40
Shell evolution in the neutron rich N=20, N=28 and Z=28 regions from measurements of moments and spins Gerda Neyens, IKS, K.U. Leuven, Belgium Belgian Research Initiative on eXotic nuclei 1

Shell evolution in the neutron rich N=20, N=28 and Z=28 regions

  • Upload
    elinor

  • View
    112

  • Download
    0

Embed Size (px)

DESCRIPTION

Shell evolution in the neutron rich N=20, N=28 and Z=28 regions from measurements of moments and spins. Gerda Neyens, IKS, K.U. Leuven, Belgium. Belgian Research Initiative on eXotic nuclei. Layout Introduction: * motivation * methods to measure moments - PowerPoint PPT Presentation

Citation preview

Page 1: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

1

Shell evolution in the neutron rich N=20, N=28 and Z=28 regions

from measurements of moments and spinsGerda Neyens, IKS, K.U. Leuven, Belgium

Belgian Research Initiative on eXotic nuclei

Page 2: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

2

Layout

1. Introduction: * motivation* methods to measure moments

2. Recent experiments at ISOL and fragmentation facilities

3. Highlights from Island of inversion4. Highlights from the Cu chain, from N=28 to N=465. Highlights from the Ga chain, from N=26 to N=506. Highlights from the N=28 region below Ca: Cl isotopes

7. Conclusions

Page 3: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

3

Nuclear moments near magic shells very sensitive to nuclear wave function !

Magnetic moment of odd-even, even-odd and odd-odd isotopes (m=g.I) near closed shells:

g-factor is determined by the orbital occupied by unpaired valence protons and/or neutrons- depends on spin and orbital g-factors for protons and neutrons (gs

p, glp, gs

n, gln)

- depends on orbital momentum l and spin j of orbit occupied by unpaired nucleons sign of g sensitive to the parity of the wave function !!

- g-factor is not depending on the number of unpaired nucleons in an orbit: g(jn) = g(j)

57Cu = 56Ni + p 57Cu = 40Ca + 9p+8n

Comparing experimental and calculated g-factors: - confirm the proposed wave function - in some cases: assign spin and/or parity - test the shell model interaction and used model space

Page 4: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

4

Nuclear moments near magic shells very sensitive to nuclear wave function !

Quadrupole moments of odd-even, even-odd and odd-odd isotopes

Q-moment is determined by the spin j and the <r2> of the orbit occupied by unpaired valence protons - neutrons are not charged but induce core polarization through p-n interaction- more sensitive to collectivity in the wave function

57Cu = 56Ni + p 57Cu = 40Ca + 9p+8n

Comparing experimental and calculated Q-moments near closed shells: - probing the proton-neutron interaction- study the softness of a core as a function of N and/or Z- study effects of core polarization - study shape coexistence in nuclei- confirm the proposed wave function- test the shell model interaction

Page 5: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

Methods to measure moments, radii, spin: lifetime dependence / production method dependence

Lifetime of the isomeric excited state / isotope ground state

1 ps 1 ns 1 ms 1 ms 1s

Laser spectroscopy methods

magnetic moment, quadrupole moment, charge radius, spin

b-NMR/NQR on polarized nucleiNuclear Magnetic/Quadrupole Resonance

g-factorquadrupole moment

g-TDPAD on aligned beamsg-factor

quadrupole moment

Transient field methodg-factor

Fragmentation

Fusion-evaporationISOL methods

Page 6: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

IN-SOURCE LASER SPECTROSCOPY at ISOL-facilities:magnetic moment (with sign) and charge radii

Hot cavity Sourcewith UCx target

to ISOLDE detection set-ups

Proton beam

Pulsed Dye Lasers for two(three) -step

resonant laser ionization

Cu hyperfine structure (HFS):

2S1/2

2P1/2

F1

F2I=1

ionisation step

Measure magnetic moment and isotope shift (charge radii)

of very exotic isotopes (rate > 1/s)

68Cu

possible to separate nuclear isomeric state (6-) from its ground state (1+) produce isomeric radioactive beams

I=6

E.g. at ISOLDE:

Page 7: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

COLLINEAR LASER SPECTROSCOPY at ISOL-facilities:magnetic and quadrupole moments (with sign), radii, spin

