gene expression through the C repeat/dehydration

responsive element (C/DRE) in Arabidopsis thaliana. The Plant

Journal, 29: 693-704.

197. Kim J.C., Lee S.H., Cheng Y.H., et al. 2001. A novel cold-

inducible zinc ®nger protein from soybean, SCOF-1, enhances

cold tolerance in transgenic plants. The Plant Journal 25,

247±259.

198. Kim J.S., Lee S.Y. and Park S.U. 2009. An efficient protocol for

peanut (Arachis hypogaea L.) transformation mediated by

Agrobacterium rhizogenes. Romanian Biotechnological Letters,

14: 4641-4647.

199. Kitashiba H., Ishizaka T., Isuzugawa K., Nishimura K. and

Suzuki T. 2004. Expression of a sweet cherry DREB1/CBF

ortholog in Arabidopsis confers salt and freezing tolerance.

Journal of Plant Physiology, 161: 1171-1176.

200. Klepper, B. 1987. Origin, branching and distribution of root

systems. In: Root Development and Function, Society of

Experimental Biology Seminar Series 30. Eds. P.J. Gregory, J.V.

Page 24: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

190

Lake and D.A. Rose. Cambridge University Press, Cambridge,

pp: 103-124.

201. Klien T.M., Harper E.C., Svab Z, Sanford J.C., Fromm M.E. and

Malinga P. 1988. Stable genetic transformation of intact

Nicotiana cells by the particle bombardment process.

Proceedings of the National Academy of Sciences USA, 85: 8502-

8505.

202. Knight H., Veale E.L., Warren G.J. and Knight M.R. 1999. The

sfr6 mutation in Arabidopsis suppresses low-temperature

induction of genes dependent on the CRT/DRE sequence motif.

Plant Cell, 11: 875-886.

203. Kobata, T., Okuno, T., Yamamoto, T., 1996. Contributions of

capacity for soil water extraction and water use efficiency to

maintenance of dry matter production in rice subjected to

drought. Japanese Journal of Crop Science, 65, 652–662.

204. Kocher G. 1996. Molecular markers and genome mapping. In:

Current Status of Agricultural Biotechnology in Indonesia

(Darussamin A., ed.), AARD, Jakarta, pp: 89-108.

205. Kooter J.M., Matzke M.A. and Meyer P. 1999. Listening to the

silent genes: Transgene silencing, gene regulation and pathogen

control. Trends in Plant Science, 4: 340–347

206. Krapovickas A and Gregory W.C. 1994. Taxonomía del

géneroArachis (Leguminosae). Bonplandia, 8: 1-186.

207. Krapovickas A. 1969. The origin, variability and spread of

groundnut (Arachis hypogaea L.). In The Domestication and

Exploitation of Plants and Animals (Ucko P.J. and Dimbley, G.

eds.). Duckworth, London, UK, pp: 135-151.

208. Krapovickas A. 1973. Evolution of the genus Arachis. In

Agriculture Genetics: Selected Topics (R. Moav, ed.). NRCO,

Jerusalem, Israel, 135.

Page 25: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

191

209. Krishnamurthy, L., Vadez, V., Devi, M.J., Serraj, R., Nigam, S.N,

Sheshshayee, M.S., Chandra, S., Rupakula, A., 2007. Variation

in transpiration efficiency and its related traits in a groundnut

(Arachis hypogaea L.) mapping population. Field Crops

Research. 103, 189-197.

210. Kumar N. and Bhatt R.P. 2006. Transgenics: An emerging

approach for cold tolerance to enhance vegetables production in

high altitude areas. Indian Journal of Crop Science, 1: 8-12.

211. Lacorte C., Mansur E., Timmerman B. and Cordeiro A.R. 1991.

Gene transfer into peanut (Arachis hypogaea L.) by

Agrobacterium tumefaciens. Plant Cell Reports, 10: 354-357.

212. Lafolie F, Bruckler L. and Tardieu F. 1991. Modelling root water

potential and soil-root water transport: I model presentation.

Soil Science Society of America Journal 55: 1203±1212.

213. Lee B.H., Henderson D.A. and Zhu J.K. 2005. The Arabidopsis

cold-responsive transcriptome and its regulation by ICE1. Plant

Cell, 17: 3155-3175.

214. Lee H., Xiong L., Gong Z., Ishitani M., Stevenson B. and Zhu J.-

K. 2001. The Arabidopsis HOS1 gene negatively regulates cold

signal transduction and encodes a RING finger protein that

displays cold-regulated nucleo-cytoplasmic partitioning. Genes

& Development, 15: 912-924.

215. Lee H., Xiong L., Ishitani M., Stevenson B. and Zhu J.K. 1999.

Cold-regulated gene expression and freezing tolerance in an

Arabidopsis thaliana mutant. The Plant Journal, 17: 301-308.

216. Lee S.C., Huh K.W., An K., An G. and Kim S.R. 2004. Ectopic

Expression of a Cold-inducible Transcription Factor,

CBF1/DREB1b, in Transgenic Rice (Oryza sativa L.). Molecules

and Cells, 18: 107-114.

Page 26: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

192

217. Lenka, D., and Misra, PK 1973. Response of groundnut (Arachis

hypogaea L.) to irrigation. Indian Journal of Agronomy, 18: 492-

497

218. Leong S.K. and Ong C.K.1983. The influence of temperature and

soil water deficit on the development and morphology of

groundnut (Arachis hypogaea L.), Journal of Experimental

Botany, 34:1551-1561.

219. Levitt J. 1972. Responses of plants to environmental stresses.

Academic Press: New York.

220. Levitt, J. 1980. Responses of Plant to Environmental Stress.

Vol. 1. Academic Press: New York.

221. Li X.P., Tian A.G., Luo G.Z., Gong Z.Z., Zhang J.S. and Chen

S.Y. 2005. Soybean DRE-binding transcription factors that are

responsive to abiotic stresses. Theoretical and Applied Genetics,

110: 1355-1362.

222. Li Z.J., Jarret R.L. and Demski J.W. 1997. Engineered

resistance to Tomato spotted wilt virus in transgenic peanut

expressing the viral nucleocapsid gene. Transgenic Research, 6:

297-305.

223. Lim P.O., Kim H.J. and Nam H.G. (2007) Leaf senescence.

Annual Review of Plant Biology, 58:115–136.

224. Little E.L., Magbanua Z.V. and Parrott A. 2000. A protocol for

repetitive somatic embryogenesis from mature peanut epicotyls.

Plant Cell Reports, 19: 351-357.

225. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-

Shinozaki K. and Shinozaki K. 1998. Two transcription factors,

DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain

separate two cellular signal transduction pathways in drought

and low-temperature-responsive gene expression respectively in

Arabidopsis. Plant Cell, 10: 1391-1406.

Page 27: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

193

226. Livingstone, D.M. and Birch, R.G. 1995. Plant regeneration and

microprojectile-mediated gene transfer in embryonic leaflets of

peanut (Arachis hypogaea L.). Australian Journal of Plant

Physiology, 22: 585-591.

227. Livingstone, D.M. and Birch, R.G. 1999. Efficient

transformation and regeneration of diverse cultivars of peanut

(Arachis hypogaea L.) by particle bombardment into

embryogenic callus produced from mature eeds. Molecular

Breeding, 5: 43-51.

228. Lu, Z.M., Radin, J.W., Turcotte, E.L., Percy, R., Zeiger, E., 1994.

High yields in advanced lines of pima cotton are associated with

higher stomatal conductance, reduced leaf area and lower leaf

temperature. Physiologia Plantarum. 92, 266–272.

229. Lu, Z.M., Zeiger, E., 1994. Selection for higher yields and heat

resistance in pima cotton has caused genetically determined

changes in stomatal conductances. Physiologia Plantarum, 92,

273–278.

230. Ludlow M.M. 1989. Strategies in response to water stress. In

Kreeb HK, Richter H, Hinckley TM, eds. Structural and

functional responses to environmental stresses: water shortage.

The Hague, Netherlands: SPB Academic Press, pp: 269–81.

231. Ludlow, M.M. and Muchow, R.C. 1990. A critical evaluation of

traits for improving crop yields in water-limited environments.

Advances in Agronomy, 43: 107-153.

232. Magbanua Z.V., Wilde H.D., Roberts J.K., Chowdhury K., Abad

J., Moyer J.W., Wetzstein H.Y. and Parrott W.A. 2000. Field

resistance to tomato spotted wilt virus in transgenic peanut

(Arachis hypogaea L.) expressing an antisense nucleocapsid

gene sequence. Molecular Breeding, 6: 227–236.

233. Magome H., Yamaguchi S., Hanada A., Kamiya Y. and Oda K.

2004. Dwarf and delayed-flowering 1, a novel Arabidopsis

Page 28: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

194

mutant deficient in gibberellin biosynthesis because of

overexpression of a putative AP2 transcription factor. The Plant

Journal, 37: 720-729.

