105
1 KING MONGKUT’S UNIVERSITY OF TEHNOLOGY, THONBURI, THAILAND (KMUTTJGSEE) THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, USA (UNCCH) Shared Profit Building Integrated Photovoltaic Systems in Thailand Technical, Environmental, and Economic Assessments for an Innovative Enterprise Morgan Edwards Kelly Anderson Megan Colonel Noah Kittner Christina Riegel Matt Crane 11/30/2009 This report is the product of a capstone research collaboration of UNCCH students undertaken at KMUTTJGSEE in 2009 as partial fulfillment of a study abroad program, overseen by advisors Dr. Savitri Gharavit (KMUTTJGSEE), Dr. Shabbir Gheewala (KMUTTJGSEE), Dr. Rich Kamens (UNC CH), and Dr. Pattana Rakkwamsuk (KMUTTJGSEE).

SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

1    

KING  MONGKUT’S  UNIVERSITY  OF  TEHNOLOGY,  THONBURI,  THAILAND  (KMUTT-­‐JGSEE)  THE  UNIVERSITY  OF  NORTH  CAROLINA  AT  CHAPEL  HILL,  USA  (UNC-­‐CH)  

Shared  Profit  Building-­‐Integrated  Photovoltaic  Systems  in  Thailand  

Technical,  Environmental,  and  Economic  Assessments  for  an  Innovative  Enterprise  

           

Morgan  Edwards  Kelly  Anderson  Megan  Colonel  Noah  Kittner  

Christina  Riegel  Matt  Crane  

   

 

11/30/2009  

This  report  is  the  product  of  a  capstone  research  collaboration  of  UNC-­‐CH  students  undertaken  at  KMUTT-­‐JGSEE  in  2009  as  partial  fulfillment  of  a  study  abroad  program,  overseen  by  advisors  Dr.  Savitri  Gharavit  (KMUTT-­‐JGSEE),  Dr.  Shabbir  Gheewala  (KMUTT-­‐JGSEE),  Dr.  Rich  Kamens  (UNC-­‐

CH),  and  Dr.  Pattana  Rakkwamsuk  (KMUTT-­‐JGSEE).  

Page 2: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

2    

Acknowledgements  Many  thanks  to  all  our  faculty  advisors,  teaching  assistants,  and  friends  at  King  Monkut’s  University  of  Technology,  Thonburi  (KMUTT-­‐JGSEE)  and  the  University  of  North  Carolina  at  Chapel  Hill  (UNC-­‐CH).    

Faculty  Advisors  Dr.  Savitri  Gharavit  (KMUTT-­‐JGSEE)  

Dr.  Shabbir  Gheewala  (KMUTT-­‐JGSEE)  

Dr.  Rich  Kamens  (UNC-­‐CH)  

Dr.    Pattana  Rakkwamsuk  (KMUTT-­‐JGSEE)  

Teaching  Assistants  Pornphol  Boonnak  (JGSEE-­‐KMUTT)  

Kanittha  Kanokkanjana  (JGSEE-­‐KMUTT)  

Sorawit  Siangjaeo  (JGSEE-­‐KMUTT)  

Page 3: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

3    

 

Table  of  Contents  Acknowledgements  ......................................................................................................................................  2  

Faculty  Advisors  .......................................................................................................................................  2  

Teaching  Assistants  ..................................................................................................................................  2  

Abstract  ........................................................................................................................................................  5  

Executive  Summary  ......................................................................................................................................  5  

Technical  Assessment  of  Building-­‐Integrated  Photovoltaic  Systems  ...........................................................  6  

Technical  Assessment  Methodology  ......................................................................................................  15  

Preliminary  System  Output  Model  .....................................................................................................  16  

Comprehensive  System  Output  Simulation  .......................................................................................  23  

Results  of  Technical  Assessment  ............................................................................................................  29  

Preliminary  System  Output  Model  .....................................................................................................  29  

Comprehensive  System  Output  Simulation  .......................................................................................  34  

Environmental  Assessment  ........................................................................................................................  46  

Background  Information  ........................................................................................................................  46  

Environmental  Assessment  Methodology  .............................................................................................  48  

Assumptions  ...........................................................................................................................................  50  

System  Processes  ...................................................................................................................................  52  

Life  Cycle  Assessment  Inventory  ............................................................................................................  55  

Potential  Applications  for  Monocrystalline  Photovoltaic  Input  Energy  Efficiency  .................................  63  

End  Of  Life  Scenarios  ..............................................................................................................................  64  

Results  of  Environmental  Assessment  ...................................................................................................  65  

Potential  Error  ....................................................................................................................................  66  

Conclusion  ..........................................................................................................................................  67  

Economic  Assessment  of  Building-­‐Integrated  Photovoltaic  Systems  ........................................................  68  

The  Thai  Housing  Market  .......................................................................................................................  68  

Renewable  Energy  in  Thailand  ...............................................................................................................  70  

Business  Proposal  ...................................................................................................................................  72  

Economic  Assessment  Methodology  .....................................................................................................  74  

Financial  Assessment  Methodology  ...................................................................................................  76  

Page 4: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

4    

Results  of  Economic  Assessment  ...........................................................................................................  77  

Conclusion  ..................................................................................................................................................  83  

Appendix  1  .................................................................................................................................................  85  

Appendix  2  .................................................................................................................................................  90  

Business  Plan  ..........................................................................................................................................  90  

Works  Cited  ..............................................................................................................................................  101  

 

 

Page 5: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

5    

 

Abstract     This  paper  researches  the  technical,  environmental,  and  economic  aspects  of  a  proposed  business  enterprise  based  on  the  premise  of  selling  electricity  generated  by  building-­‐integrated  monocrystalline  photovoltaic  modules  on  residential  rooftops  in  Bangkok,  Thailand.    The  Thai  government  provides  a  subsidy  adder  through  an  innovative  “Very  Small  Power  Producer”  program  that  buys  electricity  by  the  kWh.    The  technical  section  models  and  estimates  the  amount  of  electricity  generated  by  the  proposed  system,  while  the  environmental  section  uses  the  Life  Cycle  Assessment  tool  to  estimate  the  amount  of  carbon  dioxide  averted  by  installing  a  BIPV  system.    The  economic  and  business  sections  create  a  plan  for  a  shared  profit  venture.  This  includes  estimating  the  amount  of  money  potentially  generated  by  this  enterprise  while  also  establishing  the  interested  parties  as  socially  and  environmentally  responsible.      

  Results  indicate  that  the  BIPV  system  can  generate  enough  electricity,  have  a  short  energy  payback  period,  but  can  not  be  profitable  within  a  typical  thirty-­‐year  mortgage  cycle.    

Executive  Summary     Shared  Profit  BIPV  System  in  Thailand,  an  assessment  of  the  technical,  environmental,  and  economic  conditions  and  potential  of  a  proposed  BIPV  community  development  project,  suggest  that  there  is  a  profitable  way  for  solar  energy  to  enter  the  market  as  a  VSPP.    Residential  houses  with  monocrystalline  photovoltaic  modules  acting  as  roofs  receive  a  large  amount  of  incoming  solar  radiation  yearly  because  of  Bangkok’s  proximity  to  the  equator.    Even  with  varying  system  efficiencies,  the  robust  data  ensure  significant  electricity  is  generated  from  BIPV  installations.    Roofs  with  panels  on  three  of  four  sides  can  generate  nearly  46  MWh  per  year.      

An  interactive  Microsoft  Excel  Spreadsheet  allows  for  users  to  input  various  roof  type  scenarios,  which  then  synchronizes  with  an  environmental  impact  assessment  and  economic  analyses.    The  electricity  sold  back  to  the  grid  incurs  both  environmental  and  economic  gains.    The  amount  of  carbon  dioxide  offset  per  home  is  enough  to  account  for  several  times  the  carbon  footprint  of  an  average  Thai  citizen.  More  important  from  an  environmental  impact  assessment  viewpoint,  the  electricity  generated  by  photovoltaic  systems  displaces  the  average  Thai  electricity  mix  and  potentially  reduces  the  amount  of  CO2  per  kWh  by  thirty-­‐fold.      

Financially,  the  enterprise  is  profitable,  but  dependent  upon  the  Thai  government  VSPP  adder.    Over  the  course  of  a  thirty-­‐year  mortgage  cycle,  a  theoretical  investor  paying  one  percent  of  the  startup  cost  could  make  1.7  million  THB  (nearly  $51,000  USD).      

The  system  seems  promising,  but  relies  upon  government  subsidies  to  remain  constant.    If  the  government  increased  its  adder  for  VSPP’s,  investors  would  earn  more  profit  and  the  system  could  expand  further.    One  potential  technologically,  environmentally,  and  economically  viable  way  for  solar  

Page 6: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

6    

electricity  to  enter  the  market  is  through  building-­‐integrated  monocrystalline  photovoltaic  applications.  However,  it  may  be  necessary  for  increased  government  incentives  and  policies,  focused  on  clean,  renewable  technologies,  to  be  created  and  implemented  in  order  for  the  business  to  be  economically  viable  within  a  time  frame  attractive  to  investors.    

The  results  of  the  assessment  confirm  the  ability  for  this  system  to  work  presently  and  will  improve  as  technology  and  Thailand’s  infrastructure  progresses.  

Technical  Assessment  of  Building-­‐Integrated  Photovoltaic  Systems    

Introduction  to  Solar  Technology  

  The  sun  has  been  one  of  the  most  reliable  sources  of  energy  to  humans  for  all  of  history.    The  ability  for  humans  to  harness  the  sun’s  energy  and  turn  it  into  electricity  began  in  the  19th  century  when  Alexandre  Edmund  Becquerel  was  working  with  electrodes  in  solution.    When  the  solution  was  exposed  to  sunlight,  he  observed  a  voltage  between  the  electrodes.    Almost  35  years  after  Becquerel  observed  photosensitivity  in  solution,  Willoughby  Smith  discovered  photoconductivity  in  selenium  in  1876.    In  1876  W.G.  Adams  and  R.E.  Day  discovered  that  selenium  can  partake  in  the  photovoltaic  effect  and  five  years  later  the  first  photocell  was  created  by  Charles  Fritts  (Bhattacharya).  

  Selenium  was  replaced  in  mainstream  solar  technology  of  the  20th  century  by  silicon  because  of  silicon’s  abundance  and  stability.    In  1941,  silicon  monocrystalline  solar  devices  were  first  created  and  in  the  1950s,  Bell  Telephone  Laboratories  developed  a  revolutionary  solar  cell  with  an  efficiency  of  4.5%,  which  was  later  refined  to  6%.    The  obtained  efficiency  was  extremely  high  compared  to  the  previous  technology  that  rarely  surpassed  1%  efficiency.    Throughout  the  first  half  of  the  20th  century,  there  was  much  growth  and  development  in  the  field  of  photovoltaics,  but  the  technology  was  extremely  expensive  and  energy  intensive.    Scientists  needed  substantial  monetary  compensation  from  the  government  and  extensive  public  interest  before  the  technology  would  be  available  and  affordable  to  the  average  person  (Bhattacharya).  

  Solar  technology  achieved  public  recognition  from  an  article  published  by  Business  Week  in  the  1950s.    The  article  described  a  possible  future  of  the  United  States  that  included  photovoltaics  as  a  main  power  supply  source.    The  initial  buzz  of  the  solar  industry  died  down  by  the  end  of  the  decade  because  of  the  cheap  price  and  wide  availability  of  alternative  fuels  such  as  oil  and  coal.    The  government,  through  space  exploration  and  the  demand  for  a  renewable  power  source  in  space,  kept  the  technology  in  production  on  a  small  scale.    Then,  in  1973  when  the  OPEC  nations  significantly  increased  the  price  of  oil,  the  demand  for  a  renewable,  reliable  energy  source  was  revived  by  the  public.    Research  and  development  by  the  United  States  government  increased,  and  from  1981  to  1990,  they  spent  569  million  dollars  on  solar  technology  alone.    Based  on  statistics  from  Japan  and  the  United  States,  there  is  almost  a  direct  correlation  between  oil  prices  and  amount  of  money  invested  by  governments  in  photovoltaic  research  and  development.    As  oil  prices  increase,  the  demand  for  alternative  energy  

Page 7: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

7    

sources  from  the  public  also  increases,  and  therefore  research  and  development  of  solar  technologies  are  augmented  (Bhattacharya).  

  Currently,  there  are  many  countries  extremely  invested  in  solar  technology.    Germany’s  government  has  taken  large  initiative  to  make  solar  energy  affordable  and  available  to  all  of  its  citizens.  The  government  subsidies  are  25-­‐50%  of  the  cost  of  the  systems  and  almost  immediately,  applications  for  the  installation  of  70MWp  of  solar  technology  were  submitted.    The  initiative  that  Germany  has  taken  is  a  crucial  model  for  the  future  of  solar  technology  in  the  rest  of  the  world.    As  investment  and  production  increase,  price  of  solar  technology  will  decrease,  making  the  technology  widely  available,  while  reducing  carbon  emissions  to  the  environment  at  the  same  time  (Erge,  Hoffman  and  Kiefer).  

 

Monocrystalline  Silicon  

  Monocrystalline  photovoltaic  technology  is  the  oldest  and  most  researched  photovoltaic  technology  in  the  market  today.    The  elementary  technological  aspects  involved  with  monocrystalline  solar  technology  production  have  been  known  since  the  development  of  the  Czochralski  process  by  Jan  Czochralski  in  1916.  The  technique  was  not  refined  to  efficient  solar  cell  design  capabilities  until  1954.    The  Czochralski  process  is  a  method  used  to  create  one  large  silicon  ingot  that  can  then  be  cut  into  slices  and  used  in  photovoltaic  arrays  for  photon  capture  and  transformation  (Goetzberger,  Hebling  and  Schock).  

 

Figure  1-­‐1.  Czochralski  Ingot  Formation  Diagram    

*Image  taken  from  the  journal  of  Materials  Science  and  Engineering  

Page 8: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

8    

 

  The  Czochralski  method  begins  with  the  melting  of  highly  purified  polycrystalline  silicon  material  in  a  quartz  crucible  that  is  contained  inside  of  a  graphite  crucible.    The  silicon  must  be  melted  in  an  atmosphere  of  inert  gases  because  silicon  forms  oxides  easily  upon  contact  with  any  oxygen  source.  Even  though  the  silicon  ingot  is  grown  an  anaerobic  atmosphere,  impurities  of  oxygen  1017–1018  cm3  are  able  to  enter  the  crystal  as  a  result  of  the  quartz  crucible  that  it  is  grown  in  (Ceccaroli  and  Otto).    Oxygen  impurities  can  lead  to  energy  conversion  inefficiencies  over  the  lifetime  of  the  panel.    To  avoid  this  disadvantageous  occurrence,  boron  is  added  to  the  molten  silicon  through  a  process  called  doping.    The  addition  of  boron  to  silicon  creates  “p-­‐type  silicon,”  which  is  also  used  when  creating  an  electron  gradient  later  on  in  the  manufacturing  process  (Ceccaroli  and  Otto).    Boron  is  usually  added  to  silicon  in  amounts  of  1014  to  1020  atoms  per  cm3  (Ceccaroli  and  Otto).    A  small  silicon  seed  crystal  is  then  dipped  into  the  liquid  silicon  and  withdrawn  (while  in  rotation)  for  several  hours.    The  seed  must  be  withdrawn  at  an  extremely  slow  extraction  rate  because  a  temperature  gradient  forms  along  the  silicon  ingot.    The  top  end  of  the  ingot  cools  much  faster  than  the  bottom  end,  making  the  ingot  susceptible  to  impurities.  The  rotation  of  the  seed  crystal  and  the  crucible  containing  the  liquid  silicon  proceed  in  opposing  directions,  creating  one  single  crystal  (Foll).    When  the  seed  crystal  is  drawn  out  of  the  molten  silicon,  an  ingot  solidifies  as  part  of  the  seed  crystal.    Ingots  created  through  this  process  range  widely  in  diameter,  but  the  smaller  ingots  are  mainly  used  with  solar  cells  because  of  design  dimensions  within  photovoltaic  arrays.    Ingots  made  through  the  Czochralski  process  can  have  diameters  of  300  mm,  but  ingots  used  in  photovoltaic  arrays  are  usually  around  100  mm  in  diameter  (Goetzberger,  Hebling  and  Schock).    The  smaller  size  allows  for  a  proper  fitting  of  many  ingots  on  one  photovoltaic  array  (Goetzberger,  Hebling  and  Schock).  

  Formed  ingots  must  be  sliced  into  wafers  in  order  to  be  attached  to  an  array.    The  slicing  is  done  with  diamond  covered  saw  blades.    Through  this  process,  almost  50%  of  the  silicon  ingot  is  wasted  because  of  sawing  (Goetzberger,  Hebling  and  Schock).    Finished  wafers  are  usually  0.2-­‐0.5  mm  thick  (Bhattacharya).    Because  the  arrangement  of  ingots  in  the  photovoltaic  arrays  is  ideally  for  square  shapes,  the  circular  ingot  wafers  are  formed  into  squares  with  rounded  edges.    The  shaping  process  is  an  additional  contributor  to  waste  (Goetzberger,  Hebling  and  Schock).  

  The  wafers  must  then  be  doped  again  with  a  thin  layer  of  phosphorus  on  the  surface  in  order  to  create  the  p-­‐n  junction.    The  phosphorus  doped  top  layer  is  called  the  “n-­‐layer.”    The  p-­‐type  layer  is  said  to  have  “holes”  where  electron  pairs  have  left  the  valence  shell,  and  the  n-­‐type  layer  becomes  a  donator  of  electrons.    The  freed  electrons  are  able  to  flow  to  the  metal  contact  grid  and  out  of  the  system,  creating  a  direct  electrical  current.  Once  the  electrons  do  work,  they  come  back  to  the  solar  cell  via  the  metallic  contact  grid  connected  to  the  solar  cell  on  the  top  and  bottom  sides  (Energy  and  the  Environment).  

Page 9: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

9    

 

Figure  1-­‐2.  Isotropic  Etching  on  a  Monocrystalline  Silicon  Ingot  

*Image  taken  from  the  journal  of  Materials  Science  and  Engineering  

  Additional  processes  must  be  done  to  each  solar  cell  before  the  array  can  operate.  Silicon,  by  nature,  is  an  extremely  reflective  surface  when  grown  for  use  in  photovoltaics.    An  antireflective  coating  must  be  added  to  the  surface  of  the  silicon  before  it  is  exposed  to  sunlight.    If  a  reflective  coating  was  not  in  place,  the  majority  of  the  photons  from  sunlight  would  not  be  absorbed  into  the  cells.    Scientists  have  developed  surface  texturing  techniques  that  have  reduced  photon  refraction  significantly  (Goetzberger,  Hebling  and  Schock).    For  example,  in  figure  1-­‐2  (above),  a  surface  texturizing  technique  was  used  to  create  inverted  pyramids  on  the  surface  of  a  monocrystalline  wafer.    This  was  done  by  pouring  a  hot  alkaline  solution  over  the  surface.    Isotropic  etching  is  only  possible  on  monocrystalline  technology  because  the  extensive  network  of  crystallization  on  polycrystalline  silicon  interferes  with  the  formation  of  even  texturization  onto  the  surface  of  the  silicon.    The  advantage  of  having  inverted  pyramids  on  the  surface  of  the  silicon  is  that  light  can  be  coupled  into  each  cell,  increasing  the  overall  absorption  of  solar  radiation  in  the  active  surface  area.    Other  protective  coatings  can  be  added  depending  on  the  particular  application  and  location  of  the  final  photovoltaic  array.    Then,  the  cells  are  placed  in  between  two  plates  of  glass  in  order  to  protect  the  silicon  from  stresses  of  the  environment  such  as  dirt  and  humidity.    It  is  important  to  take  in  to  account  that  every  additional  layer  of  treatment  on  top  of  the  silicon  will  most  likely  impede  the  penetration  of  photons,  therefore  decreasing  overall  absorbance  and  efficiency  of  the  system  (Goetzberger,  Hebling  and  Schock).  