Cu+ beam from ISOLDE

LASER beam

iondeflector

Cu hyperfine structure:

2S1/2

2P3/2

F1

F2

F’i

68Cu, Ip=1-

Pho

ton

coun

ts

Measure spin, magnetic moment quadrupole moment and isotope shift (charge radii)

of exotic isotopes (rate > 104/s)

E.g. at ISOLDE: COLLAPS

~Q,m

~ ,mI

Page 8: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

Nuclear Magnetic/Quadrupole Resonance (b-NMR)at ISOL or fragmentation facility:

g-factor or Q-moment (no sign) of ground startes

b- detectors

Implantation crystal

B

NMR-magnet

Radioactive beam

hnL

Zeeman splitting of nuclear quantum levelsin static magnetic field B

I=2

m=2

m=1

m=0

m=-1

m=-2

If nrf = nL = g mN B/h population equalized

(P=0)

1. Implant the polarized radioactive beam in a crystal (unequal population of m-levels)

and apply static field B

RF-coil

2. Apply a radiofrequency field Brf, with frequency nrf

3. Measure the asymmetry of emitted b-particles as function of the applied frequency

34Al g factor

Page 9: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

Time Differential Perturbed Angular Distribution (TDPAD)at fragmentation facility:

g-factor or Q-moment (no sign) of ms isomeric statesTDPAD-magnet

1. Implant the aligned radioactive beam in a crystal 2. Perturbation of spin-orientation due to static field B or

electric field gradient in the crystal

3. Measure the anisotropy of isomeric g-decay as a function of time since implantation:

use ion-g correlation method

BJ Zor

XLAB

g

det 1det 2

t=0t=0 t

Period of R(t) Larmor or quadrupole frequency

Page 10: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

10

Recent experiments

The COLLAPS collaboration at CERN-ISOLDE Mainz – Heidelberg – Leuven – Manchester - …

- collinear laser spectroscopy on bunched beams: I, ,m Q measured61Cu - 75Cu (Z=29, from N=32 to N=46) odd-even and odd-odd67Ga - 81Ga (Z=31, from N=36 to N=50) odd-even and odd-odd

- b-NMR and laser spectroscopy on laser-polarized beams: I, g, m measured21Mg - 33Mg (Z=12, from N=9 to N=21) even-odd only

The b-NMR collaboration at LISE-GANIL Leuven – GANIL – Bruyères-le-Chatel – Tokyo …

- b-NMR spectroscopy on reaction-polarized beams: |g| and |Q| measured, I deduced31Al-34Al (Z=13, from N=18 to N=21) odd-even and odd-odd44Cl (Z=17, N=27)

Others: - in-source laser spectroscopy at LISOL@CRC Louvain-la-Neuve: 57Cu (m)- TDPAD on isomeric states at GANIL: 43mS (Z=16, N=27) (|g|)

Page 11: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

11

fp-shell

sd-shell

pf

sd

20

20

8

f7/2p3/2

d3/2

d5/2

s1/2Si29

Si30

Si31

Si32

Si33

Si34

Si35

Si36

Si37

Al28

Al29

Al30

Al31

Al32

Al33

Al34

Al35

Al36

Mg27

Mg28

Mg29

Mg30

Mg31

Mg32

Mg33

Mg34

Mg35

Na26

Na27

Na28

Na29

Na30

Na31

Na32

Na33

Na34

Ne25

Ne26

Ne27

Ne28

Ne29

Ne30

Ne32

F24

F25

F26

F27

F29 22

201816

P35

S36

12

13

14

Experimental challenge: how large is this ‘region of inversion’ ?

Study transition region difficult to make theoretical predictions !

The “island of inversion”

11

empt

ying

pd 5/

2 approaching N=20

active neutron orbits around N=20

influence of particle-hole excitationsin the ground state wave functions ?

Page 12: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

12

g-factors of Al isotopes ground states dominated by pd5/2-

1P. Himpe et al., Phys. Lett. B 643 (2006) 257–262

Conclusion for 33Al (N=20): small (<25-30 %) intruder admixture in the 33Al ground state.