234. Mansur E.A., Lacorte C., Defreitas V.G., Deoliveira D.E.,

Timmerman B. and Cordeiro A.R. 1993. Regulation of

transformation efficiency of peanut (Arachis hypogaea L.)

explants by Agrobacterium tumefaciens. Plant Science, 89: 93–

99.

235. Mantell, A.and Goldin. E. 1964. Influence of irrigation frequency

and intensity on the yield and quality of peanuts. Israel Journal

of Agricultural Research 14: 203-210.

236. Martin B., Tauer C.G. and Lin R.K. 1999. Carbon isotope

discrimination as a tool to improve water-use effi ciency in

tomato. Crop Science 39: 1775 – 1783.

237. Maruyama K., Sakuma Y., Kasuga M., Ito Y., Seki M., Goda H.,

Shimada Y., Yoshida S., Shinozaki K. and Yamaguchi-Shinozaki

K. 2004. Identification of cold-inducible downstream genes of

the Arabidopsis DREB1A/CBF3 transcriptional factor using two

microarray systems. The Plant Journal, 38: 982-993.

238. Mathews R.B., Harri, D., Nageswara Rao R.C. and Williams J.H.

and Wadia K.D.R. 1988. The physiological basis for yield

differences between four groundnut genotypes in response to

drought. I. Drymatter production and water use. Experimental

Agriculture, 24: 191-202.

239. Matus A., Slinkard A.E. and Vankessel C. 1996. Carbon isotope

discrimination and indirect selection for transpiration efficiency

at flowering in lentil (Lens culinaris medikus), spring bread

wheat (Triticum aestivum L.) durum wheat (T. turgidum L.), and

canola (Brassica napus L.). Euphytica, 87: 141–151.

Page 29: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

195

240. Matzke, A.J. and Matzke, M.A. 1998. Position effects and

epigenetic silencing of plant transgenes. Current Opinion in Plant

Biology, 1: 142–148.

241. Mayor P.J. and Bernardo. R. 2009. Genome-wide selection and

marker assisted recurrent selection in doubled haploid versus

F2 populations. Crop Science, 47:1719–1725.

242. McKently A.H. 1991. Direct somatic embryogenesis from axes of

mature peanut embryos. In vitro cellular & Developmental

Biology, 27: 197-200.

243. McKently A.H., Moore G.A. and Gardner F.P. 1990. In vitro

plant regeneration of peanut from seed explants. Crop Science,

30: 192-196.

244. McKently A.H., Moore G.A., Doostdar H. and Niedz R.P. 1995.

Agrobacterium-mediated transformation of peanut (Arachis

hypogaea L.) embryo axes and the development of transgenic

plants. Plant Cell Reports, 14: 699-703.

245. Medina J., Bargues M., Terol J., Perez-Alonso M. and Salinas J.

1999. The Arabidopsis CBF gene family is composed of three

genes encoding AP2 domain-containing proteins whose

expression is regulated by low temperature but not by abscisic

acid or dehydration. Plant Physiology, 119: 463-470.

246. Meisner C.A. and Karnok K.J. 1992. Peanut root response to

drought stress. Agronomy journal, 84: 159-165.

247. Menendez C.M. and Hall W.E. 1995. Heritability of carbon

isotope discrimination and correlations with earliness in

cowpea. Crop Science, 35: 673–678

248. Merah O. 2001. Potential importance of water status traits for

durum wheat improvement under Mediterranean conditions.

Journal of Agricultural Science. 137: 139–145.

249. Miflin B. 2000. Crop improvement in the 21st century. Journal

of Experimental Botany, 51: 1–8.

Page 30: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

196

250. Mitra J. 2001. Genetics and genetic improvement of drought

resistance in crop plants. Current Science, 80: 758-762.

251. Mittler R. 2005. Abiotic stress, the field environment and stress

combination. Trends in Plant Science, 11: 15–19.

252. Mixon A.C. 1969. Effects of row and drill spacing on yield and

market grade factors of peanuts. Alabama Agricultural

Experiment Station Circle, 166: 11.

253. Mohandas S., Radhakrishnan R., Panchanadhan R.M. and

Kandaswamy P. 1989. Diurnal pattern of plant water relations

of groundnut under water stress and potassium nutrition.

Journal of Agronomy and Crop Science, 163: 18–20.

254. Moloney M.M., Walker J.M. and Sharma K.K. 1989. An efficient

method for Agrobacterium-mediated transformation in Brassica

napus cotyledon explants. Plant Cell Reports, 8: 238–242.

255. Monclus, R., Dreyer E., Villar M., et al. 2006. Impact of drought

on productivity and water use efficiency in 29 genotypes of

Populus deltoides × Populus nigra. New Phytologist 169: 765–

777.

256. Monneveux P., Sheshshayee M.S., Akhter J. and Ribaut J.M. 2007.

Using carbon isotope discrimination to select maize (Zea mays L.) inbred

lines and hybrids for drought tolerance. Plant Science, 173: 390–396.

257. Monneveux, P., Sánchez C., Beck D. and Edmeades G.O. 2006.

Drought tolerance improvement in tropical maize source

populations: evidence of progress. Crop Science, 46: 180–191.

258. Monteith J.L., 1986. How do crops manipulate water supply and

demand? Philosophical Transactions Royal Society, London,

316:245-259.

259. Moose S.P. and Mumm R.H. 2008. Molecular plant breeding as

the foundation for 21st century crop improvement. Plant

Physiology, 147: 969-977.

Page 31: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

197

260. Moretzsohn M., Hopkins M., Mitchell S., Kresovich S., Valls J.

and Ferreira M. 2004. Genetic diversity of peanut (Arachis

hypogaea L.) and its wild relatives based on the analysis of

hyper-variable regions of the genome. BMC Plant Biology, 4:11.

261. Morgan J.A., Lecain D.R., Mccaig T.N. and Quick J.S. 1993. Gas

exchange, carbon isotope discrimination, and productivity in

winter wheat. Crop Science, 33: 178–186.

262. Morgante M. and Salamini F., 2003. From genomics to breeding

practice. Current Opinion in Biotechnology, 14, 214–219.

263. Mugnier J. 1988. Establishment of new hairy root lines by

inoculation with Agrobacterium rhizogenes. Plant Cell Reports, 7:

9-12.

264. Munoz P., Voltas J., Araus J.L., Igartua E. and Romagosa I., 1998.

Changes over time in the adaptation of barley releases in north-

eastern Spain. Plant Breeding, 117, 531–535.

265. Murashige T. and Skoog F. 1962. A revised medium for rapid

growth and bioassays with tobacco tissue cultures. Physiologia

Plantarum, 15: 473-497.

266. Nageswara Rao R.C. and Wright G.C. 1994. Stability of the

relationship between specific leaf area and carbon isotope

discrimination across environments in peanut. Crop Science, 34:

98-103.

267. Nageswara Rao R.C., Sardar Singh, Sivakumar M.V.K.,

Srivastava K.L. and Williams J.H. 1985. Effect of water deficit at

different growth phases of peanut. I. Yield responses. Agronomy

Journal, 77: 782-786

268. Nageswara Rao R.C., Williams J.H. and Murari Singh. 1989.

Relationship between sensitivity to drought and yield potential

in peanut genotypes under different drought patterns.

Agronomy Journal, 8 (1): 887-893.

Page 32: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

198

269. Nageswara Rao Rachaputi, Talwar, H.S. and Wright, G.C.(2001).

Rapid assessment of specific leaf area and leaf nitrogen (Arachis

hypogaea L) using a chlorophyll meter. Journal of Agronomy and

Crop Science, 186:175–182

270. Nageswara Rao, R.C., S. Singh, M.V.K. Sivakumar, K.L.

Srivastava and J.H. William, 1988. Effect of water deficit at

different growth phase of peanut. II yield response. Agronomy

Journal, 80: 431-438.

271. Nageswara Rao, R.C., Williams, J.H., Wadia, K.D.R., Hubick,

K.T., and Farquhar, G.D. 1993. Crop growth, water-use

efficiency and carbon isotope discrimination in groundnut

(Arachis hypogaea L.) genotypes under end-of-season drought

conditions. Annals of Applied Biology, 122: 357–367.

272. Nakashima K. and Yamaguchi-Shinozaki K. 2006. REVIEW:

Regulons involved in osmotic stress-responsive and cold stress-

responsive gene expression in plants. Physiologia Plantarum,

126: 62-71.

273. Nakashima K., Kiyosue T., Yamaguchi-Shinozaki K. and

Shinozaki K. 1997. A nuclear gene encoding a chloroplast

targeted Clp protease regulatory subunit homolog is not only

induced by water stress but also developmentally up-regulated

during senescence in Arabidopsis thaliana. The Plant Journal,

12: 851–861.

274. Nakashima K., Shinwari Z.K., Sakuma Y., Seki M., Miura S.,

Shinozaki K. and Yamaguchi-Shinozaki K. 2000. Organization

and expression of two Arabidopsis DREB2 genes encoding DRE-

binding proteins involved in dehydration- and high-salinity-

responsive gene expression. Plant Molecular Biology, 42: 657-

665.