Page 10: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

10    

 

Figure1-­‐3.  Solar  Cell  Diagram  with  Electron  Pathway  

Image  taken  from  Energy  and  the  Environment  

   

  Monocrystalline  silicon  is  known  to  have  the  highest  efficiency  of  all  photovoltaic  technologies.  It  is  also  the  most  expensive  because  of  the  intricate  and  high  energy  requirements  of  the  Czochralski  process.    Monocrystalline  silicon  is  most  often  utilized  when  there  are  area  restraints  on  available  space  for  the  photovoltaic  arrays.  This  technology  is  particularly  advantageous  for  the  area  limitations  of  this  project.      

Polycrystalline  Silicon  

  Polycrystalline  silicon  solar  cells  have  been  in  production  since  the  1970s.    Instead  of  growing  a  large  single  crystal,  molten  polycrystalline  silicon  is  cast  into  a  square  shaped  crucible  and  allowed  to  cool,  creating  many  large  crystals.    The  block  casting  method  is  much  cheaper  compared  to  monocrystalline  silicon  technology,  but  also  has  a  lower  efficiency  as  a  result  of  the  extensive  crystallization  within  each  cell.    This  casting  process  is  also  a  method  of  solar  cell  production  that  is  unique  only  to  photovoltaics  (Goetzberger,  Hebling  and  Schock).  

Page 11: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

11    

 

Figure1-­‐  4.  Crystalline  Formation  within  Photovoltaic  Cells  

*Image  taken  from  the  journal  of  Materials  Science  and  Engineering  

 

  The  block  casting  method  begins  with  the  melting  of  polycrystalline  silicon.    The  liquid  is  then  poured  into  a  coated  graphite  crucible.    As  the  silicon  cools,  large  crystals  form  within  each  cell.    The  silicon  is  then  sawn  into  wafers,  much  like  the  monocrystalline  wafer  sawing  process.      There  are  many  polycrystalline  cell  preparation  similarities  with  monocrystalline  technology.  Once  the  wafer  is  sawn,  it  must  be  treated  with  an  anti  reflective  coating  to  promote  photon  absorption  (Bhattacharya).    

  With  polycrystalline  technology,  there  is  much  less  loss  with  respect  to  each  solar  cell.    Once  polycrystalline  blocks  are  poured,  they  are  already  in  the  square  shape  necessary  for  mounting  into  the  array.    The  shape  of  the  cast  cells  allows  for  nearly  95%  coverage  of  each  photovoltaic  array.    Other  advantages  of  polycrystalline  technology  come  from  the  fact  that  the  block  casting  method  is  a  much  faster  process  than  the  Czochralski  process.  The  Czochralski  process  takes  hours  for  the  ingot  to  form  and  the  crucible  in  which  the  ingot  is  forming  must  be  kept  extremely  hot  over  the  formation  process.    In  the  block  casting  method,  the  silicon  must  be  hot  initially,  but  after  the  silicon  is  poured,  there  are  no  significant  energy  or  time  inputs  necessary  before  the  wafers  can  be  sawn.    Unfortunately,  because  of  the  larger  percentage  of  impurities  in  the  crystals,  the  average  lifetime  is  somewhat  lower  than  monocrystalline  technology.    Also,  polycrystalline  silicon  must  be  cut  into  thicker  wafers  than  monocrystalline  silicon,  resulting  in  a  slight  increase  in  silicon  use  overall  between  the  two  technologies  (Goetzberger,  Hebling  and  Schock).  

 

 

Page 12: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

12    

 

Amorphous  Silicon  

  Amorphous  silicon  technology  exhibits  potential  in  the  field  of  photovoltaics  for  future  applications.    It  is  more  versatile  than  monocrystalline  and  polycrystalline  technologies  and  can  be  applied  to  a  variety  of  surface  types  and  shapes.    Because  there  is  no  crystalline  structure  within  the  modular  silicon  array,  significant  differences  in  shape  and  efficiency  can  be  observed.    In  each  amorphous  silicon  array,  a  significant  portion  of  silicon  atoms  remain  unbonded,  when  they  would  normally  bond  with  each  other.    The  addition  of  atomic  hydrogen  is  required  to  increase  the  functionality  and  efficiency  of  the  system.    The  material  properties  of  silicon  in  amorphous  arrays  are  also  altered  in  the  process  of  creating  a  photovoltaic  cell.    The  band  gap  of  silicon  is  increased  from  1.1eV  to  1.7eV,  increasing  the  amount  of  light  that  is  able  to  penetrate  the  cell  (Amorphous  Silicon  Technology).      

  There  are  significant  production  cost  advantages  of  amorphous  silicon  technology.    Because  silicon  used  in  each  array  does  not  require  crystallization  through  the  Czochralski,  block  casting,  or  any  other  method,  large  amounts  of  energy  are  saved  from  extensive  heating  of  materials  for  these  processes.  Both  monocrystalline  and  polycrystalline  wafers  must  be  sliced,  resulting  in  large  percentage  material  losses.  Amorphous  silicon  requires  no  sawing,  and  therefore  most  of  the  raw  materials  are  retained.    Additionally,  while  wafers  must  be  sawn  thicker  than  necessary  for  handling  and  other  purposes,  amorphous  silicon  is  usually  no  thicker  than  a  few  microns.  Versatility  is  a  more  recently  noted  advantage  of  amorphous  silicon  technology.  Because  photovoltaics  are  increasingly  integrated  into  the  building  envelope  of  new  architectural  designs,  photovoltaics  that  can  be  placed  on  a  variety  of  surfaces  are  now  in  demand.  For  example,  amorphous  technology  can  be  placed  on  rounded  surfaces  or  used  as  a  partial  shading  façade.    These  design  advantages  are  unique  to  amorphous  silicon  and  will  be  helpful  in  the  future  as  module  efficiency  is  increased  to  produce  larger  electrical  output  (Amorphous  Silicon  Technology)  

 

Balance-­‐of-­‐System  (BOS)  

  For  a  grid-­‐connected  PV  system  to  function  properly,  there  are  numerous  components,  other  than  the  PV  array,  fulfilling  vital  roles  of  energy  conversion  and  transmission.    There  are  subsystems  contained  in  the  BOS  that  include:  energy  generation,  energy  storage,  energy  conversion,  and  energy  transmission  and  distribution  (Bhattacharya).    Not  all  of  these  systems  are  necessary  for  this  project’s  application  of  photovoltaic  technology.    Because  the  system  in  operation  for  this  project  is  a  grid-­‐connected  system,  no  energy  storage  subsystem  will  be  utilized  (Bhattacharya).    The  components  of  the  system  in  the  following  diagram  include:  

a) PV  modules  b) Charge  controller  c) Power  storage  system  

Page 13: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

13    

d) Power  conversion  equipment  e) Backup  power  supplies  f) Support  and  mounting  hardware,  wiring,  and  safety  disconnects  

(Italics  indicate  elements  that  are  not  included  in  grid-­‐connected  BIPV  systems)    

 

Figure1-­‐  5.  Balance-­‐of-­‐System  Diagram  

  The  energy  generation  subsystem  consists  of  light  collecting  structures  such  as  the  array  and  all  required  mounting  apparatuses.    The  subsystem  of  energy  generation  is  usually  the  most  expensive  part  of  the  BOS  because  the  solar  arrays  include  silicon  technology,  which  is  extremely  costly  to  produce.    The  energy  conversion  subsystem  includes  a  converter  to  switch  the  DC  current  being  produced  from  the  solar  panels  to  an  AC  current.    It  also  includes  electronics  and  housing  to  protect  all  of  the  electrical  components  from  misuse  and  malfunction  due  to  exposure  to  extreme  weather  or  other  conditions.      The  energy  transmission  and  distribution  subsystem  includes  any  component  involved  in  the  transportation  of  electrical  energy.    Some  of  these  components  include  wires,  insulators,  transmission  poles,  and  cables  (Bhattacharya).      

 

Factors  Affecting  Efficiency  

Page 14: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

14    

  The  efficiency  of  a  system  is  a  significant  contributor  to  the  type  of  technology  that  will  be  applied  to  a  particular  building  or  project.    Efficiency  is  defined  as,  “the  proportion  of  sunlight  energy  that  the  solar  cell  converts  into  electrical  energy  relative  to  the  amount  of  sunlight  that  is  available  and  striking  the  PV  cell”  (Project).    For  example,  if  a  solar  photovoltaic  project  has  a  limited  area  and  the  highest  electrical  output  is  essential,  monocrystalline  technology  would  be  the  best  decision  because  of  its  high  efficiency  per  unit  area.    In  laboratory  testing,  monocrystalline  photovoltaic  modules  have  reached  efficiencies  of  30%  (Bhattacharya).    On  the  other  hand,  if  architectural  design  and  building  integration  are  the  most  important  considerations,  amorphous  technology  is  a  good,  but  less  efficient  choice.    If  price  and  output  are  important,  polycrystalline  silicon  technology  is  a  quality  intermediate  option  in  both  efficiency  and  price.    All  of  these  technologies  have  certain  considerations  to  take  into  account  when  choosing  a  particular  module.    Orientation,  direction,  inclination  angle,  inherent  physical  properties,  deficiencies  in  silicon  properties,  location,  shading,  weather/climate  and  azimuth  must  all  be  taken  into  account  when  deciding  on  a  particular  module  because  all  of  these  factors  affect  efficiency  in  varying  ways  (Project).  

  The  external  factor  that  has  one  of  the  most  extreme  impacts  on  efficiency  is  temperature  fluctuation.    There  is  an  inverse  relationship  between  module  efficiency  and  temperature  because  of  the  resulting  changes  in  voltage  of  the  system  over  time.    Solar  modules  are  most  likely  to  run  at  the  highest  voltage  when  at  low  temperatures  and  lowest  voltage  when  at  high  temperatures.    The  temperature  to  efficiency  relationship  can  be  observed  in  the  following  graph.    The  two  plots  include  polycrystalline  technology  (upper  plot)  and  amorphous  technology  (lower  plot).    The  polycrystalline  array  had  observed  efficiencies  of  approximately  9.9%  at  25°C  and  6.9%  at  45°C  (Meike).      Amorphous  technology  shows  a  very  small  decrease  in  efficiency  when  temperature  is  increased.    Monocrystalline  technology,  while  not  displayed  on  the  graph,  also  shows  decreases  in  efficiency  with  increased  temperature.    The  decreases  in  efficiency  found  with  monocrystalline  silicon  are  not  as  extreme  as  the  decreases  with  polycrystalline  technology  (Meike).    Temperature  is  an  especially  important  consideration  when  assessing  the  feasibility  of  a  solar  project  in  Thailand  because  of  the  extremely  hot  conditions  for  a  large  portion  of  the  year.    The  graph  also  displays  that  amorphous  silicon  technology  is  less  affected  by  temperature,  meaning  there  could  be  future  potential  for  the  further  development  of  amorphous  technology  in  hot  climates.    

 

Page 15: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

15    

 

Figure  1-­‐6.  Efficiency  Versus  Temperature  in  Polycrystalline  and  Amorphous  Silicon  Arrays  

  The  losses  due  to  photon  energy  are  substantial  due  to  the  fact  that  the  band  gap  energy  of  silicon  is  1.1eV  (Bhattacharya).    A  large  portion  of  the  photons  that  enter  the  solar  cell  have  a  wavelength  that  is  too  long  and  therefore  do  not  contribute  to  the  overall  electricity  generation.  Additionally,  photons  with  too  high  of  an  energy  will  lose  any  extra  energy  as  heat  upon  entering  the  cell,  contributing  to  additional  efficiency  losses.    Nearly  40%  of  incident  photon  energy  cannot  contribute  to  the  electricity  generation  of  the  cell  simply  because  of  the  wavelength  (Bhattacharya).  Material  characteristics  of  silicon  contribute  to  more  efficiency  losses  of  the  system  (Bhattacharya).  

  Silicon  is  an  extremely  brittle  material  when  cast  and  sawed  into  ingots  (Bhattacharya).    In  the  wafer  sawing  process,  10cm  diameter  ingots  must  be  cut  to  0.30-­‐0.35mm  in  thickness  (Bhattacharya).    This  thickness  is  required  for  the  additional  handling  and  mounting  that  must  be  done.    Because  of  the  additional  amount  of  silicon  in  each  wafer,  the  ideal  amount  of  solar  radiation  cannot  be  absorbed  into  the  ingot,  resulting  in  lower  conversion  efficiency.    Other  silicon  inefficiencies  come  from  the  crystalline  structure  of  polycrystalline  solar  technology.  Because  of  the  way  the  crystals  are  grown  and  formed,  crystalline  barriers  form  within  the  ingot.  These  barriers  inhibit  electron  flow,  resulting  in  a  lower  efficiency.        

Technical  Assessment  Methodology     The  technical  assessment  for  the  shared  profit  building-­‐integrated  photovoltaic  electrification  enterprise  determines  the  technical  feasibility  and  output  of  a  single  building  system.    This  assessment  derives  its  findings  from  two  sources.    The  first  source  is  a  preliminary  system  output  model  constructed  using  solar  radiation  equations  and  literature  irradiance  data  for  Bangkok,  Thailand.    The  second  source  

Page 16: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

16    

is  a  comprehensive  system  output  simulation  performed  by  the  program  PVSYST  Version  4.37.    The  preliminary  system  output  model  estimates  the  productivity  of  the  photovoltaic  system  under  a  broad  range  of  possible  scenarios.    The  model  is  used  to  determine  the  theoretical  system  output  limit  and  to  conduct  sensitivity  tests  on  a  variety  of  input  parameters.    The  preliminary  system  output  model  is  connected  to  environmental  and  economic  assessment  models,  both  of  which  are  discussed  in  subsequent  sections  of  this  report,  to  create  a  unified  enterprise  evaluation  framework.    The  results  of  this  unified  assessment  model  are  complimented  by  findings  from  the  comprehensive  system  output  simulation,  which  provides  more  precise  productivity  information  given  expected  input  parameter  values.    These  input  parameter  values  are  constrained  by  both  technical  limitations  and  financial  feasibility  concerns.    The  preliminary  system  output  model  and  the  comprehensive  system  output  simulation  of  the  proposed  building-­‐integrated  photovoltaic  electrification  enterprise  are  discussed  below  (Mermoud,  Roecker  and  Bonvin).    

Preliminary  System  Output  Model       The  preliminary  system  output  model  first  uses  literature  irradiance  data  and  solar  radiation  equations  to  determine  the  hourly  solar  irradiance  incident  on  an  arbitrarily  tilted  plane  with  any  given  orientation.    The  model  next  computes  the  annual  photovoltaic  system  output  based  on  the  previously  calculated  incident  irradiance  and  variables  including  roof  size  and  type,  solar  module  dimensions,  and  combined  system  efficiency.              

Incident  Solar  Radiation  Calculation     The  incident  solar  radiation  calculation  uses  variables  including  location,  time,  date,  irradiance,  plane  tilt  angle,  and  plane  orientation  to  calculate  the  total  hourly  solar  irradiance  incident  on  a  tilted  plane.    The  equations  used  in  the  incident  solar  radiation  calculation  are  taken  from  the  work  of  John  A.  Duffie  and  William  A.  Beckman  (Duffie  and  Beckman).    The  literature  irradiance  data  used  in  the  incident  solar  radiation  calculation  are  imported  from  the  PVSYST  program  database  (Mermoud,  Roecker  and  Bonvin).    The  monthly  data  for  global  irradiation  are  taken  from  the  Meteonorm  Version  4/5  software  database,  which  aggregates  reliable  meteorological  site  data  from  monitoring  stations  around  the  world  (Meteotest).    The  sites  for  which  meteorological  data  are  unavailable  employ  interpolations  between  two  or  three  proximate  sites,  with  subsequent  corrections  for  altitude  and  other  regional  factors.    Synthetic  hourly  irradiance  values  are  imported  from  various  sources  or  generated  from  the  monthly  irradiation  data  by  means  of  an  algorithm  that  produces  hourly  distributions  with  close  statistical  properties  to  real  meteorological  data  (Aguiar,  Collares-­‐Pereira  and  Conde,  Simple  Procedure  for  Generating  Sequences  of  Daily  Radiation  Values  Using  a  Library  of  Markov  Transition  Matrices)  (Aguiar  and  Collares-­‐Pereira,  TAG:  a  Time-­‐dependent,  Autoregressive,  Gaussian  Model  for  Generating  Synthetic  Hourly  Radiation).    The  monthly  and  yearly  PVSYST  global  irradiation  values  on  a  horizontal  plane  and  a  30  degree  tilted  plane  oriented  due  south  are  displayed  in  Figure  1-­‐7  (Mermoud,  Roecker  and  Bonvin).    The  direct  (beam)  and  indirect  (diffuse)  irradiance  values  used  in  the  preliminary  system  output  model  are  also  provided  by  PVSYST  (Mermoud,  Roecker  and  Bonvin).      

Page 17: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

17    

 

Figure  1-­‐7.  PVSYST  Monthly  and  Yearly  Irradiation  Values  for  Bangkok,  Thailand  (Mermoud,  Roecker  and  Bonvin)  

  The  location  of  the  sun  relative  to  Bangkok,  Thailand,  the  geographical  location  of  interest,  depends  on  both  the  day  of  the  year  and  the  time  of  day.    This  dependence  on  date  and  time  is  reflected  in  the  calculation  of  the  declination  angle  (δ)  and  the  hour  angle  (ω),  respectively.    The  declination  angle  is  calculated  by  first  converting  the  calendar  date  into  the  Julian  date  (n).    The  Julian  date  is  found  by  adding  the  day  value  of  the  date  of  interest  to  the  sum  of  the  number  of  days  in  the  months  preceding  this  date.      The  declination  angle  can  then  be  calculated  from  the  following  equation  (Duffie  and  Beckman).  

 

The  declination  angle  describes  the  orientation  of  Earth  relative  to  the  sun  as  this  relative  location  changes  throughout  the  year.    Similarly,  the  hour  angle  describes  the  orientation  of  the  site  of  interest  relative  to  the  sun  as  this  relative  location  changes  throughout  the  day.    The  calculation  of  the  hour  angle  is  performed  using  the  solar  time.    PVSYST  and  other  meteorological  data  providers  list  their  irradiance  values  using  standard  time  measurements.    A  solar  time  correction  is  made  in  the  preliminary  system  output  model  based  on  the  longitude  of  the  location  of  interest  (Lloc)  relative  to  the  standard  meridian  for  the  local  time  zone  (Lst)  as  well  as  the  Julian  date.    The  hour  angle  is  calculated  as  follows  (Chirarattananon)  (Duffie  and  Beckman).  