Z=13: hole in pd5/2 orbital

Ip = 5/2+ expected for odd-Al isotopes wave function and spin confirmed by g-factor through comparison with calculated m=g.I in

sd-shell model (USD – 0p0h)sdf7/2p3/2 shell model space - SDPF-M (MCSM, mixed) - sdpf-interaction (2p2h)

(free-nucleon g-factors)

3,4

3,6

3,8

4

4,2

10 12 14 16 18 20 22 24N

m (mN) 0p-0h

exp

MCSM(50% intruder)

2p-2h

Ip=5/2+

Y. Utsuno et al., PRC 64, 011301R, 2001

b as

ymm

etry

B (gauss)

33Al(Si)

Page 13: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

13

M. De Rydt et al., PLB 678, 344 (2009) Q(31Al)

very good agreement for 27,31Al with proton effective charge :

ep = 1.1 e neutron effective charge:

en = 0.5e

quadrupole moments of 31,33Al more sensitive to neutron excitations

exp

2p-2h

0p-0h

T. Nagatomo, et al., EPJA 42, 383–385 (2009) Q(33Al) … to be continued !

33Al has a mixed g.s. configuration: n(sd)-2(fp)2 contribution in wave function !

To determine amount of mixing: need more precise Q-moment value !

Experiment at GANIL, july 2010

Error bars smaller than dot size !

nQ(kHz)

31Al(Al203)

Calculations in sdp3/2f7/2-shell: * SDPF-M interaction (MCSM) Otsuka, Utsuno et al., private communication * sdpf-NR interaction (ANTOINE code) Nummela et al., PRC63 (2001)

Page 14: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

14

33 sd-shell Q-momentssdpf-U effective interaction (Nowacki and Poves, PRC79, 014310 (2009))

M. Depuydt, M. De Rydt, G. Neyens, to be published

M. De Rydt et al., PLB 678, 344 (2009)

Fitted effective charges using static Q-moments

Compare Qexp of sd-shell isotopes (errors smaller than dot-size)with calculated values in sdp3/2f7/2-space using sdpf-NR effective interaction

epeff=1.3e

epeff=1.1e

c2=1.5

c2=3.4

sd-shell proton effective charge: ep = 1.12 e neutron effective charge: en= 0.45 e

odd-Z quadrupole moments

Page 15: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

15

G. Neyens et al., PRL 94, 022501 (2005)D. Yordanov et al., PRL 99, 212501 (2007)

Measured spin 31Mg and 33MgFrom sign of g-factor parity

31Mg, Ip = 1/2+ n(sd)-3 (fp)2

33Mg, Ip = 3/2- n(sd)-2(fp)3

pure 2p-2h intruder ground states !

Al28

Al29

Al30

Al31

Al32

Al33

Al34

Al35

Al36

Mg27

Mg28

Mg29

Mg30

Mg31

Mg32

Mg33

Mg34

Mg35

20

nd3/2

+nf7/2

-

g-factor (+ sign) and spin of the 31,33Mg ground state

20

31Mg (N=19)

d3/2

20

33Mg (N=21)f7/2

Normal ground state configurations:

Ip=3/2+ Ip=7/2-

pf

sd

REAL ground state configurations:

20

31Mg (N=19)

d3/2

Ip=1/2+

n(s1/2-1)(d3/2

2)0(fp)20

[n(d3/2-1)p(sd)2+]1/2(fp)2

0

20

33Mg (N=21)

Ip=3/2-

n(d3/2-2)0(f7/2,s=3)3

3/2

n(d3/2-2)0(f2)0p3/2

Page 16: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

16

Debate on the 33Mg ground state parity

Interpretation in Nilsson Model:31Mg ground state:build on ½+[200] g= -1.72 (exp=-1.7671)

33Mg ground state:and on 3/2-[321] g= -0.21 (exp= -0.4971) 3/2-[330] g= -0.51 (exp= -0.4971)

gexp(33Mg) = - 0.4971(4)g-0.51+0.56-0.21-1.98-1.72

Page 17: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

17

Parity of the 33Mg ground state: 3/2+ or 3/2- ?