275. Nakashima K., Yusuke Ito, and Yamaguchi-Shinozaki K. 2009.

Transcriptional Regulatory Networks in Response to Abiotic

Page 33: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

199

Stresses in Arabidopsis and Grasses. Plant Physiology, 149: 88-

95.

276. Narasimham R.L., Rao I.V.S. and Singa Rao M. 1977. Effect of

moisture stress on response of groundnut to phosphate

fertilization. Indian Journal of Agricultural Science, 47: 573–576.

277. Narusaka Y., Nakashima K., Shinwari Z.K., Sakuma Y.,

Furihata T., Abe H., Narusaka M., Shinozaki K. and Yamaguchi-

Shinozaki K. 2003. Interaction between two cis-acting elements,

ABRE and DRE, in ABA-dependent expression of Arabidopsis

rd29A gene in response to dehydration and high-salinity

stresses. The Plant Journal, 34: 137-148.

278. Ngugi E.C.K., Austin R.B., Galwey N.W. and Hall M.A. 1996.

Associations between grain yield and carbon isotope

discrimination in cowpea. European Journal of Agronomy, 5: 9–

17.

279. Ngugi E.C.K., Galwey N.W. and Austin R.B. 1994. Genotype x

environment interaction in carbon isotope discrimination and

seed yield in cowpea (Vigna unguiculata L. walp.). Euphytica, 73:

213–224.

280. Nigam P., Armour G., Banat I. M., Singh D. and Marchant R.

2000. Physical removal of textile dyes and solid state

fermentation of dye adsorbed agricultural residues. Bioresource

Technology, 72: 219–226.

281. Nigam S N and Lenné J.M. 1996. Grain Legumes, 14: 25-27.

282. Nigam S.N. and Aruna R. 2008. Stability of soil plant analytical

development (SPAD) chlorophyll meter reading (SCMR) and

specific leaf area (SLA) and their association across varying soil

moisture stress conditions in groundnut (Arachis hypogaea L.).

Euphytica, 160: 111-117.

283. Nigam S.N., Basu M.S. and Cruickshank A.W. 2003.

Hybridization and description of the trait-based and empirical

Page 34: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

200

selection programs. Proceedings of the International Workshop

on Breeding for Drought-Resistant Peanuts, Feb. 25-27,

ICRISAT Centre Andhra Pradesh, India, ACIAR, Canberra,

Australia, pp: 15-17.

284. Nigam S.N., Chandra S., Rupa Sridevi K., Manohar B., Reddy

A.G.S., Nageswara Rao R.C., Wright G.C., Reddy P.V.,

Deshmukh M.P., Mathur R.K., Basu M.S., Vasundhara S.,

Vindhiya Varman P. and Nagda A.K. 2005. Efficiency of

physiological trait-based and empirical selection approaches for

drought tolerance in groundnut. Annals of Applied Biology,

146:433–439.

285. Nigam S.N., Upadhyaya H.D., Chandra S., Nageswara Rao R.C.,

Wright G.C and Reddy A.G.S. 2001. Gene effects for specific leaf

area and harvest index in three crosses of groundnut (Arachis

hypogaea). Annals of Applied Biology, 139: 301–306.

286. Nigam, S.N. 2002. Aflatoxin management: Host-plant

resistance,. In Aflatoxin Detection, Quantitative Estimation and

Management. Proceedings of a Consultative Meeting, 8–9 Jan.

2001, ICRISAT Patancheru. Scottish Crop Research Institute,

Invergowrie, Dundee, DD2 5DA, UK, pp: 16.

287. Nordin K., Heino P. and Palva E.T. 1991. Separate signal

pathways regulate the expression of low-temperature-induced

gene in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology,

l6: 1061-1071.

288. Novillo F., Alonso J.M., Ecker J.R. and Salinas J. 2004.

CBF2/DREB1C is a negative regulator of CBF1/DREB1B and

CBF3/DREB1A expression and plays a central role in stress

tolerance in Arabidopsis. Proceedings of the National Academy of

Sciences USA, 101: 3985-3990.

Page 35: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

201

289. O’Toole J. C. 1982. Adaptation of rice to drought prone

environments.. In: Drought resistance in crops with emphasis on

rice. IRRI, Los Baños, Philippines, pp: 195-213.

290. Ochs R. and Wormer T M. 1959. (Influence of the supply of

water on the growth of groundnuts.) Influence de l'alimentation

en eau sur la croissance de l'arachide (In Fr.) Oleagineux, 14:

281-291.

291. Oh S.J., Song S.I., Kim Y.S., Jang H.J., Kim S.Y., Kim M., Kim

Y.K., Nahm B.H. and Kim J.K. 2005. Arabidopsis

CBF3/DREB1A and ABF3 in Transgenic Rice Increased

Tolerance to Abiotic Stress without Stunting Growth. Plant

Physiology, 138: 341-351.

292. Ohme-Takagi M. and Shinshi H. 1995. Ethylene-inducible DNA

binding proteins that interact with an ethylene-responsive

element. Plant Cell, 7: 173-182.

293. Ong C.K. 1986. Agroclimatological factors affecting phenology of

groundnut. In: Agrometeorology of Groundnut. Proc. Int. Symp.

ICRISAT Sahelian Centre, Niamey, Niger, pp: 115-125.

294. Ong C.K.1984. The influence of temperature and water deficits

on the partitioning of dry matter in groundnut (Arachis

hypogaea L.). Journal of Experimental Botany, 35, 746–755.

295. Owens C.L., Thomashow M.F., Hancock J.F. and Iezzoni A.F.

2002. CBF1 orthologs in sour cherry and strawberry and the

heterologous expression of CBF1 in strawberry. Journal of the

American Society for Horticultural Science, 127: 489–494.

296. Ozias-Akins P. and Gill R. 2001. Genetic engineering of Arachis.

Peanut Science, 28: 123–131.

297. Ozias-Akins P., Schnall J.A., Anderson W.F., Singit C.,

Clemente T.E., Adang M.J., Weissinger A.K. 1993. Regeneration

of transgenic peanut plants from stably transformed

embryogenic callus. Plant Science, 93: 185–194.

Page 36: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

202

298. Ozias-Akins P., Singsit C and Branch W.D. 1992. Interspecific

hybrid inviability in crosses of Arachis hypogaea x A.

Stenosperma can be overcome by in vitro embryo maturation or

somatic embryogenesis. Journal of Plant Physiology, 140: 207-

212.

299. Palanivel S., Parvathi S. and Jayabalan N. 2002. Callus

induction and plantlet regeneration from mature cotyledonary

segments of groundnut (Arachis hypogaea L.), Journal of Plant

Biology, 45: 22.

300. Pallas J.E., Jr., Stansell J.R. and Koske T.J. 1979. Effects of

drought on Florunner peanuts. Agronomy Journal, 71: 853-858.

301. Pallas J.E., Stansell J.R., Bruce R.R. 1977 Peanut seed

germination as related to soil water regime during pod

development. Agronomy Journal, 69: 381-383.

302. Pandey R.K., Herrera W.A.T., Villepas A.N. and Pendelton J.W.

1984. Drought response of grain legumes under irrigation

gradient.III Plant growth. Agronomy Journal, 76: 557–560.

303. Park M.S., Jung S.R., Lee M.S., Kim K.O., Do J.O., Lee K.H.,

Kim S.B. and Bae K.S. (2005) Isolation and Characterization of

Bacteria Associated with Two Sand Dune Plant Species,

Calystegia soldanella and Elymus mollis. Journal of Microbiology

43: 219-227.

304. Parrott W.A., Hoffman L.M., Hilbrandt D.F., William E.G. and

Collins G.B. 1989. Effect of genotype on somatic embryogenesis

from immature cotyledons of soybean. Plant Cell Reports, 7:

615–617.

305. Passioura J.B. 1977. Grain yield, harvest index and water use

of wheat. Journal of Australian Institute of Agricultural Science,

43:117–120.

Page 37: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

203

306. Passioura J.B. 1986. Resistance to drought and salinity:

Avenues for crop improvement. Australian Journal of Plant

Physiology, 13: 191-201.

307. Passioura J.B. 2002. Environmental biology and crop

improvement. Functional Plant Biology, 29: 537–546.

308. Passioura, J.B. 1983. Root and drought resistance. Agricultural

Water Management, 7: 265-280.

309. Patil B.N., Bhonde S.R. and Kandikar D.N. 2009. Trends in

area, production and productivity of groundnut in Maharashtra:

Financing agriculture –A national journal of agriculture and rural

development, pp: 35-38.

310. Pellegrineschi A., Reynolds M., Pacheco M., Brito R.M.,

Almeraya R., Yamaguchi-Shinozaki K. and Hoisington D. 2004.

Stress-induced expression in wheat of the Arabidopsis thaliana

DREB1A gene delays water stress symptoms under greenhouse

conditions. Genome, 47: 493-500.

311. Pellegrineschi A., Ribaut J.M., Trethowan R., Yamaguchi-

Shinozaki K. and Hoisington D. 2002. Progress in the genetic

engineering of wheat for water limited conditions., JIRKAS Work

report, pp: 55-60.