 

 

 

Page 18: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

18    

 

Once  the  location  of  the  sun  relative  to  the  site  of  interest  is  expressed  by  the  declination  angle  and  the  hour  angle,  the  relative  orientation  and  angle  of  inclination  of  the  tilted  plane  at  this  site  must  be  specified.    The  plane  azimuth  angle  (γp)  specifies  the  orientation  of  the  plane  in  degrees  west  and  takes  on  values  between  -­‐180  and  180,  with  a  value  of  zero  indicating  a  plane  orientation  of  due  south.    The  angle  of  inclination  (β)  describes  the  inclination  of  the  plane  from  the  horizontal  and  takes  on  values  between  0  and  90  degrees.    From  the  previously-­‐calculated  information  and  given  the  latitude  (φ)  of  the  site  of  interest,  the  total  plane  irradiance  (Itθ)  can  be  calculated  given  the  beam  irradiance  (Ib),  diffuse  irradiance  (Id),  and  albedo  (ρ)  values.    This  total  plane  irradiance  calculation  is  shown  below,  where  θ  describes  the  angle  between  the  direct  solar  projection  and  the  normal  vector  to  the  plane,  θz  (the  zenith  angle)  describes  the  angle  between  the  direct  solar  projection  and  the  vertical,  and  their  ratio  (the  Rb  factor)  is  therefore  equal  to  the  ratio  of  the  flux  of  direct  solar  radiation  on  the  tilted  plane  to  the  flux  of  direct  solar  radiation  on  a  horizontal  plane.    These  variables  are  diagramed  in  Figure  1-­‐8  (Chirarattananon)  (Duffie  and  Beckman).    

 

 

 

 

Page 19: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

19    

 

Figure  1-­‐8.  Diagram  of  Variables  for  the  Calculation  of  Total  Plane  Irradiance  (Duffie  and  Beckman)  

Total  System  Output  Calculation     The  total  system  output  calculation  uses  the  results  of  the  afore-­‐mentioned  incident  solar  radiation  calculation  and  variables  such  as  photovoltaic  module  size,  roof  type,  roof  side  length,  and  total  system  efficiency  to  determine  the  annual  output  of  the  building-­‐integrated  photovoltaic  system.    The  photovoltaic  modules  integrated  into  the  building  structure  are  rectangular  in  shape  and  adopt  discrete  side  length  values  α  and  μ  which  depending  on  the  watt  peak  and  manufacturer  of  the  module.    It  is  often  unfeasible  to  cover  the  entire  surface  of  a  roof  with  photovoltaic  modules  because  the  possible  photovoltaic  module  side  length  values  are  not  continuous.      A  computation  is  first  performed  within  the  total  system  output  calculation  to  determine  the  area  that  can  be  covered  by  rectangular  photovoltaic  modules  of  given  dimensions  for  a  pitched  roof  or  a  hip  roof  of  an  arbitrary  size.    These  calculations  are  discussed  subsequently.  

  The  first  roof  type  modeled  in  the  total  system  output  calculation  is  the  pitched  roof,  a  roof  with  a  square  base  of  length  L  and  two  rectangular  roof  panels  of  height  H.    The  calculation  of  the  total  area  covered  by  photovoltaic  modules  for  a  pitched  roof  is  shown  below.    The  variables  used  in  this  calculation  are  diagramed  in  Figure  1-­‐  9.        

 

Page 20: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

20    

 

 

 

 

Figure  1-­‐9.  Pitched  Roof  Design  

The  second  roof  type  modeled  in  the  total  system  output  calculation  is  the  hip  roof,  a  roof  with  a  square  base  of  length  L  and  four  triangular  panels  of  height  H.    The  calculation  of  the  total  area  covered  by  photovoltaic  modules  for  a  hip  roof  is  shown  below.    The  variables  used  in  this  calculation  are  diagramed  in  Figure  1-­‐10.  

 

 

 

Page 21: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

21    

 

Figure  1-­‐10  .  Hip  Roof  Design  

  Once  the  total  roof  area  covered  by  photovoltaic  modules  is  estimated,  the  annual  electrical  output  of  the  photovoltaic  system  is  determined  given  the  total  hourly  solar  irradiance  values  calculated  previously  and  the  total  system  efficiency  (η).    The  calculation  of  the  total  annual  photovoltaic  system  output  is  shown  below,  where  the  output  of  two  sides  is  aggregated  for  the  pitched  roof  structure  and  the  output  of  four  sides  is  aggregated  for  the  hip  roof  structure.    

 

Due  to  technical  and  economic  constraints  inherent  in  the  building-­‐integrated  photovoltaic  installation  project,  it  may  not  be  feasible  to  install  photovoltaic  panels  on  all  four  sides  of  the  building  roof.    In  this  case,  the  southernmost  panel  (which  receives  a  greater  amount  of  incident  solar  irradiation  relative  to  the  other  three  sides)  would  be  given  priority  for  the  photovoltaic  installation,  followed  by  the  easternmost,  westernmost,  and  finally  northernmost  panel.      

  The  total  annual  system  output  figure  whose  calculation  is  detailed  above  establishes  the  theoretical  production  limit  for  the  building-­‐integrated  photovoltaic  system  under  different  input  parameter  conditions.    The  theoretical  production  limit  and  other  output  variables  calculated  by  the  preliminary  system  output  model  are  manipulated  within  the  environmental  and  economic  assessments  to  determine  the  environmental  impact  and  economic  feasibility  of  the  proposed  shared  profit  building-­‐integrated  photovoltaic  installation  enterprise.    The  values  of  technical  input  parameters  including  building  orientation,  albedo,  roof  type,  roof  side  length,  angle  of  inclination,  photovoltaic  module  dimensions,  and  total  system  efficiency  are  varied  systematically  to  determine  the  sensitivity  of  the  technical,  environmental,  and  economic  assessment  results  to  changes  in  input  variable  values.    Sensitivity  tests  are  run  for  both  the  one-­‐panel  and  the  four-­‐panel  building-­‐integrated  photovoltaic  

Page 22: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

22    

system,  with  the  results  displayed  together  for  easy  interpretation.    A  single  parameter  is  varied  during  each  sensitivity  test,  with  all  other  input  parameters  set  to  default  values  taken  from  literature  data,  PVSYST  recommendations,  and  internal  assumptions.    The  sources  and  values  for  all  default  input  parameter  settings  are  outlined  subsequently.  

  The  default  building  orientation  is  set  such  that  the  southernmost  roof  panel  has  a  solar  azimuth  angle  of  zero  degrees,  thereby  allowing  maximum  total  output  for  the  single  panel  building-­‐integrated  photovoltaic  system.    The  albedo  is  set  to  the  PVSYST  recommended  value  of  0.2  (Mermoud,  Roecker  and  Bonvin).    The  roof  is  assumed  to  be  constructed  in  the  typical  Thai  hip  roof  style,  with  square  side  lengths  of  20  meters  and  an  angle  of  inclination  of  30  degrees.    The  photovoltaic  module  dimensions  are  taken  to  be  the  average  monocrystalline  silicon  photovoltaic  module  length  of  1.6  meters  and  width  of  0.79  meters  (Advantages  and  Disadvantages  of  Monocrystalline  Solor  Panels).    The  total  system  efficiency  value  is  taken  from  productivity  data  on  the  largest  photovoltaic  power  plant  in  Thailand,  which  was  installed  in  2004  by  the  Electricity  Generating  Authority  of  Thailand  (EGAT)  in  Pha  Bong,  Mae  Hong  Son.    This  photovoltaic  farm  is  a  showcase  project  containing  1,680  panels  with  a  total  electricity  production  cost  of  13.35  baht  per  kilowatt-­‐hour  compared  to  two  to  3.8  baht  per  kilowatt-­‐hour  paid  by  consumers  for  the  conventional  Thai  electricity  mix.    The  total  system  efficiency  for  the  Pha  Bong  photovoltaic  power  plant  is  maintained  at  a  fairly  consistent  figure  of  ten  percent  which  is  illustrated  in  Figure  1-­‐  11  below    (Promoting  Renewable  Energy  in  Mae  Hong  Son  Province).    This  figure  of  ten  percent  is  adopted  in  the  preliminary  model  of  system  output  (Promoting  Renewable  Energy  in  Mae  Hong  Son  Province).  

 

Page 23: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

23    

Figure  1-­‐  11.  Pha  Bong  Photovoltaic  Plant  Efficiency  and  Output  (2004)    (Promoting  Renewable  Energy  in  Mae  Hong  Son  Province)  

Comprehensive  System  Output  Simulation     The  comprehensive  system  output  simulation  determines  how  closely  the  photovoltaic  system  output  approaches  the  theoretical  value  established  in  the  preliminary  system  output  model  given  certain  inherent  technical  and  financial  limitations.    This  simulation  employs  many  more  input  parameters  and  has  a  more  diverse  selection  of  output  variables  than  does  the  preliminary  model  of  system  output.      Consequently,  the  comprehensive  system  output  simulation  has  the  potential  to  be  both  more  accurate  and  more  precise  than  the  preliminary  system  output  model.    This  simulation  is  performed  by  the  PVSYST  4.37  software.    Although  the  PVSYST  manufacturers  do  not  guarantee  the  simulation  results,  the  program  has  been  subjected  to  rigorous  tests  which  suggest  that  its  output  data  are  reliable.    The  PVSYST  tests  compare  the  simulation  results  generated  by  the  program  to  measurements  taken  at  seven  grid-­‐connected  systems  in  Switzerland.    The  PVSYST  simulation  results  were  robust  for  a  wide  range  of  grid-­‐connected  photovoltaic  systems  (with  the  exception  of  amorphous  silicon  collectors),  with  an  accuracy  of  global  simulation  results  on  the  order  of  two  to  three  percent.    Although  these  results  are  encouraging,  there  are  considerable  meteorological  differences  between  typical  sites  in  Switzerland  and  the  site  of  interest  for  this  study  (Bangkok,  Thailand),  especially  in  terms  of  average  daily  temperature  and  humidity.    Further  tests  must  be  conducted  to  determine  the  potential  impact  of  this  discrepancy  on  the  accuracy  of  PVSYST  simulation  data  for  this  project.    A  summary  of  the  results  of  the  comparison  between  PVSYST  simulated  data  and  the  measured  values  at  seven  sites  in  Switzerland  is  provided  in  Figure  1-­‐  12  (Mermoud,  Roecker  and  Bonvin).    Supplemental  graphs  are  provided  in  Appendix  1  (Mermoud,  Roecker  and  Bonvin).  

Page 24: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

24    

 

Figure  1-­‐  12.  PVSYST  Simulation  Validation  Results  for  Seven  Sites  in  Switzerland    (Mermoud,  Roecker  and  Bonvin)  

  The  first  phase  of  the  comprehensive  system  output  simulation  performed  by  PVSYST  entails  the  creation  of  a  project  design  from  which  multiple  simulations  called  variants  can  be  subsequently  performed.    The  project  is  defined  by  the  system  type,  location,  and  albedo.    The  project  proposed  in  this  report  is  a  grid-­‐connected  system  in  Bangkok,  Thailand.    The  system  location  is  linked  within  the  comprehensive  system  output  simulation  to  PVSYST  meteorological  data,  which  is  used  to  determine  the  total  solar  irradiation  that  reaches  the  photovoltaic  panels.    The  methodology  behind  the  PVSYST  meteorological  data  generation  is  discussed  in  a  previous  section  of  this  report.    The  albedo  values  suggested  by  PVSYST  range  from  0.14  to  0.22  for  urban  settings  and  0.15  to  0.25  for  grass,  a  combination  of  which  is  appropriate  for  the  suburban  nature  of  the  project  site.    The  simulations  generated  in  this  report  employ  the  proposed  PVSYST  default  albedo  value  of  0.2  (Mermoud,  Roecker  and  Bonvin).      

The  second  phase  of  the  comprehensive  system  output  simulation  involves  the  creation  of  four  system  variants  within  the  PVSYST  project,  one  for  each  of  the  four  panels  of  the  hip  roof  structure.    The  input  parameters  for  all  four  system  variants  are  equivalent  with  the  exception  of  the  azimuth  angle,  which  takes  on  a  value  of  0  degrees  for  a  plane  facing  due  south.    A  solar  azimuth  angle  of  0  degrees  results  in  a  maximum  annual  electricity  output  for  northern  latitude  locations  including  the  site  of  interest  for  this  study  (Bangkok,  Thailand).    The  tilt  angle  of  the  photovoltaic  panels  is  restricted  to  the  tilt  angle  of  the  hip  roof  structure  because  the  photovoltaic  system  is  building-­‐integrated.    A  typical  tilt  

Page 25: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

25    

angle  of  30  degrees  is  employed  throughout  the  comprehensive  system  output  simulation,  resulting  in  a  2.9%  with  respect  to  optimization  for  the  southern  panel,  as  shown  in  Figure  1-­‐13  (Mermoud,  Roecker  and  Bonvin).  

 

 

Figure  1-­‐  13.  Annual  Output  Optimization  for  a  Plane  Facing  Due  South    (Mermoud,  Roecker  and  Bonvin)  

The  losses  with  respect  to  optimization  for  the  eastern,  western,  and  northern  panels  are  due  to  both  the  tilt  angle  and  the  angle  of  orientation,  whereas  the  losses  for  the  southern  panel  are  due  exclusively  to  the  tilt  angle.    The  optimization  losses  for  the  western  panel  (with  a  solar  azimuth  angle  of  90  degrees)  total  10.0%  and  are  displayed  in  Figure  1-­‐  14  below  (Mermoud,  Roecker  and  Bonvin).      

 

Figure  1-­‐  14.  Annual  Output  Optimization  for  a  Plane  Facing  Due  West    (Mermoud,  Roecker  and  Bonvin)  

The  optimization  losses  for  the  northern  plane  (with  a  solar  azimuth  angle  of  180  degrees)  total  to  20.5%  and  are  illustrated  in  Figure  1-­‐  15  below  (Mermoud,  Roecker  and  Bonvin).      

Page 26: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

26    

 

Figure  1-­‐  15.  Annual  Output  Optimization  for  a  Plane  Facing  Due  North    (Mermoud,  Roecker  and  Bonvin)  

The  optimization  losses  for  the  eastern  plane  (with  a  solar  azimuth  angle  of  -­‐90  degrees)  total  to  10.0%  and  are  displayed  in  Figure  1-­‐  16  below  (Mermoud,  Roecker  and  Bonvin).      

 

 

Figure  1-­‐  16.  Annual  Output  Optimization  for  a  Plane  Facing  Due  East    (Mermoud,  Roecker  and  Bonvin)  

  Once  the  orientation  and  tilt  angle  of  the  photovoltaic  panels  are  defined,  the  types  of  shading  incident  on  the  tilted  panels  must  be  determined.    There  are  two  types  of  shadings  simulated  by  PVSYST,  near  shadings  and  far  shadings,  both  of  which  are  assumed  to  be  negligible  for  the  comprehensive  system  output  simulation.    Near  shadings  are  created  by  small  objects  (such  as  chimneys  or  trees)  in  close  proximity  to  the  photovoltaic  system  that  cast  a  partial  shadow  on  the  solar  panels  which  changes  depending  on  the  time  of  day  and  the  day  of  the  year.    Far  shadings,  also  called  horizon  points,  are  created  by  large  objects  (such  as  mountains)  that  are  located  at  a  distance  of  over  twenty  times  the  size  of  the  photovoltaic  array.    The  default  PVSYST  settings  are  employed  in  the  comprehensive  system  output  simulation,  with  no  near  shadings  and  a  free  horizon  with  one  hundred  percent  of  the  albedo  taken  into  account  in  the  irradiance  calculations.    The  horizon  line  drawing  referenced  in  the  PVSYST  variants  for  a  plane  facing  due  south  is  provided  in  Figure  1-­‐  17  below  (Mermoud,  Roecker  and  Bonvin).      

Page 27: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

27    

 

Figure  1-­‐  17.  Free  Horizon  Line  Drawing  for  a  Plane  Facing  Due  South    (Mermoud,  Roecker  and  Bonvin)  

The  area  behind  the  plane,  for  which  shading  values  are  not  used,  is  outlined  in  blue  in  each  of  the  horizon  line  drawings.    The  location  of  this  area  changes  depending  on  the  azimuth  angle.    The  horizon  line  drawing  for  a  plane  facing  due  west  is  shown  in  Figure  1-­‐  18  below  (Mermoud,  Roecker  and  Bonvin).  

 

Figure  1-­‐  18.  Free  Horizon  Line  Drawing  for  a  Plane  Facing  Due  West    (Mermoud,  Roecker  and  Bonvin)  

Page 28: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

28    

The  horizon  line  drawing  for  a  plane  facing  due  north  is  illustrated  in  Figure  1-­‐  19  below  (Mermoud,  Roecker  and  Bonvin).  

 

Figure  1-­‐  19.  Free  Horizon  Line  Drawing  for  a  Plane  Facing  Due  North    (Mermoud,  Roecker  and  Bonvin)  

The  horizon  line  drawing  for  a  plane  facing  due  east  is  provided  below  (Mermoud,  Roecker  and  Bonvin).      

 

Figure  1-­‐  20.  Free  Horizon  Line  Drawing  for  a  Plane  Facing  Due  East    (Mermoud,  Roecker  and  Bonvin)  

  At  this  point  in  the  comprehensive  system  output  simulation,  all  environmental  and  structural  input  data  are  determined,  including  meteorological  statistics,  photovoltaic  array  orientation  and  tilt  

Page 29: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

29    

angle,  and  both  near  and  far  shading  patterns.    Before  the  PVSYST  simulation  variants  are  completed,  the  specific  modules  and  inverter  that  installed  in  the  building-­‐integrated  photovoltaic  system  must  be  selected.    The  photovoltaic  module  type  and  brand  are  selected  so  that  its  annual  output  approaches  as  closely  as  possible  the  theoretical  limit  established  by  the  preliminary  system  output  model  without  becoming  prohibitively  expensive  for  potential  investors.    The  module  chosen  for  the  comprehensive  system  output  simulation  is  a  monocrystalline  silicone  module  with  a  170  Watt  peak  operating  at  30  volts  and  manufactured  by  Suntech.    The  inverter  chosen  for  the  simulation  is  a  13  kilowatt  250  to  800  volt  inverter  operating  at  50  Hz  and  manufactured  by  Danfoss.    The  Danfoss  inverter  is  used  to  simulate  the  output  of  each  of  the  four  sides  of  the  hip  roof  structure  but  cannot  handle  the  entire  system  load  for  all  four  sides  combined.    The  issue  of  inverter  sizing  is  discussed  in  greater  detail  in  the  economic  assessment  section.    The  results  of  the  comprehensive  system  output  simulation  are  discussed  in  a  later  section  of  this  report  (Mermoud,  Roecker  and  Bonvin).  