G. Neyens et al., PRL 94, 022501 (2005)D. Yordanov et al., PRL 99, 212501 (2007)D. Yordanov et al., PRL 104, 129201 (2010)

normal ground state in 33Mg same g-factor (particle in f7/2) as 35Si

Ip=7/2-f7/2

sd

20

p3/228p3/2

1p1h intruder ground state in 33Mg same g-factor as 33Si

f7/2

s1/2

20

28

Ip=3/2+d3/2

g(35Si) = -0.47g(33Si) = +0.762p2h ground state in 33Mg similar g-factor as 35Si (3 particles in f7/2)

(f7/2)33/2

2 neutron holes in sd act as spectators (paired)gexp(33Mg) = -0.4971(4)

gsdpf(3/2+) = +0.78 (1w)gsdpf(3/2-) = -0.47 (2w)

Si33

Si34

Si35

Al32

Al33

Al34

Mg31

Mg32

Mg33

212019

P35

S36

Compare to g-factors of isotones with similar configuration:3/2+ : hole in d3/2 orbit (1h-2p configuration) 3/2-: particles in fp-shell (2h-3p configuration)

N=21 isotone: 35SiN=19 isotone: 33Si

=+p

=-p

Page 18: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

18

Summary: “island of inversion” around 32Mg

Present status of the “Island of inversion”as deduced from static and dynamic moments measurements

P. Himpe et al., Phys. Lett. B. 658, 203 (2008)

All intruder g.s. configurationsare of the 2p-2h type !!

(two neutrons excited across N=20)

Utsuno et al., PRC70,0044307,2004

Page 19: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

19

Evolution of the proton single particle states above Z=28

57Cu 59Cu 61Cu 63Cu 65Cu 67Cu 69Cu 71Cu 73Cu 75Cu3/2-

5/2-1/2-

1.5 ms200 ns

Evolution of the experimental 5/2- and 1/2- energies in Cu isotopes

pp3/2

pf5/2

pp1/2

S. Franchoo et al., PRC 64, 054308 (2001)Stefanescu et al., PRL 100, 112502 (2008)J.M. Daugas, Ph.D. Thesis, GANIL

Steep decrease of the 5/2- and 1/2- levels when ng9/2 is filledExperiment: g.s. spin assigned up to 73Cu (3/2-) from b-decay

N=28 N=40

N=40 N=50n1g9/2 n(p3/2,f5/2p1/2) 46 48

62Cu 63Cu 64Cu 65Cu 66Cu 67Cu 68Cu 70Cu 71Cu 72Cu 73Cu 74Cu 75Cu 76Cu69Cu

64Ni 65Ni 66Ni 67Ni 68Ni 69Ni 70Ni 71Ni 72Ni 73Ni 74Ni 75Ni 76Ni

64Zn 65Zn 66Zn 67Zn 69Zn 70Zn 71Zn 72Zn 73Zn 74Zn 75Zn68Zn

Z=28 77Ni 78Ni

77Cu 78Cu 79Cu

4466Ga 67Ga 68Ga 70Ga 71Ga 72Ga 73Ga 74Ga 75Ga 76Ga69Ga 4477Ga 78Ga 79Ga 80Ga 81Ga

61Cu

82Ga

Page 20: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

20

Ground state spin of 71,73,75Cu

73Cu, I=3/2

75Cu, I=5/2

K.T. Flanagan et al., PRL 103, 142501 (2009)

g.s. spins measured with laser spectroscopy spins assigned to isomeric levels in 75Cu(based on measured lifetimes – Daugas, PhD Thesis)

JJ44b, Brown

Theory reproduces lowering of 5/2- correctly theory overestimates the 1/2- energy

by ~300 keV in 73Cu and 75Cu !!!

Model space: 56Ni core +f5/2 p3/2 p1/2 g9/2

Effective interaction: Lisetsky and Brown based on A. F. Lisetskiy et al., Phys. Rev. C 70, 044314 (2004)