312. Pérez-Molphe-Balch E. and Ochoa-Alejo N. 1998. Regeneration

of transgenic plants of Mexican lime from Agrobacterium

rhizogenes-transformed tissues. Plant Cell Reports, 17: 591–596.

313. Piepho H.P. 2000 A mixed-model approach to mapping

quantitative trait loci in barley on the basis of multiple

environment data Genetics, 156: 2043–2050.

314. Pierik R.L.M. 1987. In vitro Propagation of Higher Plants.

Martinus Nizhoof Publisher, Boston.

315. Pimratch S., Jogloy S., Vorasoot N., Toomsan B., Patanothai A.

and Holbrook C.C., 2008. Relationship between biomass

production and nitrogen fixation under drought stress

Page 38: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

204

conditions in peanut genotypes with different levels of drought

resistance. Journal of Agronomy Crop Science, 194: 15-25.

316. Pinheiro H.A., Da Matta F.M., Chaves A.R.M., Loureiro M.E and

Ducatti C. 2005. Drought tolerance is associated with rooting

depth and stomatal control of water use in clones of Coffea

canephora. Annals of Botany, 96: 101-108.

317. Pinto R.S., Reynolds M.P., Mathews K.L., McIntyre C.L.,

Olivares-Villegas J.J. and Chapman S.C. 2010. Heat and

drought adaptive QTL in a wheat population designed to

minimize confounding agronomic effects. Theoretical and

Applied Genetics, 121: 1001–1021.

318. Porebski S., Bailey L.G. and Baum B.R. 1997. Modification of a

CTAB DNA extraction protocol for plants containing high

polysaccharide and polyphenol components. Plant Molecular

Biology Reporter, 15: 8-15.

319. Prabowo, A., L.R. McDowell, N.S. Wilkinson, C.J. Wilcox and

J.H. Conrad. 1990. Mineral status of grazing cattle in South

Sulawesi, Indonesia; I. Macrominerals. American Journal of

Animal Science, 4: 111-120.

320. Prioul J.L., Quarrie S., Causse M., de Vienne D. 1997.

Dissecting complex physiological functions into elementary

components through the use of molecular quantitative genetics.

Journal of Experimental Botany, 48:1151–1163.

321. Puhakainen T. 2004. Physiological and Molecular Analyses of

Cold Acclimation of Plants. Academic dissertation, University of

Helsinki, Finland, 25.

322. Qin F., Sakuma Y., Li J., Liu Q., Li Y.Q., Shinozaki K. and

Yamaguchi-Shinozaki K. 2004. Cloning and functional analysis

of a novel DREB1/CBF transcription factor involved in cold-

responsive gene expression in Zea mays L. Plant and Cell

Physiology, 45: 1042-1052.

Page 39: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

205

323. Quisenberry J.E., Roark B and McMichael B.L. 1982. Use of

transpiration decline curves to identify drought-tolerant cotton

germplasm. Crop Science, 22:918-922.

324. Rabbani M.A., Maruyama K., Abe H., Khan M.A., Katsura K., Ito

Y., Yoshiwara K., Seki M., Shinozaki K. and Yamaguchi-

Shinozaki K. 2003. Monitoring expression profiles of rice genes

under cold, drought, and high-salinity stresses and abscisic

acid application using cDNA microarray and RNA gel-blot

analyses. Plant Physiology, 133: 1755-1767.

325. Rajaram S. and Borlaug N.E. 1997. “Approaches to Breeding for

Wide Adaptation, Yield Potential, Rust Resistance and Drought

Tolerance”, paper presented at Primer Simposio Internacional de

Trigo, Cd. Obregon, Mexico, April 7-9, 1997

326. Rajendrudu G. and Williams J.H. 1987. Effect of gypsum and

drought on pod initiation and crop yield in early maturing

groundnut (Arachis hypogaea) genotypes. Experimental

Agriculture, 23:259-271

327. Ramanjulu S. and Bartels D. 2002. Drought- and desiccation-

induced modulation of gene expression in plants. Plant Cell and

Environment, 25: 141-151.

328. Ratnakumar P., Vadez V. (2011) Groundnut (Arachis hypogaea

L.) genotypes tolerant to intermittent drought maintain a high

harvest index and have small leaf canopy under stress.

Functional Plant Biology (in press)

329. Ratnakumar P., Vadez V., Nigam S.N., Krishnamurthy L. (2009)

Assessment of transpiration efficiency in peanut (Arachis

hypogaea L.) under drought by lysimetric system. Plant Biology,

11, 124-130.

330. Ravi K., Vadez V., Isobe S., Mir R.R., Guo Y., Nigam S.N., Gowda

M.V.C., Radhakrishnan T., Bertioli D.J., Knapp S.J. and

Varshney R.K. 2011. Identification of several small main-effect

Page 40: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

206

QTLs and a large number of epistatic QTLs for drought

tolerance related traits in groundnut (Arachis hypogaea L.)

Theoretical Applied Genetics, 122:1119–1132.

331. Ray J.D. and Sinclair T.R. 1997. Stomatal closure of maize

hybrids in response to soil drying. Crop Science 37: 803-807.

332. Read J.J., Johnson D.A., Asay K.H. and Tieszen L.L. 1991.

Carbon isotope discrimination, gas exchange, and water-use

efficiency in crested wheatgrass clones. Crop Science, 31: 1203–

1208.

333. Rebetzke G.J., Condon A.G., Richards R.A. and Farquhar G.D.

2002. Selection for reduced carbon isotope discrimination

increases aerial biomass and grain yield of rainfed bread wheat.

Crop Science, 42: 739–745.

334. Reddy A.J. & Rao I.M. 1968. Influence of Induced Water Stress

On Chlorophyll Components Of Proximal And Distal Leaflets of

Groundnut Plants. Current Science, 5 (3): 118–121.

335. Reddy L.R. and Reddy G.M. 1993. Factors affecting direct

somatic embryogenesis and plant regeneration in groundnut,

Arachis hypogaea L. Indian Journal of Experimental Biology, 31:

57-60.

336. Reddy, D.S. 2008. Identification and Isolation of Putative

Disease Resistance Gene Homologues from Groundnut and

Studies on Regulatory Gene Expression in Transgenic

Groundnut under Abiotic Stress. Ph.D. thesis Submitted to

Centre for Biotechnology, JNTUH.

337. Reynolds M. and Tuberosa R. 2008. Translational research

impacting on crop productivity in drought-prone environments.

Current Opinion in Plant Biology, 11:171-179.

338. Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I. & Fischer,

R.A. 1994b. Physiological and morphological traits associated

Page 41: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

207

with spring wheat yield under hot, irrigated conditions.

Australian Journal of Plant Physiology, 21: 717-30.

339. Ribaut J.M. and Poland D. (eds.) 2000. Molecular approaches

for the genetic improvement of cereals for stable production in

water-limited environments. A Strategic Planning Workshop

held at CIM-MYT, El Batan, Mexico, 21-25 June 1999.

International Maize and Wheat Improvement Center, Mexico,

DF.

340. Ribaut J.M. and Ragot M. 2007. Marker assisted selection to

improve drought adaptation in maize: the backcross approach,

perspectives, limitations, and alternatives. Journal of

Experimental Botany, 58: 351±360.

341. Richards R.A. 1996. Defining selection criteria to improve yield

under drought. Plant Growth Regulation, 20: 157-166.

342. Riechmann J.L. and Ratcliffe O.J. 2000a. A genomic perspective

on plant transcription factors. Current Opinion in Plant Biology,

3: 423-434.

343. Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C.,

Keddie J., Adam L., Pineda O., Ratcliffe O.J., Samaha R.R. and

others. 2000b. Arabidopsis transcription factors: genome-wide

comparative analysis among eukaryotes. Science, 290: 2105-

2110.

344. Robertson W.K., Hammond, L.C., Johnson J.J. and Boote. K.J.

1980. Effects of plant-water stress in root distribution on corn,

soybeans, and peanuts in sandy soil. Agronomy Journal,

72:548-550.

345. Rohini V.K. and Rao K.S. 2000. Transformation of Peanut

(Arachis hypogaea L.): a non-tissue culture based approach for

generating transgenic plants. Plant Science, 150: 41-49.

346. Rohini V.K. and Rao K.S. 2001. Transformation of peanut

(Arachis hypogaea L.) with tobacco chitinase gene: Variable

Page 42: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

208

response of transformats to leaf spot disease. Plant Science 160,

5, 883-892.

Ryu, S.B. and Le P.H.1994. Potato cold hardiness development and

abscisic acid. I. Conjugated abscisic acid is not the source of the

increase in free abscisic acid during potato (Solanum

commersonii) cold acclimation. Physiologia Plantarum. 90 (1):

15-20.

347. Sadras V.O. and S.P. Milroy. 1996. Soil- water thresholds for

the responses of leaf expansion and gas exchange: A review.

Field Crops Research, 47: 253-266.

348. Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K. and

Yamaguchi–Shinozaki K. 2002. DNA-binding specificity of the

ERF/AP2 domain of Arabidopsis DREBs, transcription factors

involved in dehydration- and cold inducible gene expression.