 

 

 

 

 

Results  of  Technical  Assessment  

Preliminary  System  Output  Model    

 

Figure  1-­‐  21.  Total  System  Output  at  Different  Albedo  Input  Values  

Page 30: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

30    

  The  total  system  output  over  a  range  of  albedo  values  shows  a  slight  correlation  of  increased  output  as  a  result  of  an  increased  albedo.    This  direct  correlation  is  consistent  with  expected  output  values  because  any  increase  in  reflection  off  of  the  surface  of  the  earth  will  result  in  an  increased  absorption  of  solar  radiation  on  to  the  surface  of  the  photovoltaic  array.  The  output  calculated  by  PVSYST  at  an  albedo  value  of  0.14  for  the  southern  facing  side  was  25525.4kWh/year  and  at  an  albedo  value  of  0.26,  the  output  was  25734.7kWh/year.  

 

Figure  1-­‐  22.  Total  System  Output  at  Differing  Module  Side  Length  Values  

  As  the  side  length  of  each  module  increases,  the  total  system  output  declines  because  of  limited  surface  area  and  module  orientation  on  the  roof.    At  a  module  side  length  of  0.5m,  431  modules  are  able  to  fit  on  one  side  of  the  roof,  resulting  in  a  total  system  output  of  28099.7kWh/year.    When  the  module  side  length  is  increased  to  2.5m,  the  number  of  modules  decreases  to  325  with  a  resulting  total  output  of  21188.9  kWh/year.    

  The  relationship  of  module  side  length  to  total  system  output  is  non-­‐linear  because  of  the  roof  style.  The  traditional  Thai  hip  roof  style  creates  surface  area  limitations  as  module  side  length  increases.    Because  each  side  of  a  hip  roof  if  triangular,  as  the  module  side  length  increases,  the  number  of  solar  modules  able  to  fit  on  each  side  decreases  at  an  increasing  rate.  The  active  surface  area  becomes  smaller  because  there  is  more  of  a  square  module  offset  at  the  edges  of  the  triangular  roof.  

Page 31: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

31    

 

Figure  1-­‐  23.  Total  System  Output  with  Variable  Roof  Side  Length  

  As  the  side  of  a  square  roof  increases,  the  total  system  output  also  increases,  but  in  a  non-­‐linear  relationship.    It  was  assumed  that  the  tilt  of  the  roof  remained  at  a  constant  30  degrees.    At  smaller  roof  side  lengths,  significantly  fewer  modules  are  able  to  fit  on  the  roof  because  of  the  triangular  roof  shape.  Then,  as  the  side  length  increases,  the  number  of  modules  able  to  fit  on  the  roof  increases  at  an  increasing  rate  because  each  solar  module  is  a  smaller  percentage  of  the  total  roof  area.  

 

Figure  1-­‐  24.  Total  System  Output  at  a  Changing  Angle  of  Inclination  (4  roof  sides)  

  As  the  angle  of  inclination  (angle  of  roof)  increases,  total  system  output  also  increases  for  most  of  the  ranges  of  increasing  inclination  angle.    Different  factors  are  acting  simultaneously  when  total  system  output  is  calculated.    The  number  of  modules  is  at  a  continuous  rate  of  increase  over  all  ranges  of  increasing  inclination  angle.    The  output  per  unit  area  is  at  a  constant  decrease  as  the  angle  of  

Page 32: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

32    

inclination  increases.    The  total  system  output  increases  from  the  range  of  inclination  angles  from  10-­‐20  degrees  and  from  25-­‐35  degrees.    There  is  a  slight  decrease  in  total  system  output  from  roof  angles  of  20-­‐25  degrees.    

  The  number  of  modules  as  part  of  the  roof  constantly  increases  as  a  result  of  angle  of  inclination  increases.    Even  though  the  house  dimensions  remain  constant,  the  roof  area  increases.    The  output  per  unit  of  area  constantly  decreases  as  inclination  angle  increases  because  of  the  different  orientations  of  the  sides  of  the  roof  and  the  angle  at  which  the  sides  are  built.  The  ideal  roof  angle  for  optimal  output  per  unit  area  in  Bangkok  is  between  12  and  16  degrees  (Mermoud,  Roecker  and  Bonvin).    As  the  inclination  angle  increases  above  that  range,  the  modules  are  no  longer  at  the  ideal  angle,  resulting  in  lower  output.    From  the  inclination  range  of  10-­‐20  degrees,  the  increased  total  output  is  a  result  of  the  increased  roof  area,  and  therefore  increased  number  of  modules  able  to  fit  on  the  roof.    From  the  20-­‐25  degree  change  in  angle  of  inclination,  the  increased  output  from  additional  modules  is  overcome  by  the  decreases  in  output  per  unit  area  of  each  module  as  a  result  of  increasing  angle  of  inclination.  The  range  of  inclination  angles  from  25-­‐35  degrees  shows  another  increase  in  total  output  because  the  number  of  modules  is  increasing  at  an  increasing  rate,  resulting  in  larger  numbers  of  panels  on  the  roof  from  the  same  proportional  increase  in  inclination  angle.    

 

Figure  1-­‐  25.  Total  System  Output  at  a  Changing  Angle  of  Inclination  (south  facing  side)  

  As  angle  of  inclination  increases  on  the  south  facing  side  of  the  hip  roof,  total  system  output  continuously  escalates  over  every  increasing  range  of  inclination  angle.    The  number  of  modules  increases  as  a  result  of  roof  surface  area  enlargement,  allowing  for  the  installation  more  modules.    The  output  per  unit  area  constantly  decreases  because  as  the  modules  are  at  a  higher  angle,  less  solar  radiation  is  absorbed  on  the  surface  of  the  panel.    Total  system  output  also  increases  over  the  entire  range  of  inclination  angles.    This  is  a  result  of  the  increased  efficiency  from  the  modules  being  installed  on  the  south  side  of  the  roof.    Even  though  the  decreses  in  efficiency  from  increased  inclination  angle  

Page 33: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

33    

are  significant,  they  are  not  substantial  enough  to  overcome  the  increased  output  from  the  larger  number  of  modules  installed  on  the  most  efficient  side  of  the  roof.    

 

Figure  1-­‐  26.  Total  System  Output  for  Optional  Roof  Orientations  

  The  total  system  output  for  a  pitched  style  roof  would  ultimately  give  the  largest  output  for  the  total  system.  The  additional  output  that  the  pitched  roof  has  over  the  hip  roof  comes  from  the  roof  shape.  On  a  pitched  roof,  there  are  only  two  rectangular  sides  to  install  solar  modules.  Because  the  shape  of  the  modules  is  also  rectangular,  modules  can  be  packed  more  efficiently  on  the  pitched  roof  than  on  the  triangular  sides  of  the  hip  roof.        

 

Figure  1-­‐  27.  Total  System  Output  at  Increasing  System  Efficiencies  

Page 34: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

34    

  The  total  system  output  increases  as  the  total  system  efficiency  increases.  There  is  a  direct  correlation  between  these  two  values  because  as  modules  use  the  radiation  absorbed  from  the  sun  more  efficiently,  a  larger  proportion  of  that  radiation  will  eventually  be  turned  into  electrical  energy  that  can  then  be  sold  to  the  grid.      

 

Figure  1-­‐  28.  System  Output  Resulting  from  Solar  Azimuth  Angle  

  Solar  azimuth  angle  has  a  small  impact  on  total  system  output  for  the  southern  oriented  panels.    As  the  azimuth  changes  from  -­‐100  degrees  to  0  degrees,  the  resulting  output  from  the  solar  array  increases.    Then,  as  the  azimuth  angle  changes  from  0  degrees  to  100  degrees,  the  total  system  output  decreases.    This  change  in  output  is  caused  by  the  angle  of  the  sun  hitting  the  panels,  and  does  not  affect  the  four  panel  system  because  no  matter  where  the  sun  is,  the  system  as  a  whole  will  receive  the  same  amount  of  solar  radiation.      

 

Comprehensive  System  Output  Simulation     The  theoretical  output  limit  and  input  variable  sensitivity  analysis  provided  by  the  preliminary  system  output  model  are  supplemented  by  the  precise,  product-­‐specific  results  generated  in  the  comprehensive  system  output  simulation.    Four  PVSYST  simulations  are  performed  with  an  identical  set  of  input  parameters,  the  specifics  of  which  are  discussed  previously,  except  for  the  panel  orientation,  which  is  set  to  due  south,  due  west,  due  east,  and  due  north  depending  on  the  simulation  variant.    The  results  of  these  four  variants  provide  expected  output  figures  for  a  one-­‐  panel  (south  panel),  two-­‐panel  (south  and  east  panel),  three-­‐panel  (south,  east,  and  west  panel),  and  four-­‐panel  (south,  east,  west,  and  north  panel)  shared  profit  building-­‐integrated  photovoltaic  installation  enterprise,  as  outlined  below.    The  figures  provided  throughout  this  section  are  taken  from  predefined  tables  and  graphs  provided  by  PVSYST  Version  4.37  (Mermoud,  Roecker  and  Bonvin).  

One-­‐Panel  System  Simulation  

Page 35: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

35    

  The  comprehensive  system  output  simulation  indicates  that,  given  the  input  parameters  outlined  previously  in  this  report,  a  south  panel  system  with  a  solar  azimuth  angle  of  zero  degrees  will  have  an  annual  output  of  16,228  kilowatt-­‐hours  with  an  average  annual  system  efficiency  of  9.44  percent.    The  main  monthly  and  annual  results  of  the  comprehensive  system  output  simulation  for  a  photovoltaic  array  with  a  due  south  orientation  are  summarized  in  Figure  1-­‐  29  (Mermoud,  Roecker  and  Bonvin).    

   

Figure  1-­‐  29.  South  Panel  System  Final  Balances  and  Main  Results    (Mermoud,  Roecker  and  Bonvin)  

The  daily  output  energy  available  at  the  inverter  for  the  photovoltaic  system  with  a  due  south  orientation  is  displayed  graphically  in  Figure  1-­‐  30  (Mermoud,  Roecker  and  Bonvin).    The  considerable  variation  evident  in  the  figure  is  explained  by  daily  meteorological  variations  as  well  as  yearly  seasonal  

Page 36: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

36    

trends.

 

Figure  1-­‐  30.  Daily  South  Panel  System  Output  Energy    (Mermoud,  Roecker  and  Bonvin)  

The  annual  efficiency  losses  for  the  photovoltaic  system  oriented  due  south  are  summarized  in  Figure  1-­‐  31  below  (Mermoud,  Roecker  and  Bonvin).    The  greatest  cause  of  efficiency  loss  is  a  10.2  percent  photovoltaic  energy  conversion  efficiency  loss  due  to  temperature.    Efficiency  losses  due  to  temperature  are  a  high  concern  for  this  enterprise  due  to  the  low  latitude  and  high  ambient  air  temperatures  of  the  site  of  interest  (Bangkok,  Thailand)  and  the  unventilated  nature  of  the  building-­‐integrated  modules.  

Page 37: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

37    

 

Figure  1-­‐  31.  Annual  Loss  Diagram  for  South  Panel  System    (Mermoud,  Roecker  and  Bonvin)    

The  monthly  collection  loss,  total  system  loss,  and  produced  useful  energy  of  the  building-­‐integrated  photovoltaic  system  are  summarized  graphically  in  Figure  1-­‐  32  (Mermoud,  Roecker  and  Bonvin).  

 

Figure  1-­‐  32.  Normalized  South  Panel  System  Production  per  Kilowatt  Peak  Installed    (Mermoud,  Roecker  and  Bonvin)  

Page 38: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

38    

  Although  a  photovoltaic  module  orientation  of  due  south  (corresponding  to  a  solar  azimuth  angle  of  zero  degrees)  produces  the  highest  annual  electricity  yields,  this  orientation  is  not  always  feasible  for  a  building-­‐integrated  photovoltaic  system.    The  choice  of  building  orientation  within  the  luxury  community  is  dominated  by  aesthetic  concerns  and  requirements  to  construct  a  set  number  of  houses  within  a  limited  geographical  area.    As  a  result,  the  actual  orientation  of  the  building-­‐integrated  photovoltaic  modules  for  the  south  panel  installation  can  vary  between  buildings,  with  solar  azimuth  angle  values  ranging  from  -­‐90  to  90  degrees.    Given  that  the  due  east  and  due  west  plane  orientations  possess  solar  azimuth  angle  values  of  -­‐90  and  90  degrees,  respectively,  the  due  east  and  due  west  comprehensive  system  output  simulations  also  represent  lower  bounds  on  the  total  output  of  the  south  panel  system.      

Two-­‐Panel  System  Simulation  The  two-­‐panel  system  output  results  are  found  by  aggregating  the  south  panel  system  results  

summarized  above  with  the  east  panel  system  results  discussed  below.    The  photovoltaic  system  with  an  orientation  of  due  east  is  estimated  to  generate  an  annual  output  of  15,151  kilowatt  hours  and  operate  under  an  average  system  efficiency  of  9.46  percent.    The  main  monthly  and  annual  results  of  the  comprehensive  system  output  simulation  for  a  due  east  orientation  are  summarized  in  Figure  1-­‐  33  (Mermoud,  Roecker  and  Bonvin).      

 

Figure  1-­‐  33.  East  Panel  System  Final  Balances  and  Main  Results    (Mermoud,  Roecker  and  Bonvin)  

The  daily  output  energy  available  at  the  inverter  for  the  east  panel  photovoltaic  system  is  summarized  in  Figure  1-­‐  34  below    (Mermoud,  Roecker  and  Bonvin).  

Page 39: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

39    

 

Figure  1-­‐  34.  Daily  East  Panel  System  Output  Energy    (Mermoud,  Roecker  and  Bonvin)  

The  annual  efficiency  losses  for  the  photovoltaic  systems  oriented  due  east  are  summarized  in  Figure  1-­‐  35    (Mermoud,  Roecker  and  Bonvin).    As  with  the  south-­‐facing  photovoltaic  system,  the  greatest  cause  of  efficiency  loss  is  due  to  temperature,  with  loses  of  9.3  percent.  

 

Page 40: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

40    

Figure  1-­‐  35.  Annual  Loss  Diagram  for  East  Panel  System    (Mermoud,  Roecker  and  Bonvin)  

The  monthly  collection  loss,  system  loss,  and  produced  useful  electricity  of  the  east-­‐facing  system  are  summarized  graphically  in  Figure  1-­‐  36  below    (Mermoud,  Roecker  and  Bonvin).  

 

Figure  1-­‐  36.  Normalized  East  Panel  System  Production  per  Kilowatt  Peak  Installed    (Mermoud,  Roecker  and  Bonvin)  

Based  on  the  output  figures  provided  for  the  south  panel  and  east  panel  photovoltaic  systems,  the  annual  system  output  for  the  two-­‐panel  photovoltaic  system  is  predicted  to  be  31,379  kilowatt  hours  (Mermoud,  Roecker  and  Bonvin).  

Three-­‐Panel  System  Simulation  The  three-­‐panel  system  output  results  are  found  by  aggregating  the  two-­‐panel  output  provided  

above  and  the  west  panel  photovoltaic  system  output  calculated  below.    The  photovoltaic  system  oriented  due  west  is  estimated  to  generate  14,987  kilowatt  hours  annually  under  an  average  operating  system  efficiency  of  9.35  percent.    The  main  monthly  and  annual  results  provided  by  comprehensive  system  output  simulation  for  a  due  west  orientation  are  summarized  in  Figure  1-­‐  37    (Mermoud,  Roecker  and  Bonvin).  

Page 41: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

41    

 

Figure  1-­‐  37.  West  Panel  System  Final  Balances  and  Main  Results    (Mermoud,  Roecker  and  Bonvin)  

The  average  daily  electricity  available  at  the  inverter  for  the  west  panel  system  is  summarized  in  Figure  1-­‐  38    (Mermoud,  Roecker  and  Bonvin).    While  the  daily  system  output  energy  patterns  are  similar  for  the  east  panel  and  west  panel,  slight  daily  output  differences  account  for  a  yearly  east  panel  orientation  advantage  of  over  1,500  kilowatt  hours  relative  to  the  west  panel  orientation.      

 

Figure  1-­‐  38.  Daily  West  Panel  System  Output  Energy    (Mermoud,  Roecker  and  Bonvin)  

Page 42: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

42    

The  annual  efficiency  losses  for  the  west  panel  system  are  diagrammed  in  Figure  1-­‐  39    (Mermoud,  Roecker  and  Bonvin).    As  with  the  south  panel  and  east  panel  systems,  the  greatest  efficiency  loss  for  the  west  panel  system  is  due  to  temperature,  with  an  average  annual  loss  of  10.4  percent.  

 

Figure  1-­‐  39.  Annual  Loss  Diagram  for  West  Panel  System    (Mermoud,  Roecker  and  Bonvin)    

Produced  useful  electricity  for  the  west  panel  photovoltaic  system  is  displayed  graphically  in  Figure  1-­‐  40  along  with  the  collection  and  system  losses    (Mermoud,  Roecker  and  Bonvin).  

 

Page 43: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

43    

Figure  1-­‐  40.  Normalized  West  Panel  System  Production  per  Kilowatt  Peak  Installed    (Mermoud,  Roecker  and  Bonvin)  

Based  on  the  output  figures  provided  for  the  south  panel,  east  panel,  and  west  panel  photovoltaic  systems,  the  annual  system  output  for  the  three-­‐panel  photovoltaic  system  is  predicted  to  be  46,366  kilowatt  hours  (Mermoud,  Roecker  and  Bonvin).  

Four-­‐Panel  System  Simulation     The  output  for  the  four  panel  system  simulation  is  found  by  aggregating  the  results  of  the  three-­‐panel  system  simulation  discussed  previously  with  the  output  from  the  north  panel  system  outlined  below.      The  output  for  the  north  panel  is  summarized  in  Figure  1-­‐  41    (Mermoud,  Roecker  and  Bonvin).    The  total  annual  north  panel  system  output  is  estimated  to  be  13,205  kilowatt-­‐hours,  with  a  total  system  efficiency  averaging  9.25  percent.      

       

Figure  1-­‐  41.  North  Panel  System  Final  Balances  and  Main  Results    (Mermoud,  Roecker  and  Bonvin)  

The  daily  energy  available  at  the  inverter  for  the  north  panel  system  is  summarized  in  Figure  1-­‐  42    (Mermoud,  Roecker  and  Bonvin).    Due  to  the  inefficient  orientation  of  the  north  panel  system  relative  to  that  of  the  other  three  systems,  the  seasonal  variation  in  output  is  much  more  extreme  than  that  observed  for  the  south,  east,  and  west  panel  systems.      

Page 44: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

44    

 

Figure  1-­‐  42.  Daily  North  Panel  System  Output  Energy    (Mermoud,  Roecker  and  Bonvin)  

The  efficiency  loses  for  the  north  panel  photovoltaic  system  are  summarized  in  greater  detail  in  Figure  1-­‐  43    (Mermoud,  Roecker  and  Bonvin),  with  the  greatest  efficiency  loss  due  to  orientation  at  17.6  percent  followed  by  the  9.0  percent  efficiency  loss  due  to  temperature.  

 

Figure  1-­‐  43.  Annual  Loss  Diagram  for  North  Panel  System    (Mermoud,  Roecker  and  Bonvin)    

Page 45: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

45    

The  collection  loss,  system  loss,  and  total  useful  energy  produced  for  the  north  panel  photovoltaic  system  are  summarized  in  Figure  1-­‐  44  (Mermoud,  Roecker  and  Bonvin).  