Page 21: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

21

Energy levels of odd-Cu isotopes beyond N=40

57C u3/2 -

5/2 -10281106 1/2 -

59C u3/2 -

61C u3/2 -

63C u3/2 -

65C u3/2 -

67C u3/2 -

69C u3/2 -

71C u3/2 -

73C u 3/2 - 75C u5/2 -

57C u3/2 -

59C u3/2 -

61C u3/2 -

63C u3/2 -

65C u3/2 -

67C u3/2 -

69C u3/2 -

71C u3/2 -

73C u3/2 - 75C u

5/2 -

57C u3/2 -

59C u3/2 -

61C u3/2 -

63C u3/2 -

65C u3/2 -

67C u3/2 -

69C u3/2 -

71C u3/2 -

73C u3/2 - 75C u

5/2 -

1/2 -4915/2 -9147/2 -1399

1/2 -475

5/2 -9707/2 -1311

1/2 -6705/2 -9627/2 -1327

1/2 -7711/2 -1096

1/2 -454534 5/2 -

5/2 -11167/2 -1482 7/2 -1670

5/2 -11151170(1 /2-) 5/2 -1214

7/2 -981

(1/2 -)135166 5/2 -

(7/2 -)961

62 (3/2-)(1 /2 -)128

5/2 -11195/2 -1655

1/2 -1989

1/2 -422

7/2 -1457

1/2 -640

1387 7/2 -5/2 -1397

1/2 -824

7/2 -149416355/2 -

1/2 -931

1516 7/2 -5 /2 -1570

1213 1/2 -5/2 -1372

1699 7/2 -

1313 5/2 -1/2 -1470

7/2 -1153

5/2 -7941/2 -12857/2 -1562

5/2 -301

1/2 -10397/2 -1422

3/2 -136

1/2 -963

7/2 -1401

E xperim ent

J U N 45

5/2 -371

1/2 -1388

1/2 -4195/2 -681

7/2 -1530

1/2 -384

5/2 -841

7/2 -1512

1/2 -373

5/2 -9007/2 -1311

1/2 -6735/2 -909

7/2 -1551

5/2 -868977 1/2 -

7/2 -1647

5/2 -9161/2 -1177

7/2 -1965

5/2 -2531/2 -584

7/2 -1626

22 5/2 -1/2 -430

7/2 -1410

1/2 -145

1/2 -679

7/2 -1436

jj4b

Above N=40:• 5/2- level rather OK• ½- > 800 keV too high

3

N=40

Calculations:Model space

(56Ni core) + f5/2 p3/2 p1/2 g9/2

Effective Interactions: * JUN45, Honma et al.,

PRC80, 064323, 2009

Page 22: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

22

Magnetic moments of odd-Cu isotopes from N=28 to N=46

T. Cocolios et al., PRL 103, 102501 (2009)

Calculations:

Model space (56Ni core) + f5/2 p3/2 p1/2 g9/2

Effective Interactions: (JUN45, Honma et al., PRC80, 064323, 2009) * jj44b, Brown, private communication

K.T. Flanagan et al., PRL 103, 142501 (2009)

Conclusions:(1) 69Cu magnetic moment very close to the

reduced single particle value

(2) used gs = 0.7 gsfree (56Ni core, no f7/2)

(3) Towards N=28: both p and n f7/2 core excitations needed to reproduce core softness (GXPF1 gives perfect agreement)!

(4) Beyond N=40: * 75Cu, 5/2 g-factor well reproduced (because nearly pure pf5/2 wave function) * 71,73Cu, 3/2 values largely overestimated need more mixing with (pf5/2 2+)3/2

Page 23: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

23

single particle value Qsp(pp3/2) is reached at the borders of the model space (N=28, N=50)

jj44b interaction:56Ni core (N=Z=28)neutrons up to N=50

increase of Q-moments for 3/2 and 5/2 states towards mid-shell (normal behaviour between shells)

Q-moment of 69Cu very close to that of single particle value:N=40 behaves as a ‘magic’ gap reason: not ‘energy’ gap parity change pf (neg) to g9/2 (pos)

The model reproduces extremely well the Cu quadrupole moments around N=40. Deviation in 61Cu significant ? Signature of breakdown of magicity of 56Ni core ? 75Cu Q-moment in agreement with that for a 5/2- configuration !!

Quadrupole moments of odd-Cu isotopes from N=32 to N=46

Page 24: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

24

Ground state spin of 72,74Cu, sign of m

72Cu, I=2

74Cu, I=2Ratio of A-factors should be constant,if the hyperfine structure is fitted with correct spin value(input in fit: I, Au, Ad, Bu, IS)

Ground state spin 72,74Cu is I=2, with more than 4 sigma confidence level

K.T. Flanagan et al., in preparation

5/2

I (72,74Cu) = 2

most intense line32S1/2

32P3/2

1/23/2

7/2

3/2

5/2

m < 0

Page 25: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

25

Ground state parity and structure of 72Cu72Cu expected low-energy levels:

40

2p3/2

1f5/2

2p1/2

1g9/2

40

2p3/2

1f5/2

2p1/2

1g9/2

Z=29 N=43

(pp3/2 ng9/23) (3,4,5,6)-

(pf5/2 ng9/23) (2,…,7)-

proton excited to the f5/2 orbital

(pp3/2 np1/2-1g9/2

4) (1,2)+

neutron excitation across N=40

Ground state has spin I=2 But what is the parity ??