Biochemical and Biophysical Research Communications, 290:

998-1009.

349. Sakuma Y., Maruyama K., Osakabe Y., Qin F., Seki M.,

Shinozaki K. and Yamaguchi-Shinozakia K. 2006. Functional

analysis of an Arabidopsis transcription factor, DREB2A,

involved in drought-responsive gene expression. Plant Cell, 18:

1292-1309.

350. Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K. and

Yamaguchi-Shinozaki K. 2006b. Dual function of an

Arabidopsis transcription factor DREB2A in water-stress-

responsive and heat-stress-responsive gene expression.

Proceedings of National Academy of Sciences USA, 103: 18822–

18827.

351. Salisbury B. and Ross W. 1992. In Plant physiology. 4th

edition,

Wadsworth, Belmont, California. pp: 580-585.

Page 43: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

209

352. Salvi S. and Tuberosa R. 2005. To clone or not to clone plant

QTLs: present and future challenges. Trends in Plant Science,

10: 297–304.

353. Sambrook J. and Russell D.W. (Eds.) 2001. Molecular cloning: a

laboratory manual 3rd edition New York, Cold Spring Harbor:

Cold Spring Harbor Laboratory Press.

354. Sambrook J., Fritsch E.F. and Maniatis T. (Eds) 1989.

Molecular cloning: a laboratory manual 2nd ed. New York, Cold

Spring Harbor: Cold Spring Harbor Laboratory Press.

355. Sanguineti M.C., Tuberosa R., Landi P., Salvi S., Maccaferri M.,

Casarini E. and Conti S. 1999. QTL analysis of drought related

traits and grain yield in relation to genetic variation for leaf

abscisic acid concentration in field-grown maize. Journal of

Experimental Botany, 50: 1289–1297.

356. Saranga Y., Jiang C.X., Wright R.J., Yakir D. and Paterson A.H.

2004. Genetic dissection of cotton physiological responses to

arid conditions and their inter-relationships with productivity.

Plant Cell and Environment, 27: 263–277.

357. Sastri D.C., Nalini M and Moss J.P. 1981. Tissue culture and

prospects for improvement of Arachis hypogeae L. In

proceedings of Symposium on Tissue Culture on Economically

Important Plants. National University, Singapore: 42-57.

358. Savage G.P. and Keenan J.I. 1994. The composition and

nutritive value of groundnut kernels. In: Smart, J. (ed.), The

Groundnut Crop: A Scientific Basis for Improvement. Chapman

and Hall, London, pp: 173-213.

359. Savitch L.V., Allard G., Seki M., Robert L.S., Tinker N.A., Huner

N.P.A., Shinozaki K. and Singh J. 2005. The effect of

overexpression of two Brassica CBF/DREB1-like transcription

factors on photosynthetic capacity and freezing tolerance in

Brassica napus. Plant and Cell Physiology, 46: 1525-1539.

Page 44: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

210

360. Saxena N.P. and John O.C. 2002. Field Screening for Drought

Tolerance in Crop Plants with Emphasis on Rice. Manual.

International Crops Research Institute for the Semi-Arid

Tropics.

361. Sayre K.D., Acevedo E. and Austin R.B. 1995. Carbon isotope

discrimination and grain yield for three bread wheat germplasm

groups grown at different levels of water stress. Field Crops

Research, 41: 45-54.

362. Schnall J.A. and Weissinger A.K. 1993. Culturing peanut

(Arachis hypogaea L.) zygotic embryos for transformation via

microprojectile bombardement Plant Cell Reports. 12: 316–319.

363. Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa

T., Kamiya A., Nakajima M., Enju A., Sakurai T. and others.

2002b. Monitoring the expression pattern of around 7000

Arabidopsis genes under ABA treatments using a full-length

cDNA microarray. Functional and Integrative Genomics, 2: 282-

291.

364. Seki M., Narusaka M., Abe H., Kasuga M., Yamaguchi-

Shinozaki K., Carninci P., Hayashizaki Y. and Shinozaki K.

2001. Monitoring the expression pattern of 1,300 Arabidopsis

genes under drought and cold stresses using full-length cDNA

microarray. Plant Cell, 13: 61-72.

365. Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y.,

Kamiya A., Nakajima M., Enju A., Sakurai T. and others. 2002a.

Monitoring the expression profiles of 7000 Arabidopsis genes

under drought, cold, and high-salinity stresses using a full-

length cDNA microarray. Plant Journal, 31: 279-292.

366. Seki, Motoaki; Satou, Masakazu; Sakurai, Tetsuya; Akiyama,

Kenji; Iida, Kei; Ishida, Junko; Nakajima, Maiko; Enju, Akiko;

Narusaka, Mari; Fujita, Miki; Oono, Youko; Kamei, Ayako;

Yamaguchi-Shinozaki, Kazuko And Shinozaki, Kazuo. Riken,

Page 45: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

211

2004. Arabidopsis full length (RAFL) cDNA and its applications

for expression profiling under abiotic stress conditions. Journal

of Experimental Botany, 55: 213-223.

367. Serraj R, Purcell LC, Sinclair TR. 1999. Inhibition of N2 fixation

by drought. A review. Journal of Experimental Botany, 50: 143-

155.

368. Serraj R., Hash C.T., Rizvi S.M.H., Sharma A., Yadav R.S. and

Bidinger F.R. 2005. Recent advances in marker-assisted

selection for drought tolerance in pearl millet. Plant Production

Science, 8: 332-335.

369. Sharma H.C., Sharma K.K. and Crouch J.H. 2004. Genetic

transformation of crops for insect resistance: Potential and

limitations. Critical Reviews in Plant Science, 23: 47-72.

370. Sharma H.C., Sharma K.K., Seetharama N. and Ortiz R. 2001.

Genetic transformation of crop plants: Risks and opportunities

for the rural poor. Current Science, 80: 1495-1508.

371. Sharma K.K. and Anjaiah V., 2000a. An efficient method for

production of transgenic plants of peanut (Arachis hypogaea L.)

through A. tumefaciens-mediated genetic transformation. Plant

Science, 159: 7-19.

372. Sharma K.K. and Bhatnagar-Mathur P. 2006a. Peanut (Arachis

hypogaea L.). Methods in Molecular Biology, 343: 347-358.

373. Sharma K.K. and Lavanya M. 2002. Recent developments in

transgenics for abiotic stress in legumes of the semi-arid

tropics. JIRCAS (Japan) Working Report 2002: 61-73.

374. Sharma K.K. and Ortiz R. 2000b. Program for the application of

genetic transformation for crop improvement in the semi arid

tropics: In Vitro Cell and Developmental Biology-Plant, 36: 83-92.

375. Sharma K.K., Ananda Kumar P., Singh N.P. and Sharma H.C.

2005a. Insecticidal Genes and their Potential in Developing

Transgenic Crops for Resistance to Cotton Bollworm/Legume

Page 46: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

212

Pod Borer, Helicoverpa amigera. In Heliothis/Helicoverpa

Management: Emerging Trends and Strategies for Future

Research (Sharma H.C. editor.). Oxford & IBH publishing Co.

Pvt. Ltd., New Delhi, pp: 255-274.

376. Sharma K.K., Bhatnagar-Mathur P. and Thorpe T.A. 2005b.

Genetic transformation technology: status and problems. In

Vitro Cellular and Developmental Biology-Plant, 14: 102-112.

377. Sharma K.K., Sreelatha G. and Dayal S. 2006b. Pigeonpea

(Cajanus cajan [L.] Millsp.). In: Wang K (ed.) Methods in

Molecular Biology Vol. 343: Agrobacterium Protocols, 2/e,

volume 1, Humana Press Inc., Totowa, U.S.A, pp: 359-367.

378. Sharma, K.K., Bhojwani, S.S. and Thorpe, T.A. 1990. Factors

affecting high frequency differentiation of shoots and roots from

cotyledon explants of Brassica juncea (L.) Czern. Plant Science,

66: 247-253.

379. Shavindra B., Jayaprakash T., Liu L.F., Ho T.H.D. and Wu R.

1999. Review article: Transgenic approaches to increase

dehydration-stress tolerance in plants. Molecular Breeding, 5:

493-503.

380. Shen Q., Zhang P. and Ho T.H. 1996. Modular nature of

abscisic acid (ABA) response complexes: composite promoter

units that are necessary and sufficient for ABA induction of

gene expression in barley. Plant Cell, 8: 1107–1119.

381. Shen Y.G., Zhang W.K., He S.J., Zhang J.S., Liu Q. and Chen

S.Y. 2003a. An EREBP/AP2-type protein in Triticum aestivum

was a DRE-binding transcription factor induced by cold,

dehydration and ABA stress. Theoretical and Applied Genetics

106: 923-930.

382. Shen Y.G., Zhang W.-K., Yan D.-Q., Du B.-X., Zhang J.-S., Liu

Q. and Chen S.-Y. 2003b. Characterization of a DRE-binding

Page 47: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

213

transcription factor from a halophyte Atriplex hortensis.