 

Figure  1-­‐  44.  Normalized  North  Panel  System  Production  per  Kilowatt  Peak  Installed    (Mermoud,  Roecker  and  Bonvin)  

  The  total  annual  system  output  for  the  three-­‐panel  system  is  combined  with  the  north  panel  system  output  discussed  above  to  determine  the  total  four-­‐panel  annual  system  output  of  59,571  kilowatt-­‐hours.    The  annual  output  figures  for  the  one-­‐panel,  two-­‐panel,  and  three-­‐panel  systems  represent  maximum  values  that  would  result  from  ideal  building  orientation.    However,  the  results  of  the  preliminary  system  output  model  indicate  that  building  orientation  does  not  impact  the  annual  system  output  for  a  four-­‐panel  system.    The  results  of  the  one-­‐panel,  two-­‐panel,  three-­‐panel,  and  four-­‐panel  system  output  simulations  are  employed  within  the  economic  assessment  to  determine  the  number  of  photovoltaic  panels  installed  that  will  result  in  the  most  viable  shared  profit  enterprise  (Mermoud,  Roecker  and  Bonvin).          

         

Page 46: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

46    

 Environmental  Assessment  

Background  Information  Throughout  the  world,  private  enterprise,  governments,  and  individuals  are  realizing  the  

importance  of  using  a  variety  of  energy  sources,  mixing  fossil  fuels  with  the  use  of  renewables.  Global  issues  arising  from  fossil  fuel  consumption,  including  concerns  over  regional  energy  security  and  the  consequences  associated  with  global  warming,  are  a  few  of  the  major  reasons  why  governments  seek  to  install  renewable  technologies.      

 

Figure  2-­‐1.  Diagram  of  Thailand’s  Energy  Mix  in  2008  (EGAT).  

Thailand’s  energy  mix  largely  depends  on  natural  gas,  and  in  2008  accounted  for  approximately  103,770  million  kWh,  70.02%  of  the  resources  used  for  electricity  generation.    Imported  coal  and  lignite  accounted  for  8.23%  and  12.60%,  respectively,  while  solar  technology  made  up  less  than  1%  of  Thailand’s  energy  (EGAT).  

Solar  photovoltaic  technology  has  significant  promise  among  renewable  energy  sources  due  to  the  nearly  unlimited  natural  presence  of  sunlight.    LCA  studies  have  evaluated  the  environmental  impact  factors  of  photovoltaic  technologies  and  their  uses,  as  well  as  evaluating  energy  costs  and  benefits  throughout  the  life  of  a  photovoltaic  cell.    Early  studies  in  the  1970s  found  negative  energy  balances  in  purifying  silicon  ingot  and  condemned  photovoltaic  cells  for  consumption  of  toxic  materials,  as  well  as  exploiting  silicon,  aluminum,  and  heavy  metal  resources.  However,  solar  companies  are  constantly  changing  and  developing  new  processes  to  manufacture  solar  cells,  and  environmentalists  are  beginning  

Page 47: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

47    

to  find  solar  energy  a  potentially  viable  alternative  to  fossil  energies.    Today,  largely  optimistic  studies  describe  the  potential  benefits  of  integrating  solar  photovoltaics  into  electricity  generation  systems.    Studies  show  that  they  reduce  greenhouse  gas  emissions  and  displace  negative  impacts  of  fossil  fuel  use,  especially  in  countries  who  consume  disproportionate  amounts  of  fossil  energy  (Krauter  and  Ruther).    This  study  focuses  on  building-­‐integrated  monocrystalline  solar  photovoltaic  technology  (mc-­‐Si).    

Innovative  monocrystalline  photovoltaic  installations  by  the  building  sector  allow  photovoltaic  modules  to  serve  as  the  roof,  instead  of  placing  cells  on  the  existing  roof  structure.This  study  will  assess  a  building-­‐integrated  monocrystalline  photovoltaic  module  replacing  conventional  cement  tile  roofs  specifically  in  Thailand.  Building  integrated  photovoltaics  (BIPV)  can  be  designed  for  rooftops,  shading  devices,  building  facades,  and  window  glazings.    BIPV  is  increasing  in  popularity  across  the  world,  where  government  incentives  and  energy  subsidies  promote  photovoltaic  research  and  integration.  Using  a  balance  of  system  and  inverter,  BIPV  systems  can  sell  electricity  to  the  grid,  which  lessens  the  demand  for  traditional  fossil  energy  sources.  

It  has  not  been  as  widely  integrated  in  developing  nations,  although  there  is  more  to  gain  for  developing  countries  that  typically  have  dirtier  electricity  compositions.  The  effects  of  solar  electricity  generation  may  be  more  pronounced  due  to  Thailand’s  natural  gas  dominated  electricity  mix.  However,  as  part  of  the  King’s  plan  for  a  self-­‐sufficient  energy  economy,  incentives  are  in  place  to  encourage  very  small  power  producers  (VSPPs)  to  sell  renewable  energy  to  the  grid.    Biofuels  from  rice  straw  feedstocks  has  garnered  much  attention  domestically,  but  solar  photovoltaics  should  also  be  considered.  Due,  in  part  to  increased  government  awareness  and  incentives  for  renewable  energies,  there  has  been  increasing  interest  in  the  development  of  solar  technologies,  and  subsequently  the  creation  of  businesses  seeking  to  enter  the  energy  sector.    

  The  building-­‐integrated  module  connects  to  the  electricity  grid  as  a  Very  Small  Power  Producer  in  an  urban  setting,  in  this  case  Bangkok.    Evaluating  the  environmental  impacts  and  benefits  of  selling  electricity  to  the  grid  will  help  this  business  understand  ways  to  reduce  greenhouse  gas  emissions,  improve  air  quality,  and  consider  alternative  ways  to  design  buildings  that  are  more  environmentally  friendly.    Current  studies  are  largely  focused  on  more  temperate  climates,  so  further  academic  studies  that  more  specifically  concern  Thailand’s  unique  climate  may  be  required  for  better,  more  comprehensive  understanding  and  integration  of  photovoltaic  technology  into  the  Southeast  Asian  business  sector.  

Monocrystalline  photovoltaic  modules  have  an  expected  lifetime  between  30-­‐50  years,  depending  on  environmental  conditions  and  the  quality  of  the  manufacturer.    Many  studies  suggest  that  energy  payback  time  for  solar  modules  are  substantially  less  than  their  lifetime,  and  estimates  range  from  the  cutting  edge  technology  of  36  months  to  5years  (Varun,  Sherwani  and  Usmani).  Conventional  roofing  materials  in  Thailand  primarily  consist  of  concrete  (Kofoworola  and  Gheewala),  and  studies  have  also  shown  that  concrete  consumes  considerably  more  energy  than  other  standard  roofing  materials  (Reddy  and  Jagadish).    This  study  aims  to  look  specifically  at  how  mc-­‐Si  technology,  instead  of  a  

Page 48: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

48    

conventional  roofing  system,  could  reduce  carbon  dioxide  emissions  in  the  atmosphere  for  residential  housing  communities  in  urban  Bangkok.    

The  average  electricity  mix  in  Thailand  is  critical  to  the  study  as  a  determinant  in  the  displaced  amount  of  electricity.    Due  to  time  and  resource  constraints,  the  data  collected  will  be  a  compilation  of  related  published  journal  articles.    The  building-­‐integrated  system  is  not  prevalent  in  Thailand,  thus  European  models  serve  as  a  general  guideline  for  the  system  processes.  The  use  of  different  environmental  and  geographical  considerations,  including  latitude,  will  attempt  to  guide  the  business  assessment.      

  The  degradation  of  air  quality  and  contribution  to  global  warming  of  developing  countries,  such  as  Thailand,  requires  mitigation  and  efforts  to  control  development  in  an  environmentally  responsible  manner.    The  study  specifically  focuses  on  a  new  technology  that  could  provide  answers  on  how  to  make  Thailand’s  urban  environment  cleaner.    

 

Environmental  Assessment  Methodology  Goal  and  Scope  Definition  

The  main  objective  of  this  study  will  compare  the  environmental  impacts  of  monocrystalline  BIPV  with  conventional  roof  structure  using  the  standard  energy  sources  of  Bangkok,  Thailand.  The  intended  purpose  is  to  help  develop  an  environmental  basis  for  a  business  model  integrating  BIPV  into  luxury  housing  developments,  in  conjunction  with  the  King’s  plan  for  energy  efficiency  in  Thailand.  The  results  of  this  study  are  geographically  limited  to  Thailand.    

The  intended  audience  is  contractors  and  development  investors,  those  involved  in  the  design,  construction,  and  marketing  of  housing  developments.  By  illustrating  the  environmental  impacts  of  mc-­‐Si  BIPV,  it  may  be  useful  for  policy  makers  and  planners  to  aid  in  the  creation  of  building  codes  and  in  community  design  focusing  on  the  use  of  renewable  technologies.  

The  technological  limitations  of  this  study  include  the  process  of  creating  mc-­‐Si  solar  panels,  which  has  stayed  constant  for  the  past  thirty  years  (Ignacio,  del  Canizo  and  Alonso).  We  are  using  2008  data  for  Thailand’s  energy  mix  in  impact  calculations.  The  technological  results  are  limited  by  past  studies,  as  data  has  been  compiled  from  various  journal  articles  and  released  databases,  instead  of  by  primary  data  collection.  

Mercury  emissions  are  not  considered  in  this  particular  study  because  of  a  lack  of  reliable  information.    Without  collecting  the  data  from  Thailand  specifically,  this  compound  exceeds  the  scope  of  this  project.    The  purpose  of  this  study  guides  potential  investors  or  policy  makers  to  consider  building  alternatives  and  ways  to  decrease  air  and  greenhouse  gas  emissions.    While  mercury  may  be  emitted,  data  accurately  comparing  the  two  alternatives  will  require  further  study.    A  priority  in  this  study  is  reducing  greenhouse  gases  that  contribute  to  global  warming  in  choosing  non-­‐fossil  energy  sources,  so  this  life  cycle  assessment  can  not  adequately  compare  the  effects  of  global  warming  to  the  toxic  effects  

Page 49: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

49    

of  mercury,  because  the  different  compounds  in  question  are  radically  different.    Based  on  peer-­‐reviewed  journal  articles  that  account  for  mercury  in  photovoltaic  modules,  the  data  suggest  that  some  emissions  exist,  but  that  photovoltaic  system  building  integration  should  primarily  be  supported  as  a  clean  way  to  reduce  air  and  greenhouse  emissions.  

Building  integrated  photovoltaics  have  two  functions,  to  act  as  an  energy  production  system  as  well  as  a  roof.  Therefore,  there  will  be  two  components  of  the  functional  unit:  building  protection  and  energy  generation.  The  scope  of  the  system  used  within  the  study  will  take  into  account  the  production  of  materials  through  the  use  phase.    In  order  to  compare  the  distinct  functions  fairly,  the  functional  unit  will  consider  a  specific  area  of  roof  which  generates  a  determined  amount  of  electricity.    This  functional  unit  assumes  that  the  lifespan  of  both  the  building-­‐integrated  module  and  conventional  concrete  tiles  will  be  the  same.    This  seems  reasonable,  considering  the  BIPV  module  is  designed  with  the  same  purpose  as  concrete:  to  protect  a  building.    Both  products  are  assumed  to  remain  intact  without  damage  throughout  the  study.  

Functional  Unit  

Figure  2-­‐2.  Diagram  of  functional  unit  

Serve  as  a  roof  and  generate  800  MWh  of  electricity  across  a  roofspan  of  387  m2.  

Based  on  the  dynamic  Excel  spreadsheet,  there  are  several  scenarios  for  this  study.    Alternative  scenarios  require  multiple  functional  units.    Thus,  for  the  “South  Facing  Only”,  “East  Facing  Only”,  “West  Facing  Only”,  and  “North  Facing  Only”  scenarios,  the  study  will  compare  200  MWh  of  electricity  across  a  roof  span  of  100m2.    The  “South  and  East”,  “South  and  West”,    and  “South  and  North”  scenarios  will  compare  400  MWh  across  a  roof  span  of  200  m2.  

System  Boundary  

This  particular  study  considers  the  production  and  use  phase  of  the  photovoltaic  system’s  life  cycle.  Assuming  the  functional  unit  of  800MWh  will  not  exhaust  the  lifetime  of  a  BIPV  system,  the  disposal  phase  of  solar  roof  in  Thailand  is  a  relatively  unexplored  phenomenon.  Thailand  lacks  proper  recycling  infrastructure  to  process  the  remaining  silicon  or  concrete  past  the  life,  the  study  can  assume  that  the  disposal  phase  of  the  concrete  roof  and  photovoltaic  roof  tile  will  be  similar,  both  being  demolished  and  sent  to  the  landfill.  The  disposal  phase  will  be  considered  in  the  study,  but  both  solar  photovoltaic  roofs  and  the  displaced  concrete  roof  will  undergo  similar  waste  management  cycles.  Recent  studies  suggest  the  feasibility  in  the  United  States  for  recycling  monocrystalline  photovoltaic  modules.    A  changing  infrastructure  in  Thailand  could  potentially  make  recycling  feasible  within  thirty  years,  when  the  photovoltaic  modules’  lifetime  expires  (Fthenakis).    However,  this  study  will  only  consider  current  available  technologies  in  Thailand.  

System  Function   Monocrystalline  BIPV   Conventional  Roofing   Monocrystalline  PV   Concrete  tile  Electricity  Generation   PV/Inverter/Other  Requirements  

to  Hook  Up  to  Grid  Average  electricity  generation  of  mix  in  Bangkok,  Thailand  

Page 50: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

50    

Data  Requirements  

This  study  will  require  the  following  data:  

• Production  process  of  monocrystalline  photovoltaic  cells  (energy  and  resources)  

• Production  process  of  concrete  tiles  (energy  and  resources)  

• Emission  from  the  average  electrical  mix  

Specifically,  the  data  will  come  from  peer  reviewed  journal  articles  and  published  databases.    A  published  literature  review  of  current  monocrystalline  embodied  energy  contributed  to  the  main  data  sources.  Photovoltaic  data  comes  primarily  from  a  previous  study  that  details  the  general  industrial  process  of  manufacturing  mc-­‐Si  cells,  not  specific  to  one  particular  manufacturer.  The  concrete  data  was  obtained  from  Embodied  energy  of  common  and  alternative  building  materials  and  technologies  (Reddy  and  Jagadish)  and  Environmental  life  cycle  assessment  of  a  commercial  office  building  in  Thailand  (Kofoworola  and  Gheewala).    Data  for  Thailand’s  average  electrical  mix  and  emissions  came  from  the  Department  of  Alternative  Energy  Development  and  Efficiency,  Ministry  of  Energy’s  2008  annual  report  entitled  Thailand  Energy  Situation.    The  data  obtained  by  the  journal  articles  are  subjected  to  the  assumptions  made  for  the  photovoltaic  and  cement  processes.    This  study  assumes  the  journal  data  remains  consistent  with  the  data  requirements.  

Assumptions  Assumptions  in  this  study  include  geographical  limitations  to  Bangkok  urban  area.  A  rooftop  of  

387  m2  is  chosen  to  represent  a  typical  residential  roof  area  as  calculated  in  the  technical  assessment.    In  order  to  compare  a  concrete  rooftop  with  a  photovoltaic  array,  the  387  m2  roof  will  equate  to  a  50  kWp  capacity  solar  array,  which  accounts  for  nearly  21,000  cells.  We  are  assuming  a  uniform  production  process  for  each  cell,  as  well  as  a  uniform  production  process  for  concrete  tiles  as  outlined  in  the  data  requirements.    Production  includes  silicon  purification,  crystal  production  via  the  Czochralski  Method,  wafer  sawing,  etching,  doping,  and  assembly.  

Assumptions  for  transportation  in  the  mc-­‐Si  BIPV  system  include  three  different  scenarios,  each  imported  to  Thailand  via  freight  container  ship.    The  default  scenario  is  from  Shanghai,  China  and  alternate  scenarios  are  computed  for  Germany  and  Japan.  The  manufacturing  of  concrete  tile  is  assumed  to  take  place  in  Thailand.  The  delivery  process  has  five  different  steps  with  four  100  km  routes.  It  is  assumed  that  all  transportation  is  by  a  heavy  duty  diesel  engine  truck.  This  minimal  transportation  value  avoids  allocation  and  is  a  reasonable  method  in  which  a  Thai  business  would  obtain  the  necessary  components,  because  of  the  small  solar  sector  in  Thailand.    

The  balance  of  system  and  inverter  are  included  in  the  module  processes.    The  energy  contributions  of  an  urban-­‐centralized  grid-­‐connected  inverter  and  balance  of  systems  are  quite  small  in  comparison  to  the  purification  of  silicon  ingot  (Knapp  and  Jester).  Typically  for  stand-­‐alone  systems,  the  balance  of  system  implies  a  battery  structure  which  accounts  for  a  higher  energy  intensity.    This  study  

Page 51: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

51    

concerning  grid-­‐connected  systems  will  assume  no  battery  storage.    The  photovoltaic  array  requires  an  inverter,  which  converts  the  electricity  to  alternating  current.  

This  study  will  use  the  current  electricity  average  mix  of  Thailand,  the  estimated  saved  emissions  will  assume  no  change  to  Thailand's  mix,  which,  optimistically,  would  provide  an  overestimate  of  the  savings.  Alternative  energy  scenarios  that  describe  a  cleaner  energy  mix  will  be  examined  later  in  the  study.  

We  have  estimated  the  average  size  of  the  roof  and  time  frame  based  on  a  peer  reviewed  journal  article  (Halwatura  and  Jayasinghe,  Influence  of  insulated  roof  slabs  on  air  conditioned  spaces  in  tropical  climatic  conditions—A  life  cycle  cost  approach).    The  estimated  life  of  a  concrete  roof  is  30  years,  and  we  are  assuming  that  800  MWh  equates  to  10  years  of  building  use.  One-­‐third  of  the  energy  and  emissions  associated  with  producing  one  concrete  tile  will  be  considered  in  the  study.    

Cement  mortar  consumes  more  energy  than  other  types  of  roofing  materials  (Reddy  and  Jagadish).  We  have  chosen  this  as  a  conventional  material  in  Thailand,  as  it  is  the  most  popular  building  material  used  in  roof  construction  (Kofoworola  and  Gheewala).  If  other  materials  had  been  evaluated,  the  effects  of  PV  substitution  would  not  be  as  pronounced.    