Can we assign parity based on measuredmagnetic moment ?m = -1.3451(6) mN

Experiment

(3-)

(4-)

(1+)

0

137

219270

376

(2)

(6-) t1/2=1.76ms

J.C. Thomas et al., PRC74, 054309, 2006

??

Realistic interaction3-6-

4-

2+

2-

5-

1+

016

140

235

387418431

use Paar’s rule

Page 26: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

26

Ground state parity and structure of 72Cu: Ip = 2- !!

Main negative parity configuration: (mpf5/2 ng9/23; 2-) mfree(2-) = -2.13 mN

memp (2-) = -1.94 mN

Main positive parity configuration: (mpp3/2 np1/2-1g9/2

4; 2+) mfree(2+) = +4.44 mN

memp (2+) = +1.44 mN

Conclusion: the measured SIGN of the moment, m = -1.3451(6) mN, is crucial to decide on the parity ! in absolute value it is in agreement with 2+ however, a negative sign is only compatible with a proton in f5/2 orbital

Use additivity rules for proton-neutron configurations:

Realistic interaction3-6-

4-

2+

2-

5-

1+

016

140

235

387418431

Experiment

(3-)

(4-)

(1+)

0

137

219270

376

(2-)

(6-) t1/2=1.76ms

Page 27: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

27

Ground state spins in odd-Ga isotopes

N=40 N=50n1g9/2 n(p3/2,f5/2p1/2) 46 48

62Cu 63Cu 64Cu 65Cu 66Cu 67Cu 68Cu 70Cu 71Cu 72Cu 73Cu 74Cu 75Cu 76Cu69Cu

64Ni 65Ni 66Ni 67Ni 68Ni 69Ni 70Ni 71Ni 72Ni 73Ni 74Ni 75Ni 76Ni

64Zn 65Zn 66Zn 67Zn 69Zn 70Zn 71Zn 72Zn 73Zn 74Zn 75Zn68Zn

Z=28 77Ni 78Ni

77Cu 78Cu 79Cu

4466Ga 67Ga 68Ga 70Ga 71Ga 72Ga 73Ga 74Ga 75Ga 76Ga69Ga 4477Ga 78Ga 79Ga 80Ga 81Ga

61Cu

Normal ground state configuration of odd-Ga isotopes: (pp3/2)3 3/2-

This work: measured all g.s. spins from 67Ga up to 81Ga !!

Prior to our work: firmly assigned 3/2- value up to 75Ga tentatively assigned 3/2- for 77,79Ga

no assignment for 81Ga

Spin changes in 73Ga (I=1/2) and 81Ga (I=5/2) !!

Need the magnetic and quadrupole moment to understand this structure change !

82Ga

B. Cheal et al., submitted PRL

Page 28: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

28

No low-lying spin-1/2 state observed in 73Ga before.

3/2- seen in 73Ga seen in (p,t) reaction study (Vergnes et al., PRC19, 1276, 1971)

½- g.s. must be near-degenerate with this 3/2- state (less than 1 keV according to Stefanescu)!!

Dip in 9/2+ energy at 73Ga (N=42)(intruder pg9/2 leading to onset of deformation around neutron mid-shell at N = 42)

I. Stefanescu et al. PRC 79, 064302 (2009)

Odd-Ga level systematics N=38

N=40N=42

N=44

N=46

Page 29: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

29

g-factors of odd-Ga isotopes

N=40 N=50

g-factors

I=1/2

I=3/2 I=5/2

g.s. wave function dominated by unpaired pp3/2, in 67,69,71Ga and in 75,77Ga

g.s. dominated by odd pf5/2 configurations in 81Ga, having spin 5/2, but also in 79Ga having spin 3/2 79Ga: mixed p(p3/2