Theoretical and Applied Genetics 107: 155-161.

383. Sheshshayee M.S., Bindumadhava H., Shankar A.G., Prasad

T.G. and Udayakumar M. 2003. Breeding strategies to exploit

water use effi ciency for crop improvement. Journal of Plant

Biology, 30 (2):253–268.

384. Shimshi D. and Ephrat. J. 1975. Stomatal behaviour of wheat

cultivars in relation to their transpiration, photosynthesis, and

yield. Agronomy Journal, 67:326–331.

385. Shinozaki K. and Yamaguchi-Shinozaki K. 1996. Molecular

responses to drought and cold stress. Current Opinion in

Biotechnology, 7: 161-167.

386. Shinozaki K. and Yamaguchi-Shinozaki K. 1997. Gene

expression and signal transduction in water stress response.

Plant Physiology, 115: 327–334.

387. Shinozaki K. and Yamaguchi-Shinozaki K. 2000. Molecular

responses to dehydration and low temperature: differences and

cross-talk between two stress signaling pathways. Current

Opinion in Plant Biology, 3: 217–223.

388. Shinozaki K., Yamaguchi-Shinozaki K. and Seki M. 2003.

Regulatory network of gene expression in the drought and cold

stress responses. Current Opinion in Plant Biology, 6: 410-417.

389. Shinwari Z.K, Nakashima K., Miura S., Kasuga M., Seki M.,

Yamaguchi-Shinozaki K. and Shinozaki K. 1998. An Arabidopsis

gene family encoding DRE/CRT binding proteins involved in

low-temperature-responsive gene expression. Biochemical and

Biophysical Research Communications, 250: 161-170.

390. Simmonds L.P. and Williams J.H. 1989. Population, water use

and growth of groundnut maintained on stored water 11.

Transpiration and evaporation from soil. Experimental

Agriculture, 25: 63-75.

Page 48: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

214

391. Simpson S.D., Nakashima K., Narusaka Y., Seki M., Shinozaki

K. and Yamaguhci-Shinozaki K. 2003. Two different novel cis-

acting elements of erd1, a clpA homologous Arabidopsis gene

function in induction by dehydration stress and dark-induced

senescence. The Plant Journal 33: 259–270.

392. Sinclair T.R. and Ludlow M.M. 1986. Influence of soil water

supply on the plant water balance of four tropical grain

legumes. Australian Journal of Plant Physiology, 13: 329-341.

393. Sinclair T.R. and Muchow C.R. 2001. System analysis of plant

traits to increase grain yield on limited water supplies.

Agronomy Journal, 93: 263-270.

394. Sinclair T.R., Purcell L.C. and Sneller C.H. 2004. Crop

transformation and challenge to increase yield potential. Trends

in Plant Science, 9: 70–75.

395. Singh F. and Oswalt D.L. 1991 Genetics and Breeding of

Groundnut. Research Report. International Crops Research

Institute for the Semi-Arid Tropics.

396. Singsit C., Adang M.J., Lynch R.E., Anderson W.F., Wang A.,

Cardineau G. and Ozias-Akins P. 1997. Expression of a Bacillus

thuringiensis cryIA(c) gene in transgenic peanut plants and its

efficacy against lesser cornstalk borer. Transgenic Research, 6:

169–176.

397. Sivakumar M.V.K. and Sharma P.S. 1986. Studies on water

relations of groundnut. In Agrometerology of Groundnut.

Proceedings of International Symposium. ICRISAT Shelan Centre,

Niamey Niger, pp: 83–98.

398. Skelton B.J. and Shear G.M. 1971. Calcium Translocation in

the Peanut (Arachis hypogae L.). Agronomy Journal, 63: 409–

412.

399. Skinner J.S., von Zitzewitz J., Szu¨ cs P., Marquez-Cedillo L.,

Filichkin T., Amundsen K., Stockinger E.J., Thomashow M.F.,

Page 49: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

215

Chen T.H.H. and Hayes P.M. 2005. Structural, functional, and

phylogenetic characterization of a large CBF gene family in

barley. Plant Molecular Biology, 59: 533–551.

400. Slafer G.A. 2003. Genetic basis of yield as viewed from a crop

physiologist’s perspective. Annals of Applied Biology, 142: 117–

128.

401. Smartt J., 1994. The groundnut, Arachis hypogaea L. In: Grain

legumes: evolution and genetic resources (Smartt J., eds).

Cambridge University Press, Cambridge, UK, pp 30–84.

402. Snape J.W., Butterworth K., Whitechurch E. and Worland A.J.

2001.Waiting for fine times: genetics of flowering time in wheat.

Euphytica, 119: 185–190.

403. Somers D.A., Samac D.A. and Olhoft P.M. 2003. Recent

advances in legume transformation. Plant Physiology, 131: 892–

899.

404. Southern E.M. 1975. Detection of specific sequences among

DNA fragments separated by gel electrophoresis. Journal of

molecular biology, 98: 503-517.

405. Stalker, H.T. and C.E. Simpson. 1995. Germplasm resources in

Arachis, In Advances in peanut society (Pattee H.E. and Stalker

H.T. eds.). American Peanut Research and Education Society,

Stillwater, OK 74078, USA, pp: 15-53.

406. Stansell J.R. and Pallas Jr J.E. 1985. Yield and quality response

of Florunner peanut to applied drought at several growth stages.

Peanut Science, 2: 64-70.

407. Stansell J.R., Shepard J.L., Pallas Jr. J.E., Bruce R.R., Minton

N.A., Bell D.K. and Morgan L.W., 1976. Peanut responses to

soil water variables in the Southeast. Peanut Science, 3: 44-48.

408. Steponkus P.L. et al. 1980. In adaptation of plants to water and

higher temperature stress. {Turner N.C. and Kumar P.J. (eds.)},

Wiley Interscience, New York, pp: 401-418.

Page 50: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

216

409. Steponkus P.L., Uemura M., Joseph R.A., Gilmour S. and

Thomashow M.F. 1998. Mode of action of the COR15a gene on

the freezing tolerance of Arabidopsis thaliana. Proceedings of the

National Academy of Sciences USA, 95: 14570-14575.

410. Stirling C.M., Black C.R. and Ong C.K. 1989. The response of

groundnut (Arachis hypogae L.) to timing of irrigation. II. 14C

partitioning and plant water status. Journal Experimental

Botany, 40 (221): 1363–1373.

411. Stockinger E.J., Gilmour S.J., and Thomashow M.F. 1997.

Arabidopsis thaliana CBF1 encodes an AP2 domain-containing

transcriptional activator that binds to the C-repeat/DRE, a cis-

acting DNA regulatory element that stimulates transcription in

response to low temperature and water deficit. Proceedings of

the National Academy of Sciences USA, 94: 1035-1040.

412. Stockinger E.J., Mao Y., Regier M.K., Triezenberg S.J. and

Thomashow M.F. 2001. Transcriptional adaptor and histone

acetyltransferase proteins in Arabidopsis and their interactions

with CBF1, a transcriptional activator involved in cold-regulated

gene expression. Nucleic Acids Research, 29: 1524-1533.

413. Strizhov N., Abraham E., Okresz L., Blicking S., Zilberstein A.,

Schell J., Koncz C. and Szabados L. 1997. Differential

expression of two P5CS genes controlling proline accumulation

during salt-stress required ABA and is regulated by ABA1, ABI1

and AXR2 in Arabidopsis. The Plant Journal, 12: 557-569.

414. Subbarao G.V., Johansen C., Slinkard A.E., Nageswara Rao

R.C., Saxena N.P. and Chauhan Y.S. 1995. Strategies for

improving drought resistance in grain legumes. Critical Reviews

in Plant Science, 14: 469-523.

415. Subramaniam V.B. and Maheswari M. 1990. Physiological

responses of groundnut to water stress. Indian Journal of Plant

Physiology, 33(2): 130–135.

Page 51: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

217

416. Surekha Ch., Arundhanti A. and Seshagiri Rao G. 2007.

Differential response of Cajanus cajan varieties to

transformation with different strains of Agrobacterium. Journal

of Biological Science, 7: 176–81.

417. Takeda S., Gapper C., Kaya H., Bell E., Kuchitsu K. and Dolan

L. 2008. Local positive feedback regulation determines cell

shape in root hair cells. Science, 319: 1241-1244.

418. Thomashow M. F. 1999. Plant cold acclimation: Freezing

tolerance genes and regulatory mechanisms. Annual Review of

Plant Physiology and Plant Molecular Biology, 50: 571-599.

419. Thompson B.D. and Siddique K.H.M. 1997. Grain legume

species in low rainfall Mediterranean-type environments. II

canopy development, radiation interception and dry-matter

production. Field Crops Research, 54, 189-199.

420. Thrope T.A. 1993. In vitro organogenesis and somatic

embryogenesis: physiological and biochemical aspects. In:

Morphogenesis in Plants. Edited By Roubelakis –Angelakis, K.A.

and Tran Thaan Van K. Plenum Press, New York, pp: 19 –38.