Page 52: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

52    

System  Processes

 

Figure  2-­‐3.  Production  Process  of  Silicon  Cells  

Silicon  must  be  prepared  before  any  photovoltaic  module  can  be  produced.    Monocrystalline  photovoltaic  modules  require  pure  silicon  crystals,  which  must  first  be  purified.    Silicon  dioxide  becomes  silica  (Si)  and  carbon  (C)  in  a  furnace.    The  mixture  of  oxygen  and  chlorine  is  dumped  and  blown  into  the  furnace  to  solidify  the  solar-­‐grade  silicon.    The  monocrystalline  production  process  follows  the  Czorchalski  method.    Raw  silica  sand  is  purified  and  made  into  ingot.    The  ingot  must  be  sawed  into  wafers  that  are  300  μm  thick  with  a  sawing  gap  of  200  μm.    The  average  wafer  for  this  study  weighs  6.99  g,  and  is  typically  shaped  as  rounded  squares.    The  wafers  must  be  etched  with  NaOH,  and  this  process  requires  a  high  temperature  at  nearly  80°C.    Phosphorus  is  then  added  to  dope  the  silicon,  which  also  

Page 53: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

53    

demands  a  high  temperature.    Procedures  to  diffuse  the  phosphorus  incorporate  Quartz  Furnaces  or  Belt  Furnaces.    This  study  considers  a  Quartz  Furnace,  the  cleaner  of  the  two  choices,  as  ambient  air  can  enter  the  Belt  furnaces.    After  diffusion  the  p-­‐n  junction  must  be  isolated  and  Titanium  dioxide  is  used  to  encapsulate  the  cells.    Both  the  front  and  back  sides  of  the  cell  are  printed  and  dried  to  create  contacts,  and  subsequently  the  metal-­‐contacts  are  co-­‐fired.  This  step  requires  high  temperature  denoting  an  energy  intensive  step.  The  individual  cells  are  aligned  along  a  panel,  which  is  then  laminated.    The  step  demanding  the  most  energy  is  the  initial  purification  denoted  by  CZ  Method  in  Figure  2-­‐  3  (Ignacio,  del  

Canizo  and  Alonso).  

 

Figure  2-­‐  4.  Transportation  diagram  of  mc-­‐Si  BIPV  system  

The  study  assumes  all  production  will  occur  in  a  factory  in  China  and  then  a  container  freight  ship  will  bring  the  finished  solar  cell  ready  for  installation  to  a  specific  site  in  Bangkok.    The  transportation  is  allocated  using  the  mass  of  the  solar  panels  on  the  container  ship.    Alternate  scenarios  are  also  modeled  for  product  shipments  from  Japan  and  Germany.    The  shipping  routes  are  estimated  in  kilometers  using  Google  Earth.  

 

Page 54: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

54    

Figure  2-­‐5.  Transportation  Pathways  

 

Figure  2-­‐  6.  Steps  of  cement  manufacturing  

 

Limestone  is  mined  in  a  quarry  and  transported  to  the  factory  for  processing.  First,  it  is  ground  and  blended.  It  is  then  transported  to  a  preheater,  which  heats  the  raw  material  to  1450°C  in  preparation  to  move  through  the  rotary  kiln.  After  being  processed  in  the  rotary  kiln,  the  hot  clinker  passes  through  a  cooling  system  and  is  stored  before  being  ground  into  the  final  state  of  the  product.  This  process  is  diagrammed  in  Figure  2-­‐6  above.    

 

Page 55: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

55    

Figure  2-­‐  7.  Tile  manufacturing  process  

The  tile  production  process,  shown  in  figure  2-­‐7,  begins  with  sand,  water,  and  cement  being  combined  together  in  the  mixer.    The  mixed  concrete  moves  to  the  extruder  where  it  is  molded  into  the  desired  tile  shape.    Once  shaped,  the  concrete  moves  into  the  curing  chamber,  where  it  dries  for  approximately  24  hours  at  30°C-­‐  34°C,  at  a  relative  humidity  of  95%.    The  concrete  is  demolded,  and  then  ready  for  the  market.  

 

Figure  2-­‐  8.  Transportation  steps  in  cement  tile  production  and  utilization  

The  overall  transportation  scenario  of  cement  tile  production  begins  with  limestone  mining.  Limestone  is  transported  from  the  quarry  to  the  cement  factory,  where  it  is  processed  and  packaged.  It  is  distributed  to  the  tile  manufacturer,  after  which  is  sold  to  a  wholesaler.  Considering  this  study  is  aimed  towards  larger  business  plans  or  authorities,  contractors  would  buy  directly  from  the  wholesaler  rather  than  at  a  retail  location,  meaning  the  concrete  tile  would  travel  from  the  wholesale  location  to  the  construction  site  directly.    

Life  Cycle  Assessment  Inventory  Data  from  this  section  are  broken  down  into  three  distinct  categories.    Photovoltaic  production,  

cement  production,  and  the  energy  displaced  by  the  grid.    It  is  reasonable  to  assume  that  the  use  phase  of  the  BIPV  module  produces  clean  energy  without  greenhouse  gas  or  air  emissions.  

As  an  appendix  to  the  document,  the  data  all  stem  from  the  Dynamic  Excel  Spreadsheet.    The  module  of  consideration  is  industry  average  monocrystalline  silicon.  

Data  also  are  produced  in  five  forms.  The  aggregate  avoided  CO2  emissions  with  multiple  scenarios,  the  grams  of  CO2  per  kWh  of  electricity  generated,  the  Net  Energy  Ratio,  Energy  Payback  Time,  and  Carbon  Dioxide  Repayment.  

Page 56: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

56    

The  Dynamic  Excel  Spreadsheet  contains  several  variables.  

 

The  spreadsheet  contains  the  following  input  variables:  

 

(α)  =  roof  side  length  

(β)  =  angle  of  inclination  

(χ)  =  orientation  of  south  side  (degrees  west)  

(ρ)  =  albedo  

(δ)  =  expected  lifetime  of  panel  

(ε)  =system  efficiency  

These  variables  estimate  the  amount  of  incoming  solar  radiation,  which  varies  the  amount  of  CO2  avoided.  

Scenarios  were  also  created  to  analyze  the  effect  of  system  efficiency  on  CO2  per  kWh  of  electricity  generated,  Energy  Payback  Time  and  Carbon  Dioxide  Repayment.    Net  Energy  Ratio  was  considered  across  varying  expected  system  life  expectancies.    These  are  standardized  parameters  affecting  the  life  cycle  assessment  of  photovoltaic  systems  and  allow  comparison  between  photovoltaic  electricity  generation  with  other  types  of  electricity  generation  systems.  One  of  the  most  important  considerations  is  the  ability  to  fairly  compare  photovoltaic  electricity  production  with  different  countries’  average  electricity  production.    For  this  grid-­‐connected  application,  the  results  completely  justify  the  production  of  solar  panels  as  an  effective  means  in  reducing  CO2  emissions.  

Page 57: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

57    

 

Figure  2-­‐  9.  Grams  CO2  per  kWh  (BIPV  discounted)  

The  graph  exhibits  the  potential  savings  in  CO2  generation  by  grid  electricity  in  Thailand  across  differing  system  efficiencies.    Monocrystalline  photovoltaic  modules  can  create  electricity  that  is  nearly    30  times  cleaner  than  Thailand’s  electricity  mix.    The  data  clearly  suggest  a  reduction  in  carbon  emissions,  especially  when  concrete,  and  the  discounts  associated  with  using  concrete  as  the  standard  construction  material,  are  considered.  Non-­‐integrated  monocrystalline  photovoltaic  modules  are  nearly  10  times  cleaner  than  Thai’s  mix,  implicating  significance  especially  for  grid-­‐connected  systems  that  displace  electricity  from  power  plants.  

 

Page 58: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

58    

 

Figure  2-­‐  10.  CO2  per  kWh  with  and  without  BIPV  discount.  

Figure  2-­‐10  compares  the  carbon  dioxide  generated  by  the  production  of  monocrystalline  panels  made  in  different  countries.    Since  monocrystalline  photovoltaic  modules  are  not  currently  manufactured  in  Thailand,  the  data  is  a  hypothetical  scenario.    China’s  panels  are  dirtier  than  other  countries  because  of  the  larger  proportion  of  coal  power  in  the  average  electricity  mix  (World  Wildlife  Fund  for  Nature).    From  a  business  standpoint,  China  may  provide  the  cheapest  panels,  but  the  environmental  benefits  of  photovoltaic  modules  may  reduce  threefold.    Error  bars  were  computed  by  estimating  different  electrical  outputs  over  a  ten-­‐year  period.    Building  integrated  photovoltaic  modules  provide  an  environmental  benefit  of  300  %    compared  to  normal  monocrystalline  modules.  

Page 59: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

59    

 

Figure  2-­‐11.  Net  Energy  Ratio  versus  the  expected  lifetime  of  the  photovoltaic  module.  

Net  Energy  Ratio  (NER)  is  computed  by  the  following  formula.      

NER  =  

NER  is  a  valuable  tool  used  to  compare  photovoltaic  electricity  generation  with  the  conversion  of  other  renewable  technologies  such  as  biomass  or  wind  energy.    The  ratio  in  Figure  2-­‐11  denotes  the  net  amount  of  energy  converted  by  the  photovoltaic  electricity  generation  system,  weighing  its  output  to  its  input.    Because  the  NER  is  applied  to  a  renewable  energy  source  created  by  the  inputs  of  fossil  fuels,  this  ratio  provides  a  comparison  for  the  leveraging  capacity  for  BIPV  modules.    Fossil  energy  inputs  are  “up-­‐converted”  to  create  seven-­‐to-­‐eight  times  as  much  energy  per  unit  of  primary  energy  (Pacca,  Deepak  and  Keoleian).  

 

Page 60: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

60    

 

Figure  2-­‐  12.  CO2  and  Energy  Payback  Periods  are  calculated  versus  efficiency.  

  The  energy  payback  period  is  higher  than  CO2  because  of  the  BIPV  discount  in  CO2  emissions  produced  by  the  cement.    The  energy  payback  period  does  not  consider  the  energy  displaced  by  concrete  tiles.    However,  the  graph  suggests  that  photovoltaic  cells  produced  in  China  take  significantly  longer  to  pay  themselves  back  in  CO2  costs.    The  energy  payback  time  is  not  different  based  on  electricity  mix.    The  graph  illustrates  the  pronounced  effect  of  differing  average  electricity  mixes  and  aligns  with  past  studies  that  suggest  when  photovoltaics  are  created  in  an  area  with  a  cleaner  electricity  mix,  that  it  requires  less  time  to  payback  the  CO2  emitted.  This  implicates  that  panels  will  also  produce  less  CO2  per  kilowatt-­‐hour.    Even  with  low  efficiencies  of  outputs,  the  estimated  payback  period  is  robust  and  can  pay  itself  back  energetically  in  5  years.      

South Side Scenario CO2 offset per year

Per House 11.1 MT Per Development (200 houses) 2.2 MT Bangkok Potential (if all 40,000 new houses built in 2008 were to have approx 90 m2 of BIPV)

444 MT

Bangkok Potential- Ten Years 4.4 GT  

Figure  2-­‐13.  Large  Scale  Potential  Application  for  BIPV  as  a  CO2  reducing  agent  (within  Bangkok):    South  Side  Scenario  

Page 61: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

61    

 

All Sides CO2 offset per year

Per House 45 MT Per Development (200 houses) 9 MT Bangkok Potential (if all 40,000 new houses built in 2008 were to have approx 378 m2 of BIPV)

1.8 GT

Bangkok Potential- Ten Years 18 GT  

Figure  2-­‐14.  Large  Scale  Potential  Application  for  BIPV  as  a  CO2  reducing  agent  (within  Bangkok):    Four  Side  Scenario  

Thailand  emitted  2x  109  tons  of  CO2  in  one  year.  Average  Thai  citizens  emit  3  tons  of  CO2  per  year.  As  results  show,  a  family  could  offset  a  good  portion  of  their  per  capita  CO2  emissions  by  having  building  integrated  solar  photovoltaic  modules  acting  as  roofs  in  their  homes  (EGAT).      

If  monocrystalline  modules  are  integrated  onto  the  south  side  of  the  roof  as  the  economic  section  suggests  could  be  feasible,  then  11.1  metric  tons  of  CO2  could  be  offset  each  year  per  house.    The  business  plan  for  200  homes  in  one  development  would  thus  offset  nearly  2.2  megatons  of  carbon  per  development.    This  suggests  a  large  potential  for  carbon  remediation  in  Bangkok.  However,  further  economic  analyses  could  determine  whether  this  is  a  cost-­‐effective  approach  at  reducing  carbon  dioxide  emissions.      

  To  place  a  maximum  upper  bound  on  the  potential  carbon  dioxide  that  could  be  offset  in  Bangkok,  a  hypothetical  policy  has  been  created.  This  hypothetical  policy  forces  all  new  homes  to  contain  BIPV  installations  on  the  south  facing  roof,  444  megatons  of  carbon  dioxide  could  be  offset  over  the  course  of  one  year.    While  this  is  unrealistic,  it  provides  contextual  data  to  understand  how  the  BIPV  application  can  fit  within  Thailand’s  goal  of  reducing  climate  change.  

   

Parameters  

  A  previous  study  suggests  that  increasing  efficiency  in  producing  the  photovoltaic  module  has  the  most  pronounced  effect  in  reducing  the  embodied  energy  requirement  for  creating  monocrystalline  photovoltaic  modules.    The  parameters  considered  included  input  energy,  life  expectancy,  module  efficiency,  and  insolation.    Bangkok  has  a  higher  estimated  incoming  solar  radiation  than  Southern  Europe,  the  leading  region  in  solar  applications,  with  a  latitude  of  13.7°  N  of  the  equator  (Pacca,  Deepak  and  Keoleian).    

Page 62: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

62    

 

Figure  2-­‐  15.  NER  and  E-­‐PBT  for  PVL  and  KC  modules  based  on  the  ranges  of  parameters  tested  (Pacca,  Deepak  and  Keoleian).  

  The  modules  considered  in  this  diagram  are  polycrystalline  and  amorphous  silicon,  however  the  parameters  altering  life  cycle  performance  for  polycrystalline  cells  and  monocrystalline  cells  are  similar,  and  can  therefore  be  used  for  analysis  (Pacca,  Deepak  and  Keoleian).      

 

 

 

 

 

Page 63: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

63    

Potential  Applications  for  Monocrystalline  Photovoltaic  Input  Energy  Efficiency  

 

Figure  2-­‐  16.  Production  Steps  and  Energy  Intensity  

CZ  Step  

  The  Czorchalski  Process  consumes  the  most  significant  portion  of  production  energy  to  create  monocrystalline  silicon  modules.    The  streamlined  process  remains  the  same  as  when  it  was  first  practiced  in  the  1970s.    As  embodied  energy  has  not  significantly  changed  over  these  thirty  years,  room  to  improve  efficiency  is  fairly  limited.    Other  aspects  of  embodied  energy  should  be  explored  to  improve  energy  and  carbon  dioxide  payback  times.    Since  the  Czorchalski  Process  will  not  change  much,  modeling  the  future  potential  environmental  impacts  for  monocrystalline  cells  becomes  less  ambiguous.      

Wafer  Sawing  

  The  wafer  sawing  gap  dictates  the  amount  of  silicon  needed  to  create  a  photovoltaic  solar  cell.    Up  to  sixty  percent  of  raw  silicon  ingot  consumed  during  wafer  sawing  is  wasted.    Efficient  gap  space  maximizes  the  raw  silicon  per  wafer  and  minimizes  the  quantity  of  wasted  material.    Composing  nearly  six  percent  of  the  embodied  energy  in  the  monocrystalline  photovoltaic  production  process,  future  photovoltaic  systems  can  maximize  both  energy  and  material  use  by  changing  the  sawing  gap  to  perform  as  few  cuts  as  possible.  

Panel  Process  Energy  

  The  composition  of  metals  and  variable  components  to  encapsulate  the  solar  cell  contributes  to  the  process  energy,  and  aluminum  plays  a  role  as  one  of  these  component  materials.  If  used,  it  increases  the  amount  of  energy  required  to  make  a  panel.    While  this  study  assumes  aluminum  has  been  used,  

Page 64: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

64    

future  modules  may  contain  a  resource  that  is  more  environmentally  abundant  and  possibly  less  polluting.  

Inverter  +  Balance  of  System  

  The  inverter  and  balance  of  system  vary  with  the  brand,  type,  and  size  of  the  module.    Typically,  the  inverter  can  consume  between  1-­‐10%  of  the  primary  energy  inputs.    The  inverters  and  components  rely  on  grid  technology  in  place  of  interest,  and  some  inverters  work  more  efficiently  than  others.    The  system  chosen  in  this  study  reflects  Thailand’s  lack  of  smart  grid  infrastructure  compared  to  Southern  Europe  or  the  United  States.    The  implications  of  this  assumption  are  also  reflected  in  the  technical  assessment,  modeling  differing  system  efficiencies.    The  inverter’s  life  expectancy  is  standardized  across  life  cycle  assessments  of  photovoltaic  modules  and  assumed  to  be  10  years  (Fraile,  Alsema  and  Frischknecht).  

End  Of  Life  Scenarios     Currently,  technological  and  economic  feasibility  studies  suggest  that  the  recycling  of  aluminum  capsules  and  photovoltaic  grade  silicon  is  possible  in  the  United  States  (Larsen).    However,  a  lack  of  infrastructure  and  technology  available  in  Thailand  relegates  the  exhausted  roofs  to  landfills.    The  potential  for  recycling  and  recovery  of  materials  not  only  will  reduce  the  carbon  payback  period,  but  also  will  lessen  the  burden  of  abiotic  resource  depletion.    Aluminum  and  silicon  materials  are  scarce  resources,  and  the  proliferation  of  solar  technology  potentially  may  further  the  demand.      

  The  technology  for  recovering  used  silicon  from  photovoltaic  panels  has  been  developed  for  the  past  ten  years  (Fthenakis).    Recycling  metal  from  framed  modules  exists  without  changing  collection  strategies,  however  a  cradle-­‐to-­‐cradle  approach  to  photovoltaic  manufacturing  could  provide  the  environmental  facelift  scientists  need  to  restore  the  sustainable  image  of  photovoltaic  production.    The  associated  cost  of  recycling  silicon  is  not  considered  excessive  when  compared  to  existing  recycling  technologies.    Thus,  while  the  infrastructure  in  Thailand  may  be  present  in  five-­‐ten  years,  the  environmental  advantages  for  the  business  could  be  modified.      

  Fthenakis  asserts  that  the  viability  for  photovoltaic  recycling  programs  relies  on  the  geographic  proximity  of  modules  to  recycling  facility  centers.    Therefore,  grid-­‐connected  systems  are  more  likely  to  lie  in  urban  centers  that  can  handle  the  additional  and  unconventional  recyclable  materials.    A  case  study  for  Bangkok  would  support  these  claims;  a  residential  housing  community  with  utility  waste  management  services  may  be  able  to  handle  these  goods  in  the  future.      

  The  responsibility  of  recycling  lies  with  the  end-­‐users,  namely  a  large  utility  company.    This  shared-­‐profit  enterprise  could  potentially  ensure  the  disposal  phase  of  the  product  sells  back  to  the  producers  of  the  panel,  creating  a  closed-­‐system  feedback  that  offsets  some  virgin  material.    Demand-­‐side  management  is  another  approach  to  recycling  modules,  however,  strong  statements  through  responsible  businesses  are  necessary  to  jumpstart  such  a  program  (Larsen).  

  To  project  the  feasibility  of  recycling  in  Bangkok,  the  large  presence  of  metal  smelting  and  refining  facilities  hints  at  a  potentially  viable  system.  While  there  is  not  the  infrastructure  to  support  the  

Page 65: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

65    

collection  and  subsequent  management  of  such  materials,  the  future  is  bright,  and  would  make  the  environmental  aspect  of  building-­‐integrated  photovoltaic  modules  in  Thailand  brighter.  Policy  mechanisms  by  the  Ministry  of  Energy  would  potentially  expedite  the  process  to  become  a  reality.  