2f5/2) 2+ and p(f5/23, s=3)3/2

g.s very mixed in 73Ga: p(p3/23, s=3)1/2 with

pp1/2 and pf5/2 2+

the 73Ga g.s. g-factor gexp=0.418(4) is very close to gR ~ Z/A ~ 0.44)

B. Cheal et al., submitted to PRL

Page 30: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

30

quadrupole moments of odd-Ga isotopes

N=40 N=50

QsShape changes

(1) around 73Ga

• Below N=42 (36,38,40): Q > 0main configuration: Q(p3/2

3) = Q(p3/2-1 )

(hole configuration has a positive Q-moment)

• Above N=42 (44,46) : Q < 0 main configuration: p3/2

+1 (f5/2p1/2)2

(particle configuration has a negative Q-moment)

(2) In 79Gapositive Q-moment and protons mostly in f5/2 from measured g-factor mixing between (pp3/2 (p f5/2)2 )3/2 (this does not give correct moments)

(f5/2)33/2 (gives correct moments leading term)

(3) In 81Gaslightly negative Q-moment (particle-like): 3 p in f5/2 coupling to 5/2 Q=0

B. Cheal et al., PRL submitted

Page 31: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

31

Comparing magnetic moments to JUN45 and jj44b

JUN45

jj44b

Second 3/2- in calculations !!

Both interactions predict g.s. structure of 79Ga around 250-300 keV !

B. Cheal et al., submitted to PRL

Page 32: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

32

Comparing quadrupole moments to JUN45 and jj4b

JUN45

jj4bSecond 3/2- in calculations !!

Conclusions: (1) jj44b has better overall agreement for the magnetic moments ! (2) in jj44b the quadrupole moment of 69Ga and 71Ga has wrong sign

too fast emptying of the p3/2 orbital ?

B. Cheal et al., submitted to PRL

ep=1.5een=0.5e

Page 33: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

33

Comparing experimental levels to JUN45 and jj4b

Real ground state: m and Q reproduced !

Real ground state ???NO, magnetic moment not reproduced!

Page 34: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

34

Reduction of the N=28 gap below 48Ca

N=20N=28

40Ca

35P

41Ca

39Ar

38Cl

37S

36P

39Cl

38S

37P

42K

41Ar

40Cl

39S

38P

43K

42Ar

41Cl

40S

39P

45Ca

44K

43Ar

42Cl

41S

40P

45K

44Ar

43Cl

42S

41P

47Ca

46K

45Ar

44Cl

43S

42P

47K

46Ar

45Cl

44S

43P

39Ca

38K

37Ar

36Cl

35S

34P

42Ca 43Ca 44Ca 46Ca 48Ca39K 40K 41K

40Ar38Ar

37Cl

36S

Z=20

nf7/2 np3/2

Evidence for N=28 gap reductionbelow 48Ca, in

- in Ar isotopes- in S isotopes

nf7/2

np3/2

N=27 isotonesExperimental 7/2- and 3/2-

From Gaudefroy et al., PRL 102 (2009): 7/2- isomer in 43S is dominated by nf7/2

(from g-factor) very good agreement with sdpf-U interaction suggested g.s. of 43S: a collective 3/2- state

dominated by np3/2

44Cl between 45Ar and 43S

Page 35: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

35

Near-degeneracy of ps1/2 and pd3/2 near N=28

Hardly no experimental information available on 44Cl - knock-out reaction from 45Cl (PRC79, 2009) suggests 2- g.s. with significant

contribution from np3/2 in the wave function- no excited states known.

Normal 44Cl g.s. configuration = (pd3/2nf7/2-1) 2,3,4,5-

Mixed with (pd3/2np3/2) 0,1,2,3-

(ps1/2np3/2) 1,2- pushes 2- down in energy lowers the g-factor

pd3/2

ps1/2

Z=20

N=28N=22 N=24 N=26

44Cl is in between 43Cl and 45Cl

44Cl ground statepresumably dominated by πs1/2 configurations

nf7/243Cl and 45Cl have probably 1/2+ ground state (A. Gade, PRC 74(2006)034322)

Page 36: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

36

g-factor and g.s. structure of 44Cl

b-NMR on 44Cl(NaCl)

|g|=0.27487(16)

b-as

ymm

etry

Calculation: sdpf-U interaction (Nowacki and Poves, PRC79 (2009))

protons in sd orbits neutrons in pf orbitsgs

eff=0.75gs

GOOD AGREEMENT :Ground state spin 2 confirmedVERY MIXED WAVE FUNCTION CONFIRMED

M. De Rydt et al., PRC 81, 034308 (2010)

Fragmentation of 48Ca beam, 2 mA select polarized beams at LISE-GANILfor b-Nuclear Magnetic Resonance

Page 37: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

37

Conclusions

(1) Knowing magnetic moments and quadrupole moments in a series of isotopes or isotonesis extremely helpful to understand the structural changes in isotopes far from stability !