421. Thuiller W., Lavorel S., Araújo M.B., Sykes M.T. & Prentice I.C.

2005. Climate change threats to plant diversity in Europe.

Proceedings of the National Academy of Sciences, USA, 102:

8245–8250.

422. Tiwari S. and Tuli R. 2008. Factors promoting efficient in vitro

regeneration from de-embryonated cotyledon explants of Arachis

hypogaea L. Plant Cell, Tissue and Organ Culture, 92: 15-24.

423. Toenniessen G.H., O’ Toole J.C. and Devries J. 2003. Advances

in plant biotechnology and its adoption in developing countries.

Current Opinion in Plant Biology, 6:191-198.

424. Tran L.S., Nakashima K., Sakuma Y., Osakabe Y., Qin F.,

Simpson S.D., Maruyama K., Fujita Y., Shinozaki K. and

Yamaguchi-Shinozaki K. 2007 Co-expression of the stress-

Page 52: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

218

inducible zinc finger homeodomain ZFHD1 and NAC

transcription factors enhances expression of the ERD1 gene in

Arabidopsis. Plant Journal, 49: 46–63.

425. Tran L.S.P., Nakashima K., Sakuma Y., Simpson S.D., Fujita Y.,

Maruyama K., Fujita M., Seki M., Shinozaki K. and Yamaguchi-

Shinozaki K. 2004. Isolation and functional analysis of

Arabidopsis stress-inducible NAC transcription factors that bind

to a drought-responsive cis-element in the early responsive to

dehydration stress 1 promoter. Plant Cell, 16: 2481–2498.

426. Tuberosa R. and Salvi S. 2006. Genomics-based approaches to

improve drought tolerance of crops. Trends in Plant Science,

11(8): 405-412.

427. Tuberosa R., Frascaroli E., Salvi S., et al., 2005. QTLs for

tolerance to abiotic stresses in maize: present status and

prospects. Maydica, 50(3/4): 559-569.

428. Tuberosa R., Salvi S., Sanguineti M.C., et al., 2002. Mapping

QTLs regulating morpho-physiological traits and yield: case

studies, shortcomings and perspectives in drought-stressed

maize. Annals of Botany, 89 (special issue): 941-963.

429. Turner N.C. 1986. Crop water deficits: a decade of progress.

Advances in Agronomy, 39: 1-51.

430. Turner N.C. 2003. Drought Resistance: A Comparison of Two

Research Frameworks in Management of Agricultural Drought -

Agronomic and Genetic Options, Oxford University Press, New

Delhi, India.

431. Turner N.C. and Jones M.M. 1980. Turgor maintenance by

osmotic adjustment: A review and evaluation. In: Turner N.C. &

P.J. Kramer (Eds.). Adaptation of Plants to Water and High

Temperature Stress. John Wiley & Sons, New York, USA, pp:

87-103.

Page 53: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

219

432. Turner NC 2004. Agronomic options for improving rainfall-use

efficiency of crops in dry-land farming systems. Journal of

Experimental Botany, 55: 2413-2427

433. Vadez V., Rao S., Kholova J., Krishnamurthy L., Kashiwagi J.,

Ratnakumar P., Sharma K.K., Bhatnagar-Mathur P. and Basu

P.S. 2008. Roots research for legume tolerance to drought: Quo

vadis? Journal of Food Legumes, 21 (2): 77-85.

434. Vadez V., Rao S., Sharma K.K., Bhatnagar Mathur P. and Devi

J.M. 2007. DREB1A allows for more water uptake in groundnut

by a large modification in the root/shoot ratio under water

deficit. International Arachis Newsletter, 27: 27-31.

435. Vágújfalvi A., Aprile A., Miller A., Dubcovsky J., Delugu G.,

Galiba G. and Cattivelli L. 2005. The expression of several Cbf

genes at the Fr-A2 locus is linked to frost resistance in wheat.

Molecular Genetics and Genomics, 274: 506–514.

436. Valls J.F.M. and Simpson C.E. 2005. New species of Arachis L.

(Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia,

14: 35-64.

437. Varshney R.K. and Dubey A. 2009b. Novel genomic tools and

modern genetic and breeding approaches for crop improvement.

Journal of Plant BiochemBiotechnology, 18: 127-138.

438. Varshney R.K., Beier U., Khlestkina E., Kota R., Korzun V.,

Röder M., Graner A. and Börner A. 2007. Single nucleotide

polymorphisms in rye: discovery, frequency and applications for

genome mapping and diversity studies. Theoretical and Applied

Genetics, 114:1105– 1116.

439. Varshney R.K., Bertioli D.J., Moretzsohn M., Vadez V.,

Krishnamurthy L., Aruna R., Nigam S.N., Moss B., Kannan S.,

Ravi K., He G., Knapp S.J. and Hoisington D.A. 2009a. The first

SSR-based genetic linkage map for cultivated groundnut

Page 54: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

220

(Arachis hypogaea L.). Theoretical and Applied Genetics, 118:

729-739.

440. Varshney R.K., Graner A. and Sorrells M.E. 2005. Genomics-

assisted breeding for crop improvement. Trends in Plant Science,

10: 621-630.

441. Varshney R.K., Hoisington D.A. and Tyagi A.K. 2006. Advances

in cereal genomics and applications in crop breeding. Trends in

Biotechnology. 24:490±499

442. Varshney R.K., Thudi M., May G.D. and Jackson S.A. 2010.

Legume genomics and breeding. Plant Breeding Review, 33:

257±304.

443. Varshney Rajeev K., Wenbin Chen, Yupeng Li, Arvind K Bharti,

Saxena Rachit K., Schlueter Jessica A., Donoghue Mark T A.,

SarwarAzam, Guangyi Fan, Whaley Adam M., Farmer Andrew

D., Jaime Sheridan, Aiko Iwata, Reetu Tuteja, Penmetsa R.

Varma, Wei Wu, Upadhyaya Hari D., Shiaw-Pyng Yang, Trushar

Shah, Saxena K B., Todd Michael, McCombie W. Richard,

Bicheng Yang, Gengyun Zhang, Huanming Yang, Jun Wang,

Charles Spillane, Cook R. Douglas, May Gregory D., Xun Xu &

Jackson Scott A. 2011b. Draft genome sequence of pigeonpea

(Cajanuscajan), an orphan legume crop of resource-poor farmers.

Nature Biotechnology, doi:10.1038/nbt.2022.

444. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ

(2011) Agricultural biotechnology for crop improvement in a

variable climate: hope or hype? Trends in Plant Science 16, 363–

371.

445. Vasil I.K. 1987. Developing cell and tissue culture system for

the improvement of cereal and grass crops. Journal of Plant

Physiology, 128: 193-218.

446. Vaucheret H., Beclin C., Elmayan T., Feuerbach F., Godon C.,

Morel J.B., Mourrain P., Palauqui J.C. and Vernhettes S. 1998.

Page 55: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

221

Transgene induced gene silencing in plants. The Plant Journal,

16: 651–659.

447. Vazquez-Tello A., Ouellet F. and Sarhan F. 1998. Low

temperature stimulated phosphorylation regulates the binding

of nuclear factors to the promoter of Wcs120, a cold-specific

gene in wheat. Molecular and General Genetics, 257: 157-166.

448. Veluthambi K., Gupta Aditya K. and Sharma Arun. 2003. The

current status of plant transformation technologies. Current

Science, 84: 368-380.

449. Venkatachalam P., Geeta N., Khandelwal A., Shaila M.S. and

Lakshmi Sita G. 2000. Agrobacterium mediated genetic

transformation and regeneration of transgenic plants from

cotyledon explants of groundnut (Arachis hypogaea L.) via

somatic embryogenesis. Current Science, 78: 1130-1136.

450. Venkatachalam P., Geetha N., Jayabalan N., Saravana Babu S.

and Lakshmi Sita G. 1998. Agrobacterium mediated genetic

transformation of groundnut (Arachis hypogaea L.) An

assessment of factors affecting regeneration of transgenic

plants. Journal of Plant Research, 111: 565-577.

451. Venkateswarlu B., Maheswari M. and Saharan N., 1989. Effects

of water deficit on N2 (C2H2) fixation in cowpea and groundnut.

Plant and Soil, 114: 69-74.

452. Walters C., Farrant J.M., Pammenter N.W. and Berjak P. 2002.

Desiccation stress and damage. In Black M., Pritchard H.W.

(eds) Desiccation and survival in plants: drying without dying.

CABI publishing, Oxford and New York, pp: 263-293.

453. Wang A., H. Fan C. Singsit and P. Ozias-Akins. 1998.

Transformation of peanut with a soybean vspB promoter-uidA

chimeric gene. I. Optimization of a transformation system and

analysis of GUS expression in primary transgenic tissues and

plants. Physiologia Plantarum, 102: 38-48.

Page 56: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

222

454. Wang X., Liu L., Liu S., Sun X., Deng Z., Pi Y., Sun X. and Tang

K. 2004. Isolation and Molecular Characterization of a New CRT

Binding Factor Gene from Capsella bursa-pastoris. Journal of

Biochemistry and Molecular Biology, 37: 538-545.