 

Results  of  Environmental  Assessment     The  implementation  of  building-­‐integrated  monocrystalline  photovoltaic  modules  on  rooftops  in  homes  in  Thailand  will  significantly  offset  carbon  dioxide  produced  by  Thailand’s  energy  grid.    The  displacement  of  a  cement  roof  will  produce  electricity  nearly  30  times  cleaner  than  Thailand’s  current  electricity  generation  mix.      

Thailand  is  currently  seeking  to  be  economically  independent  and  self-­‐sufficient  in  a  way  similar  to  the  Japanese  model,  and  has  a  great  opportunity  to  explore  ways  to  reduce  its  carbon  footprint  by  supporting  projects  that  create  grid-­‐connected  BIPV  modules.  The  data  exposes  the  effects  of  a  100,  200,  and  378  m2  monocrystalline  roof,  and  policy-­‐makers  can  consider  further  studies  to  develop  the  economic  feasibility  of  a  project  incorporating  a  mc-­‐Si  BIPV  roof.    The  environmental  data  strongly  supports  cleaning  the  energy  mix,  and  potentially,  as  carbon  dioxide  emissions  become  increasingly  important  in  proposing  and  developing  carbon  credit  incentives  worldwide,  Thailand  can  potentially  profit  from  reduction  strategies.  The  world’s  follow-­‐up  meeting  to  Kyoto  in  Copenhagen  in  December,  2009  could  provide  the  foundation  for  a  global  carbon  credit  market.  Due  to  increased  attention  and  concentration  on  reducing  carbon  dioxide  emissions,  surely  governments  seeking  to  potentially  sell  carbon  credits  will  pursue  policies  that  easily  reduce  emissions  leading  to  global  warming.    This  study  provides  the  groundwork  for  supporting  a  business  utilizing  mc-­‐Si  BIPV  for  the  reduction  in  negative  environmental  impacts  shown  with  this  particular  system.  It  also  provides  the  Thai  government,  or  other  planners  and  policy  makers,  an  option  to  consider  when  discussing  ways  to  reduce  carbon  dioxide  emissions.  Even  with  a  cap  and  trade  market,  Thailand’s  disproportionate  amount  of  imported  energy  warrants  further  inquiries  into  building  codes  and  policies  that  aid  the  selling  of  solar  electricity  back  to  the  grid.     Inadequate  mercury  emissions  data  was  found,  and  comparing  toxicity  to  global  warming  impacts  is  subjective.  BIPV  seems  promising  to  try  and  reduce  Thailand’s  global  warming  potential,  but  it  is  important  to  recognize  the  importance  of  reducing  the  need  for  materials  before  implementing  new,  more  expensive,  technological  strategies.  If  companies  fail  to  find  ways  to  make  BIPV  economically  viable,  it  becomes  merely  an  expensive  technological  solution  to  a  larger  problem.    Conservation  should  be  the  first  step  to  reducing  the  demand  for  fossil  energy,  however  in  a  modern  society,  especially  in  a  growing  country  like  Thailand,  alternatives  must  be  explored.  A  combination  of  reduction  and  solar  integration  could  prove  very  beneficial  in  carbon  reduction  strategies.  Small  producers  over  the  life  of  one  solar  cell  on  a  roof  could  provide  large  savings.      

Concrete  is  noted  as  the  most  energy  intensive  material  for  a  roof  (Reddy  and  Jagadish).    Further  research  should  consider  alternative  building  materials  and  the  net  results  of  using  them  as  opposed  to  concrete.  BIPV  may  not  achieve  such  drastic  savings  in  global  warming  potential  because  more  eco-­‐friendly  materials  may  lessen  their  dependence  of  fossil  fuels  in  the  production  phase.    For  example,  in  the  United  States,  concrete  tiles  are  not  the  average  roof  structure,  and  thus  a  BIPV  grid-­‐connected  

Page 66: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

66    

model  may  not  look  as  enticing  as  other  “green  roofs.”  It  would  also  be  interesting  to  compare  BIPV  modules  with  other  “environmentally  friendly”  options,  like  green  roofs  that  capture  carbon  and  rainwater,  while  simultaneously  serving  as  a  roof  and  lowering  the  energy  consumption  necessary  within  the  building  itself.       Acidification  is  reduced  considerably  when  less  CO2  enters  the  atmosphere.  Acidification  potential  harms  all  ecosystems,  and  is  especially  relevant  to  Thailand.  Tourism  is  susceptible  to  the  negative  effects  of  acidification,  such  as  ocean  acidification.  Highly  regarded  islands  off  the  coast  of  Thailand  generate  millions  of  baht  in  tourism  every  year,  mostly  for  the  reef  life.    The  air-­‐water  interface  interaction  when  CO2  dissolves  into  the  ocean  forms  carbonic  acid  that  destroys  the  limestone  structures  of  coral  reefs  facing  extinction.    Without  concern  for  CO2  emissions,  Thailand  faces  the  mass  habitat  degradation  of  a  valuable  natural  resource,  both  environmentally  and  economically.  

  The  results  for  Thailand  distinguish  China’s  photovoltaic  production  from  the  other  countries  considered.    Three  times  less  CO2  is  displaced  from  panels  made  in  China  than  those  made  in  Japan  or  Germany.    China’s  panels  are  made  from  electricity  generated  from  higher  proportions  of  coal  power,  unlike  Japan  or  Germany.  Also,  despite  economic  reasons  that  may  support  building  photovoltaic  modules  in  Thailand  to  spur  the  local  economy,  cleaner  electricity  comes  from  imported  modules.      

  The  wide  gap  between  the  carbon  emissions  from  Thailand’s  energy  mix  and  monocrystalline  photovoltaic  electricity  production  highlights  the  opportunity  for  Thailand  to  clean  its  electricity  generation,  rather  than  imply  the  feasibility  for  monocrystalline  modules  to  take  root  as  the  primary  driver  for  CO2  reduction.    Solar  photovoltaic  electricity  generation  is  an  option,  however  the  economic  feasibility  for  the  expansion  of  photovoltaic  generation  beyond  a  VSPP  level  remains  to  be  determined.    If  grid  parity  can  be  reached  within  the  next  5  years,  solar  electricity  generation  can  become  cost  competitive  with  fossil  fuel  polluting  alternatives.  

  The  results  defy  misconceptions  that  solar  photovoltaic  modules  provide  an  unattractively  low  net  energy  ratio  and  that  the  energy  packback  time  for  modules  is  quite  high.    Building-­‐integrated  modules  incorporate  better  building  efficiency  and  provide  a  better  environmental  service  than  conventional  panels  from  an  environmental  perspective.    The  net  energy  ratio  is  quite  high.      

Potential  Error   The  nature  of  this  report  based  on  other  studies’  data  rather  than  gathering  data  firsthand  requires  the  attention  to  notice  potential  sources  of  error.    Much  of  the  concrete  data  is  based  on  a  study  from  India,  which  is  similar  to  Thailand’s  production  in  many  ways,  but  could  vary  based  on  technologies  available.  

  Any  LCA  study  based  in  Thailand  that  lacks  primary  data  research  will  encounter  errors  because  Thailand  lacks  environmental  data.    Most  will  come  from  other  countries  that  have  different  circumstances  and  environments.    While  monocrystalline  cells  are  expected  to  last  at  least  30  years  in  most  countries,  Thailand’s  tropical  rainy  and  hot  climate  differs  greatly  from  Germany  or  Switzerland,  where  a  significant  amount  of  solar  research  is  concentrated.  

Page 67: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

67    

  Solar  data  collected  for  the  study  is  mostly  from  the  year  2005,  which  in  a  rapidly  developing  technology  sector  could  vary  from  the  most  current  technology.    Also,  because  the  data  contains  industry  averages  rather  than  a  specific  product,  the  values  should  serve  as  a  rough  guide  for  the  comparison  of  roofing  systems.  

  Valid  data  for  balance  of  system  and  inverters  are  scarce  because  the  requirements  to  connect  a  solar  panel  to  the  grid  vary  greatly  across  different  grid-­‐systems.    The  studies  considered  for  this  project  consider  the  balance  of  system  and  inverter  energy  requirements.  However,  they  fail  to  provide  exact  values,  and  claim  that  considerations  of  BOS  and  inverters  are  made  within  the  data  provided  by  the  study.      

  Assumptions  for  transportation  are  subjective  and  would  change  depending  on  the  location  of  the  BIPV  module.    However,  transportation  values  contribute  very  small  amounts  of  emissions  compared  to  the  process  energies  for  both  solar  panels  and  concrete.    The  similar  distance  values  used  in  the  study  nearly  negate  the  effect.  

  Further  research  will  help  validate  the  assumptions  made  for  this  model  and  create  a  better  estimate  of  the  true  environmental  burdens  associated  with  building-­‐integrated  photovoltaic  modules.      

Alternatively,  as  Thailand  decreases  its  reliance  on  fossil  energy,  the  pronounced  effect  of  solar  electricity  replacing  natural  gas  and  coal  decreases.  

Conclusion  The  greenhouse  gas  emission  and  acidification  savings  by  implementing  a  BIPV  module  

connected  to  Thailand’s  electricity  grid  justify  pursuing  this  technology  as  a  substitute  for  traditional  roofing  materials.  Further  research  is  necessary  in  order  to  understand  the  full  potential  of  BIPV  for  Thailand,  but  business  leaders  and  policy  makers  can  use  this  preliminary  survey  of  existing  peer-­‐reviewed  journal  articles  to  make  informed  decisions  regarding  the  environment.  Thailand’s  dirty  electricity  mix  primarily  contributes  to  the  large  savings  of  carbon  dioxide  emissions,  therefore  the  location  and  materials  used  represent  the  most  volatile  factors  of  the  study.  

 

 

 

 

 

 

 

Page 68: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

68    

Economic  Assessment  of  Building-­‐Integrated  Photovoltaic  Systems  

The  Thai  Housing  Market     The  housing  market  in  Thailand  has  experienced  multiple  ups  and  downs  over  the  past  few  decades,  but  the  current  national  and  global  recessions  coupled  with  recurrent  political  tensions  have  resulted  in  yet  another  decrease  in  residential  property  prices.    Within  the  first  two  quarters  of  2009,  housing  prices  fell  3.7%  in  nominal  terms  (Bank  of  Thailand).    While  accounting  for  inflation,  one  can  see  that  Thailand’s  housing  prices  were  at  their  highest  in  1992.    Although  housing  prices  declined  2.4%  in  the  succeeding  five  years,  the  Asian  Crisis  of  1997  caused  a  rapid  decrease  of  3.9%  during  1998  and  1999.    Following  these  years,  there  was  an  upward  trend  with  regards  to  housing  prices  in  the  residential  market,  showing  an  average  increase  of  4.8%  between  2000  and  2006.    At  this  same  time,  Thailand’s  GDP  swelled  by  an  average  of  approximately  5.1%.    However,  in  2006,  there  was  yet  another  drop  in  property  prices.    This  time,  the  market  declined  by  1.4%  in  real  terms  due  to  the  political  insecurity  and  corruption  the  country  was  experiencing  due  to  Prime  Minister  Thaksin  Shinawatra.    After  his  deposition  in  a  military  coup,  political  turmoil  remained  a  national  problem,  and  residential  housing  prices  continued  to  decline,  falling  6.4%  and  13.9%  in  real  terms,  in  the  years  2007  and  2008  respectively  (Global  Property  Guide).      

 

Figure  3-­‐1.  Annual  House  Price  Change  

This  substantial  economic  recession  has  extended  to  areas  outside  of  the  residential  housing  sector.    For  instance,  between  the  months  of  January  and  July  of  2009,  national  exports  declined  23.1%  from  the  previous  year,  while  imports  fell  a  drastic  35.1%  due  to  global  credit  issues  and  an  overall  diminishing  confidence  by  businesses  (Global  Property  Guide).    Yet  another  effect  of  the  country’s  political  upheaval  is  that  its  residential  housing  market  has  become  less  attractive  to  international  buyers.    Foreign  demand  for  residences  in  Thailand  decreased  between  80-­‐90%  by  June  of  2009  (Suebsukcharoen).    On  the  whole,  the  Thai  market  is  expected  to  continue  in  its  weakened  state  even  with  the  two  new  stimulus  packages  initiated  by  the  government  in  2009  (Global  Property  Guide).      

Year  

Percen

t  

Page 69: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

69    

 

Figure  3-­‐2.  New  Housing  Supply  in  Metropolitan  Bangkok  

  A  final  point  to  address  concerning  the  current  housing  market  in  Thailand  is  the  recent  decline  in  the  construction  of  new  residences.    As  shown  in  Figure  3-­‐2,  the  construction  of  homes  in  Bangkok  reached  a  high  point  in  1996  with  the  creation  of  about  175,000  homes,  apartments,  and  condominiums.    However,  this  number  declined  sharply  over  the  successive  three  years,  finally  beginning  a  slow,  yet  noticeable,  rise  again  in  2002  and  eventually  leveling  off  around  2006.    By  2008,  the  construction  of  new  residences  had  risen  to  its  highest  level  in  twelve  years;  however,  this  was  still  approximately  55%  below  1996  levels.    Yet  another  trend  to  notice  is  that  while  the  amount  of  residences  being  built  is  indeed  on  the  rise,  albeit  slowly,  there  is  quite  a  large  increase  in  the  number  of  condominiums  being  built  and  much  fewer  houses  entering  the  market.  This  could  be  the  result  of  few  national  rental  laws,  favoring  landlords  in  Thailand  due  to  their  abilities  to  name  their  own  rent  prices  and  evict  tenants  if  necessary.    This  influx  of  condominiums  and  apartments  has  led  to  an  overall  decrease  in  the  number  of  stand-­‐alone  houses  constructed  over  the  past  few  years  in  the  Bangkok  metropolitan  area  (Global  Property  Guide).      

  Thailand’s  economic  recession  in  2009  is  the  result  of  many  factors,  two  main  ones  being  the  country’s  political  unrest  and  the  ongoing  global  credit  crisis.    The  nation’s  rising  unemployment  may  also  play  a  role,  as  the  number  of  unemployed  citizens  increased  from  1.7%  in  the  first  quarter  of  2008  to  2.1%  in  the  first  quarter  of  2009  (Global  Property  Guide).    While  two  stimulus  packages  have  been  enacted  by  the  national  Thai  government,  it  is  difficult  to  predict  whether  these  will  make  any  significant  economic  differences.  The  first  stimulus  package  was  presented  in  January  of  2009  with  the  goal  of  helping  consumers  cope  with  the  effects  of  the  recession.    This  included  tax  reduction  measures  in  the  real  estate  division  in  order  to  promote  consumer  spending.    The  second  stimulus  package  was  a  grand  sum  of  1.4  trillion  THB  given  to  housing  and  other  infrastructure  projects  within  the  country  (Global  Property  Guide).    In  general,  the  government  is  taking  strides  in  order  to  increase  consumer  confidence  and  reduce  the  reluctance  of  buyers  to  make  large  purchases,  such  as  apartments  and  houses  (Suebsukcharoen).  Once  the  political  situation  is  thoroughly  resolved  and  the  global  credit  crunch  is  lessened,  one  may  expect  to  see  rising  economic  conditions  in  Thailand,  including  housing  purchases  and  construction  projects.  

 

Hom

es  Con

structed

 (tho

usan

ds)  

Page 70: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

70    

Renewable  Energy  in  Thailand     The  Department  of  Renewable  Energy  Development  and  Efficiency  of  Thailand  is  currently  launching  a  program  to  increase  the  nation’s  investments  in  the  exploration  and  development  of  biomass,  wind,  solar,  and  other  renewable  energy  sources.    This  15-­‐Year  Renewable  Energy  Development  Plan  (REDP),  announced  in  February  of  2008,  focuses  mainly  on  particular  tax  breaks  and  other  incentives  for  electrical  power  produced  by  various  renewable  sources,  including  biodiesel,  ethanol,  wind,  and  solar.    There  are  multiple  steps  that  the  Thai  government  plans  to  take  in  order  to  put  this  plan  into  action.    The  first  step  is  the  promotion  and  of  production  and  use  of  alternative  energy  sources.    These  energy  sources  will  be  promoted  by  new  financial  measures  that  take  into  account  the  added  purchasing  price  of  power  derived  from  alternative  energy,  as  well  as  tax  and  investment  measures  to  incentivize  renewable  energy  to  operators  (Chandler  and  Thongek).    It  is  also  important  that  the  government  promotes  local  production  of  alternative  energy  in  order  to  reduce  industry  costs  and  augment  the  proportion  of  energy  produced  locally.      A  second  step  on  the  path  to  large  increases  in  the  alternative  energy  infrastructure  is  the  promotion  of  energy  research  and  development.    The  Thai  government  plans  to  allow  for  this  by  involving  all  concerned  sectors,  increasing  known  justifications  for  research,  and  surveying  possible  energy  sources  throughout  the  nation.    This  second  step  also  includes  the  education  of  locals  and  the  creation  of  a  society  that  understands  the  value  of  renewable  energy  sources  in  today’s  market.    The  final  step  is  publicity  or  raising  awareness  among  the  nation’s  people.    It  is  imperative  that  the  Thai  government  campaign  to  increase  the  current  knowledge  of  alternative  energy,  the  energy  security  of  the  country,  and  the  economic  importance  of  alternative  energy  development.    This  education  may  also  include  holding  workshops  and  seminars  in  order  to  educate  and  train  personnel  in  the  energy  industry  (Chandler  and  Thongek).    If  all  of  these  proposals  can  be  implemented,  the  15-­‐Year  REDP  brought  about  by  The  Department  of  Renewable  Energy  Development  and  Efficiency  in  Thailand  will  have  a  large  effect  on  the  position  played  by  alternative  energy  sources  in  the  nation’s  future.      

  In  addition  to  the  government-­‐enacted,  15-­‐Year  REDP,  the  occurrence  of  another,  yet  gradual,  evolution  in  Thailand’s  energy  sector  must  be  noted.    Small  power  producers  (SPPs)  and  very  small  power  producers  (VSPPs)  are  springing  up  all  over  the  nation,  thanks  to  new  government  subsidies  and  soft  loans  for  renewable  energy  projects.  By  the  end  of  2007,  there  were  already  nearly  265  proposals  to  the  Energy  Ministry  from  SPPs  and  VSPPs  focused  on  producing  renewable  energy  totaling  a  prospective  1716  MW  with  1116  MW  to  be  sold  to  the  grid  (Mahabir).    Particularly  with  solar  energy,  the  country  has  seen  that  while  investment  costs  may  be  high,  overall  costs  are  decreasing  with  the  emergence  of  new  solar  farms  throughout  the  nation.    As  of  February  2008,  there  were  87  solar  projects  responsible  for  selling  a  total  of  123  MW  to  Thailand’s  electricity  grid  (Mahabir).    It  is  projected  that  the  renewable  energy  should  reach  9%  of  final  energy  consumption  for  the  country  by  2011  (Mahabir).    This  has  the  potential  to  reduce  the  percentage  of  oil  with  regards  to  overall  energy  consumption  from  41%  in  2007  to  34%  in  2011  (Mahabir).    In  short,  the  policies  enacted  by  the  Thai  government  regarding  renewable  energy  production  and  usage,  such  as  soft  loans,  tax  breaks,  and  the  15-­‐Year  REDP,  are  just  a  few  steps  that  are  being  taken  in  order  to  lead  the  country  to  a  more  sustainable  and  energy-­‐independent  future.  