(2) Measurements of the g.s. spin is needed in these exotic regions, because theories are not sufficiently well developed to make predictions !

(3) Measured g.s. spin values are crucial for further assigning spins of excited levels.

(4) Measuring the sign of the g-factor (magnetic moment) is crucial for interpretation of the mixed g.s. structures (less critical for isomeric states that are mostly of single particle nature)

Page 38: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

38

33Al NQR

T. Nagatomo, H. Ueno et al., preliminary

M. De Rydt et al., PLB 678, 344 (2009)

34Al g factor

P. Himpe et al., Phys. Lett. B 643 (2006) 257–262

nQ(kHz)

31Al(Al203)

Page 39: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

39

Energy levels of odd-Cu isotopes from N=28 to N=50

57C u3/2 -

5/2 -10281106 1/2 -

59C u3/2 -

61C u3/2 -

63C u3/2 -

65C u3/2 -

67C u3/2 -

69C u3/2 -

71C u3/2 -

73C u 3/2 - 75C u5/2 -

57C u3/2 -

59C u3/2 -

61C u3/2 -

63C u3/2 -

65C u3/2 -

67C u3/2 -

69C u3/2 -

71C u3/2 -

73C u3/2 - 75C u

5/2 -

57C u3/2 -

59C u3/2 -

61C u3/2 -

63C u3/2 -

65C u3/2 -

67C u3/2 -

69C u3/2 -

71C u3/2 -

73C u3/2 - 75C u

5/2 -

1/2 -4915/2 -9147/2 -1399

1/2 -475

5/2 -9707/2 -1311

1/2 -6705/2 -9627/2 -1327

1/2 -7711/2 -1096

1/2 -454534 5/2 -

5/2 -11167/2 -1482 7/2 -1670

5/2 -11151170(1 /2-) 5/2 -1214

7/2 -981

(1/2 -)135166 5/2 -

(7 /2 -)961

62 (3 /2-)(1/2 -)128

5/2 -11195/2 -1655

1/2 -1989

1/2 -422

7/2 -1457

1/2 -640

1387 7/2 -5/2 -1397

1/2 -824

7/2 -149416355/2 -

1/2 -931

1516 7/2 -5 /2 -1570

1213 1/2 -5/2 -1372

1699 7/2 -

1313 5/2 -1/2 -1470

7/2 -1153

5/2 -7941/2 -12857/2 -1562

5/2 -301

1/2 -10397/2 -1422

3/2 -136

1/2 -963

7/2 -1401

E xperim ent

J U N 45

5/2 -371

1/2 -1388

1/2 -4195/2 -681

7/2 -1530

1/2 -384

5/2 -841

7/2 -1512

1/2 -373

5/2 -9007/2 -1311

1/2 -6735/2 -909

7/2 -1551

5/2 -868977 1/2 -

7 /2 -1647

5/2 -9161/2 -1177

7/2 -1965

5/2 -2531/2 -584

7/2 -1626

22 5/2 -1/2 -430

7/2 -1410

1/2 -145

1/2 -679

7/2 -1436

jj4b

Below N=40:• 5/2- level ~500 keV high• ½- rather OK, not in 57Cu

Above N=40:• 5/2- level rather OK• ½- > 800 keV too high

Below N=40:• 5/2- level in 57Cu too low !• 5/2- level ~ 200 keV too low• ½- rather OK

Above N=40:• 5/2- level rather OK• ½- bit too high in 73,75Cu

3

N=40N=28

Page 40: Shell evolution in the neutron rich  N=20, N=28 and Z=28 regions

40

Energy levels Cu isotopes beyond N=42

(pp3/2ng9/2)3-6

(pf5/2ng9/2)2-7