455. Warren G., McKown R., Marin A. and Teutonico R. 1996.

Isolation of mutations affecting the development of freezing

tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiology,

111: 1011-1019.

456. Weiler E.W. 1982. An enzyme-immunoassay for cis-(+)-abscisic

acid. Physiologia Plantarum, 54: 510–514.

457. Weiss E.A. 2000. Oilseed Crops. London: Blackwell Science.

458. Welander M. 1988. Plant regeneration from leaf and stem

segments of shoots raised in vitro from mature apple trees.

Journal of Plant Physiology, 132: 738–44.

459. Wenzel and Wayne. March 14, 2008. H2O Optimizers, Farm

Journal.

460. Wiersum L.K. 1951. Water transport in the xylem as related to

calcium uptake by groundnuts (Arachis hypogaea). Plant Soil,

3:160-169.

461. Wrenshall C.L. 1949. The American peanut industry, Economic

Botany, 3(2), 158: 34.

462. Wright G.C. and Smith R.C.G. 1983. Differences between two

sorghum genotypes in adaptation to drought stress. II. Root

water uptake and water use. Australian Journal of Agricultural

Research, 34: 627–636.

463. Wright G.C., Bell M.J. 1992. Plant population studies in peanut

(Arachis hypogaea L.) in sub tropical Australia in water limited

conditions. Australian Journal of Experimental Agriculture, 32:

189-196.

Page 57: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

223

464. Wright G.C., Hubick K.T. and Farquhar G.D. 1991.

Physiological analysis of peanut cultivar response to timing and

duration of drought stress. Australian Journal of Experimental

Agriculture, 42: 453–470.

465. Wright G.C., Nageswara Rao R.C. and Farquhar G.D. 1994.

Water-use efficiency and carbon isotope discrimination in

peanut under water deficit conditions. Crop Science, 34: 92-97.

466. Xiao B.Z., Chen X., Xiang C.B., Tang N., Zhang Q.F. and Xiong

L.Z. 2009. Evaluation of seven function-known candidate genes

for their effects on improving drought resistance of transgenic

rice under field conditions. Molecular Plant 2, 73–83.

467. Xiao H., Siddiqua M., Braybrook S. and Nassuth A. 2006. Three

grape CBF/DREB1 genes respond to low temperature, drought

and abscisic acid. Plant, Cell and Environment, 29: 1410-1421.

468. Xin Z. and Browse J. 1998. eskimo1 mutants of Arabidopsis are

constitutively freezing-tolerant. Proceedings of the National

Academy of Sciences USA, 95: 7799-7804.

469. Xiong L., Lee B., Ishitani M., Lee H., Zhang C. and Zhu J.K.

2001. FIERY1 encoding an inositol polyphosphate 1-

phosphatase is a negative regulator of abscisic acid and stress

signalling in Arabidopsis. Genes & Development, 15: 1971-1984.

470. Xiong L., Lee H., Ishitani M., Tanaka Y., Stevenson B., Koiwa H.,

Bressan R.A., Hasegawa P.M. and Zhu J.K. 2002b. Repression

of stress-responsive genes by FIERY2, a novel transcriptional

regulator in Arabidopsis. Proceedings of the National Academy of

Sciences USA, 99: 10899-10904.

471. Xiong L., Schumaker K.S. and Zhu J.K. 2002a. Cell signalling

for cold, drought and salt stresses. Plant Cell, 14: S165-S183.

472. Xiong Y. and Fei S.Z. 2006. Functional and phylogenetic

analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium

perenne L.). Planta, 224: 878-88.

Page 58: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

224

473. Xue G.P. 2003. The DNA-binding activity of an AP2

transcriptional activator HvCBF2 involved in regulation of low-

temperature responsive genes in barley is modulated by

temperature. Plant Journal, 33: 373-383.

474. Xue G.P. 2003. The DNA-binding activity of an AP2

transcriptional activator HvCBF2 involved in regulation of low-

temperature responsive genes in barley is modulated by

temperature. Plant Journal, 33: 373–383.

475. Yamaguchi-Shinozaki K and Shinozaki K. 2005. Organization of

cis-acting regulatory elements in osmotic- and cold-stress-

responsive promoters. Trends in Plant Science, 10: 88–94.

476. Yamaguchi-Shinozaki K. and Shinozaki K. 1993.

Characterization of the expression of a dessication-responsive

rd29 gene of Arabidopsis thaliana and analysis of its promoter

in transgenic plants. Molecular and General Genetics, 236: 331-

340.

477. Yamaguchi-Shinozaki K. and Shinozaki K. 1994. A novel cis-

acting element in an Arabidopsis gene is involved in

responsiveness to drought, low-temperature or high-salt stress.

Plant Cell, 6: 251-264.

478. Yang D., Sanchez A., Khush G.S., Zhu Y. and Huang N. 1998.

Construction of a BAC contig containing xa-5 locus in rice.

Theoretical and Applied Genetics, 97: 1120-1124.

479. Yang Y., Yang G., Liu S., Guo X. and Zheng C. 2003. Isolation

and functional analysis of a strong specific promoter in

photosynthetic tissues. Science in China series C: Life Sciences,

6: 651-660.

480. Yang Z., Chen H., Tang W., Hua H. and Lin Y. 2011.

Development and characterisation of transgenic rice expressing

two Bacillus thuringiensis genes. Pest Management Science, 67:

414-422.

Page 59: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

225

481. Yoo S.Y., Bomblies K., Yoo S.K., Yang J.W., Choi M.C., Lee J.S.,

Weigel D. and Ahn J.H. 2005. The 35S promoter used in a

selectable marker gene of a plant transformation vector affects

the expression of the transgene. Planta, 221: 523–530.

482. Young N.D., Weeden N.F. and Kochert G. 1996, Genome

mapping in legumes (Fam. Fabaceae), In: Paterson A.H.(ed.),

Genome Mapping in Plants, Landes Co., Austin, USA, pp:211-

227

483. Yu J., Hu S., Wang J., Wong G.K., Li S., Liu B., Deng Y., Dai L.,

Zhou Y., Zhang X., and others. 2002. A draft sequence of the

rice genome (Oryza sativa L ssp. indica). Science, 296: 79-92.

484. Zaman-Allah M., Jenkinson D. and Vadez V. 2011. A

conservative pattern of water use, rather than deep or profuse

rooting, is critical for the terminal drought tolerance of

chickpea. Journal of Experimental Botany, 62: 4239-4252.

485. Zarka D.G., Vogel J.T., Cook D. and Thomashow M.F. 2003.

Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE

(Inducer of CBF Expression) Promoter Elements and a Cold-

Regulatory Circuit That Is Desensitized by Low Temperature.

Plant Physiology 133: 910-918.

486. Zhang H.X., Hodson J.N., Williams J.P. and Blumwald E. 2001.

Engineering salt-tolerant Brassica plants: Characterization of

yield and seed oil quality in transgenic plants with increased

vacuolar sodium accumulation. Proceedings of the National

Academy of Sciences of the USA, 98: 12832–12836.

487. Zhang J., Klueva N. and Nguyen H.T. 1996. Plant adaptation

and crop improvement for arid and semi-arid environments.

Proceedings of the Fifth International Conference on Desert

Development. Lubbock, Texas, pp: 12-17.

488. Zhang J.Z., Robert A., Creelman R.A. and Zhu J.K. 2004. From

laboratory to field. Using information from Arabidopsis to

Page 60: Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH)

226

engineer salt, cold, and drought tolerance in crops. Plant

Physiology, 135: 615–621.

489. Zhang X., Fowler S.G., Cheng H., Lou Y., Rhee S.Y., Stockinger

E.J. and Thomashow M.F. 2004. Freezing-sensitive tomato has

a functional CBF cold response pathway, but a CBF regulon

that differs from that of freezing-tolerant Arabidopsis. The Plant

Journal, 39: 905-919.

490. Zhao H. and Bughrara S.S. 2008. Isolation and characterization

of cold-regulated transcriptional activator LpCBF3 gene from

perennial ryegrass (Lolium perenne L). Molecular Genetics and

Genomics, 279: 585–594.

491. Zhao J., Ren W., Zhi D., Wang L. and Xia G. 2007. Arabidopsis

DREB1A/CBF3 bestowed transgenic tall fescue increased

tolerance to drought stress. Plant Cell Reports, 26:1521-1528.

492. Zhu J.K. 2002. Salt and drought stress signal transduction in

plants. Annual Review of Plant Biology, 53: 247-273.

493. Zhu X.G., Long S.P. and Ort D.R. 2010. Improving

photosynthetic efficiency for greater yield. Annual Review of

Plant Biology, 61: 235–261.

494. Zong L.Z., Liang S., Xu X., Li S.H., Jing J.H. and Monneveux P.

2008. Relationships between carbon isotope discrimination and

leaf morpho-physiological traits in spring-planted spring wheat

under drought and salinity stress in Northern China. Australian

Journal of Agricultural Research, 59: 941–949.