   

Page 71: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

71    

Very  Small  Power  Producers  

  A  very  small  power  producer,  or  VSPP,  is  a  generator  of  a  state-­‐owned  enterprise,  state  agency,  private  entity,  or  individual  with  a  private  generating  unit  who  sells  less  than  10  megawatts  (MW)  of  electricity  to  Thailand’s  Distribution  Utility,  the  Metropolitan  Electricity  Authority  (MEA)  and/or  the  Provincial  Electricity  Authority  (PEA).    The  Thai  government  buys  electricity  from  VSPPs  in  order  to  encourage  their  assistance  in  the  overall  electricity  generation  of  the  country,  as  well  as  to  promote  the  use  of  domestic  natural  energy  resources  and  decrease  Thailand’s  dependence  on  foreign  fuel  sources  (EPPO).    This  also  lessens  the  import  payments  on  fuel  shipments  from  other  nations  and  cuts  back  on  the  environmental  impacts  associated  with  these  imports.    In  addition,  this  government  policy,  in  favor  of  VSPPs,  gives  the  country’s  rural  population  a  chance  to  contribute  to  the  nation’s  electricity  generation  (Webber).    Finally,  and  perhaps  most  importantly  when  considering  government  motives,  VSPPs  help  to  reduce  the  amount  of  money  the  Thai  government  must  invest  in  electricity  production  and  distribution,  especially  in  remote  locations  (EPPO).      

  The  Distribution  Authority  of  Thailand  will  buy  electricity  from  a  number  of  VSPPs,  as  long  as  their  processes  of  generation  are  either  from  renewable  energy  sources,  certain  specific  types  of  fuels,  or  from  energy  obtained  by  the  fuel  production  process,  transportation,  or  utilization.      Electricity  generated  from  renewable  resources  is  classified  by  the  Thai  government  as  electricity  that  is  produced  from  wind,  photovoltaic  systems,  hydroelectricity,  waves  from  large  bodies  of  water,  biogas,  and  geothermal  energy  (EPPO).    The  Distribution  Authority  of  Thailand  also  accepts  electricity  produced  from  agricultural  residues,  waste  from  agricultural  or  industrial  manufacturing  processes,  products  converted  from  wastes,  municipal  waste,  and  wood  from  tree  plantations  specifically  for  fuel  (dendrothermal  energy).    Any  VSPP  is  allowed  to  use  non-­‐renewable,  commercial  fuels,  such  as  natural  gas  or  coal,  as  a  supplementary  contribution  to  their  electricity  production  as  long  as  the  overall  thermal  energy  produced  by  the  commercial  fuels  annually  is  not  larger  than  25%  of  the  overall  thermal  energy  used  for  their  electricity  generation  in  that  same  year  (EPPO).    Finally,  VSPPs  are  allowed  to  sell  electricity  that  they  generate  from  energy  left  over  from  the  processing,  utilization,  or  transportation  of  fuel  production.    This  can  include  energy  remaining  from  industrial  and  agricultural  production  methods,  such  as  waste  steam  (Webber).    Lost  energy,  such  as  heat  from  engine  exhaust  or  heat  processes,  and  energy  as  a  by-­‐product,  such  as  mechanical  energy  produced  from  the  decline  of  natural  gas  pressure,  are  other  examples  of  energy  that  can  be  used  for  electricity  generation  supported  by  Distribution  Authority  of  Thailand  (Webber).  

  In  order  to  become  a  VSPP,  one  must  undergo  a  lengthy  application  process.    The  prospective  electricity  generator  must  submit  an  Application  for  Sale  of  Electricity  and  System  Interconnection  to  their  MEA  or  PEA  and  then  wait  for  the  Distribution  Utility  to  consider  buying  their  electricity,  taking  into  account  the  possibility  of  power  purchases  on  a  case  by  case  basis  if  the  prospective  VSPP  has  a  capacity  of  over  6  MW.    Within  45  days,  the  Distribution  Utility  will  notify  the  candidate  as  to  whether  or  not  their  power  production  will  be  accepted  by  the  government,  and  within  fifteen  days  after  that,  if  the  VSPP  has  been  accepted,  the  utility  will  present  the  producer  with  the  particulars  regarding  interconnection  costs.    After  the  notice  of  acceptance,  the  VSPP  has  60  days  to  sign  a  power  purchase  agreement  and  send  it  to  the  Distribution  Utility  or  else  their  application  will  become  void.      Once  the  

Page 72: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

72    

Distribution  Utility  has  tested  the  VSPP’s  power  system  and  inspected  their  specific  equipment,  the  VSPP  is  finally  considered  a  patron  of  the  utility.    The  final  step  for  the  VSPP  is  to  purchase  a  license  and  notify  the  Distribution  Utility  of  its  existence.    Once  this  has  been  finalized,  the  VSPP  may  begin  their  sale  of  electricity  to  the  government  of  Thailand  (EPPO).    

  The  Energy  Ministry  of  Thailand  has  received  increased  interest  by  potential  VSPPs  since  the  addition  of  the  renewable  energy  adder  (Thongrung),  introduced  in  February  of  2007  (Webber).    This  adder  payment  lasts  for  seven  years  from  the  start  of  the  VSPP’s  power  production.    However,  the  government  has  the  right  to  change  future  rates.    Currently,  Thailand’s  Energy  Ministry  is  on  schedule  to  acquire  2800  MW  of  electrical  power  from  biomass  power  plants,  115  MW  from  wind-­‐powered  plants,  and  55  MW  from  solar-­‐powered  plants  between  the  years  2008-­‐2011.    In  addition,  during  the  first  quarter  of  2009,  over  1200  VSPPs  proposed  selling  approximately  6300  MW  of  electricity  to  the  Energy  Ministry,  made  up  of  3352  MW  from  biomass,  2947  MW  added  on  by  solar  power,  and  841  MW  supplied  by  wind  power.    Presently,  the  ministry  is  of  the  opinion  that  the  Thai  government  would  be  capable  of  purchasing  this  entire  amount  of  proposed  electricity,  although  they  must  keep  the  country’s  fuel  tariff  in  mind  while  making  such  a  decision,  as  the  adder  payment  for  this  electricity  proposal  would  cause  a  fuel  tariff  increase  of  3  satang  per  unit  or  the  equivalent  of  4  billion  THB  annually  (Thongrung).    

Business  Proposal       The  purpose  of  the  proposed  business  is  to  introduce  renewable  energy  into  the  lives  of  luxury  home  owners  in  Thailand  by  aiding  housing  developers  in  home  power  production  through  the  use  of  building-­‐integrated  photovoltaic  systems.    As  a  means  of  addressing  the  problem  of  global  climate  change  and  adopting  environmental  responsibility,  the  aim  of  this  venture  is  to  contribute  to  the  reduction  of  Thailand’s  dependency  on  fossil  fuels  and  promote  the  reduction  of  greenhouse  gas  emissions.    Therefore,  the  main  goal  of  this  organization  is  to  become  a  profitable  leader  in  small  scale,  community-­‐based  solar  power  production.    Our  business  will  partner  with  a  local,  luxury  housing  developer  in  order  to  install  building-­‐integrated  solar  panels  on  the  roofs  of  one  of  their  communities.  

  The  driving  philosophy  behind  this  proposed  business  venture  is  that  environmental  and  social  responsibilities  do  not  necessitate  drastic  changes,  but  can  be  achieved  incrementally  on  a  community  level.  Small  changes  can  have  a  large  impact.    By  building  solar  communities,  one  can  hope  to  show  that  environmental  responsibility,  such  as  reducing  carbon  emissions  and  promoting  renewable  energy  technologies,  does  not  require  radical  lifestyle  changes.    This  business  will  be  created  to  promote  solar  technology  by  affixing  it  to  luxury  residences.    Such  a  decision  is  due  to  the  ability  of  affluent  communities  to  pioneer  new  technologies  and  promote  the  example  of  sustainable  living  due  to  specific  income  levels.    It  is  important  that  this  business  maintains  a  socially  responsible  status  by  giving  back  to  the  community,  as  specified  in  its  formal  corporate  social  responsibility  policy.      The  importance  of  positive  environmental  and  social  business  changes  will  be  addressed  in  order  to  gain  the  consumer  vote  in  today’s  market.  

To  achieve  this  goal  of  a  subsidy-­‐free  project,  the  solar  housing  development  will  be  marketed  towards  high  income  consumers  who  will  be  less  sensitive  to  the  added  costs  of  the  building  integrated  system.    In  addition,  affluent  consumers  tend  to  have  a  higher  willingness  to  pay  for  renewable  energy  

Page 73: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

73    

sources,  making  them  the  prime  marketing  group  based  on  annual  income  levels.    The  proposed  business  would  be  that  partner  of  a  housing  developer,  play  a  part  in  constructing  a  Bangkok  community,  and  pay  a  portion  of  the  roofing  costs  of  the  houses,  as  well  as  the  full  cost  of  the  photovoltaic  system  that  will  be  integrated  into  the  building.    The  developer  will  be  able  to  sell  the  housing  unit  for  a  higher  price  and  we  will  be  able  to  make  a  profit  by  selling  the  electricity  generated  by  the  photovoltaic  system  back  to  the  grid.    The  consumer  has  an  incentive  to  buy  the  house  due  to  the  fact  that  a  portion  of  their  community  fees  will  be  paid  for  the  length  of  their  stay  in  the  house.    In  addition,  the  eco-­‐friendly  solar  system  will  attract  environmentally-­‐conscious  buyers  with  an  understanding  of  renewable  energy  and  its  importance  to  the  energy  market  in  Thailand.      

Marketing  Strategy  –  For  the  developer  

  When  pitching  the  idea  of  such  a  community  to  a  developer,  it  is  necessary  to  focus  on  the  increased  positive  attention  that  this  sort  of  project  will  bring  to  their  development  and  homes  and  the  decrease  in  roofing  costs  they  would  have  to  pay  for  home  construction.    First  of  all,  the  addition  of  solar  panels  to  a  luxury  home  community  is  a  status  statement.    Not  only  will  the  developer  be  projecting  a  “green”  image  and  helping  to  reduce  Thailand’s  dependency  on  fossil  fuels,  but  the  houses  will  have  a  more  modern  look  due  to  the  building-­‐integrated  panels  on  the  roofs.      

  In  a  time  of  rising  environmental  awareness,  eco-­‐friendly  communities  are  becoming  increasingly  popular,  especially  in  urban  areas,  such  as  Bangkok.    The  addition  of  building-­‐integrated  photovoltaic  systems  has  the  immense  potential  to  increase  the  customer  base  of  such  a  development.    In  addition  to  an  environmentally  responsible  image,  the  altered  community  will  also  act  as  a  socially  responsible  icon  as  well.    By  partnering  with  us,  the  developer  can  take  advantage  of  the  corporate  social  responsibility  plan  associated  with  the  new  company  when  marketing  their  houses  to  potential  customers.    As  a  socially  responsible  business,  it  is  specified  that  charitable  contributions  be  given  to  the  local  and  global  communities  as  funding  for  renewable  energy  promotion  and  development,  in  addition  to  other  noteworthy  organizations  and  funds.    

  Another  central  point  when  marketing  to  the  developer  is  the  decrease  in  building  costs  that  they  would  gain  if  they  choose  to  partner  with  this  business.    Currently,  this  proposed  business  intends  to  pay  for  the  installation  of  the  solar  panels  and  50%  of  the  roof  construction  costs  on  any  sides  that  photovoltaic  cells  are  to  be  employed.    This  is  a  financial  incentive  for  the  developer  to  keep  these  photovoltaic  systems  in  mind  when  they  are  marketing  their  houses  and  for  letting  this  business  produce  clean  energy  from  the  roofs  of  these  houses.    In  this  manner,  not  only  is  the  developer  gaining  the  positive  attention  for  integrating  renewable  energy  into  their  housing  community,  but  they  are  also  making  a  slight  profit  in  the  construction  of  the  house.    

Marketing  Strategy  –  For  the  consumer  

  This  housing  project  will  cater  to  the  high-­‐income  home  owner  and  should  be  viewed  as  an  affordable  accompaniment  to  a  luxury  housing  development.  The  addition  of  building-­‐integrated  solar  cells  will  differentiate  this  community  from  other  similar  developments.  Solar  cells  will  create  the  appearance  of  a  certain  lifestyle  for  customers,  reflecting  both  environmental  and  social  responsibility.    

Page 74: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

74    

In  a  time  of  rising  environmental  awareness  due  to  the  current  problems  of  increasing  carbon  emissions,  depletion  of  fossil  fuel  resources,  climate  change,  and  planetary  warming,  this  is  an  eco-­‐friendly  community  that  utilizes  solar  power  production  to  combat  these  issues.    In  addition,  a  commitment  to  renewable  energy  will  help  reduce  Thailand’s  dependence  on  dirty  energy  mixes  and  increase  the  country’s  overall  energy  independence.  

  This  community  is  considered  “environmentally  friendly”  due  to  the  home  designs  that  include  building-­‐integrated  photovoltaic  systems  and  rooftops  that  are  designed  and  oriented  in  an  optimal  manner  for  maximizing  energy  production.    Another  community  advantage  is  the  elimination  of  the  typical  community  fees  that  are  residents  are  required  to  pay  for  community  upkeep.    This  business  will  cover  100%  of  the  community  fees  for  all  residents  as  an  incentive  to  live  in  the  community  and  maintain  proper  care  of  their  homes  and  their  roofs.  Finally,  while  money  is  being  made  in  increments  by  community  fee  savings,  there  is  also  an  increase  in  the  property  values  of  homes  with  building-­‐integrated  photovoltaic  systems.    This  could  constitute  large  monetary  gains  in  the  future  if  a  customer  is  contemplating  the  sale  of  his  or  her  home.    As  shown  in  the  methodology  of  the  economic  assessment  of  this  project,  a  non-­‐discounted  economic  assessment  was  performed  in  order  to  provide  values  to  environmentally-­‐aware,  potential  customers.    It  has  been  calculated  that  the  homeowner  will  have  a  discounted  repayment  period  of  about  11.5  years  in  order  to  recoup  the  costs  spent  on  an  energy  efficient  home.    They  will  get  this  money  back  in  the  form  of  100%  of  their  community  fees  being  paid  by  this  proposed  enterprise,  amounting  to  a  total  sum  of  approximately  24,000  baht  per  year.        

  Another  important  consideration  when  marketing  this  community  to  consumers  is  socially  responsible  strategies  of  the  proposed  business.    These  strategies  range  from  charitable  contributions  to  the  local  community  to  funding  for  small  scale  solar  power  projects  in  rural  areas.    Simply  by  residing  in  this  community  and  choosing  to  live  in  a  house  equipped  with  solar  panels,  community  members  are  contributing  to  the  betterment  of  their  local  communities  and  the  expansion  of  renewable  energy.    For  example,  the  corporate  social  responsibility  policy  of  the  company  is  the  4-­‐ones  model  in  which  it  is  planned  to  set  aside  1%  of  company  product,  1%  of  profit,  1%  of  employee  time,  and  1%  of  equity  in  order  to  give  back  to  the  local  and  global  communities.    It  is  therefore  important  for  future  community  members  to  be  aware  of  these  socially  responsible  business  practices,  as  a  main  marketing  scheme  for  the  product.  

 

Economic  Assessment  Methodology     The  economic  assessment  of  building-­‐integrated  photovoltaic  systems  in  Thailand  is  divided  into  two  sections.    The  first  section  consists  of  a  non-­‐discounted  economic  assessment  that  evaluates  the  payback  period  of  the  photovoltaic  system  given  the  grid-­‐buyback  adder  without  taking  into  account  the  time  value  of  money.    The  second  section  consists  of  a  discounted  economic  assessment  that  factors  calculations  of  the  time  value  of  money  into  the  evaluation  of  the  photovoltaic  system  payback  period.    The  non-­‐discounted  and  the  discounted  economic  assessments  are  performed  both  with  internal  costs  only  and  with  internal  and  external  costs  combined.    The  external  costs  value  can  represent  either  the  

Page 75: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

75    

price  of  carbon  credits  in  a  hypothetical  future  carbon  market  in  Thailand  or  the  avoided  costs  due  to  the  negative  environmental  impacts  of  carbon  dioxide.  

  The  economic  assessment  of  building-­‐integrated  photovoltaic  system  derives  its  data  from  a  report  on  the  costing  of  BIPV  systems  released  by  the  Florida  Solar  Energy  Center  (Ventre,  Farhi  and  Szaro).  The  publication  provides  a  cost  range  for  module,  inverter,  maintenance  and  operation,  and  balance  of  system  costs.  While  the  paper  was  published  in  2001  they  produce  comparable  results  to  the  IEA  report  on  solar  system  costing  (IEA  Photovoltaic  Power  Systems  Programme).  The  IEA  report  was  not  used  for  this  study  because  it  does  not  separate  the  components  of  a  building-­‐integrated  photovoltaic  system  and  reports  only  the  total  system  costs.    The  results  of  the  economic  assessment  also  depend  on  the  data  and  input  values  used  in  the  technical  and  environmental  assessments.    The  methodology  of  the  economic  assessment  is  described  in  more  detail  in  the  subsequent  sections.  

Non-­‐Discounted  Economic  Assessment  

  The  non-­‐discounted  economic  assessment  begins  with  a  calculation  of  the  net  cost  of  the  photovoltaic  system  based  on  the  total  system  cost  and  the  replaced  roof  cost.    This  calculation  is  outlined  below.  

 

 

 

The  internal  costs  calculation  of  the  revenue  per  year  is  determined  by  multiplying  the  Thailand  average  grid  sale  price  for  peak  hours  and  non  peak  hours  by  the  calculated  peak  and  non  peak  output  calculated  in  the  preliminary  technical  assessment  (citation  VSPP  website).  Then  the  total  output  predicted  by  the  technical  assessment  is  multiplied  by  the  grid  buyback  and  added  into  the  revenue  from  the  sale  of  electricity  during  peak  and  non  peak  hours.  This  calculation  is  shown  below.    

   

The  combined  internal  and  external  costs  calculation  of  the  revenue  per  year  accounts  for  both  the  photovoltaic  system  output  and  the  avoided  carbon  dioxide  emissions  from  the  traditional  mix  of  electricity  fuels  in  Thailand.    This  calculation  is  shown  below.          

 

Given  the  revenue  per  year  calculated  for  the  internal  costs  calculation  and  the  combined  internal  and  external  costs  calculation  and  taking  into  account  the  average  photovoltaic  system  maintenance  costs,  the  non-­‐discounted  payback  period  can  be  calculated  as  outlined  below.  

 

Page 76: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

76    

 

The  non-­‐discounted  payback  period  varies  depending  on  whether  only  internal  costs  are  included  or  both  internal  and  external  costs  are  included.      

Discounted  Economic  Assessment    

  The  non-­‐discounted  economic  assessment  provides  valuable  figures  to  present  to  philanthropists  or  concerned  citizens  who  value  the  building-­‐integrated  photovoltaic  system  for  the  environmental  benefits  or  environmentally-­‐friendly  image  that  it  provides.    The  discounted  economic  assessment,  in  contrast,  is  more  useful  for  potential  investors  who  see  a  business  providing  building-­‐integrated  photovoltaic  systems  as  a  promising  profitable  enterprise.    The  premise  of  the  discounted  economic  assessment  is  that  a  true  measure  of  the  payback  period  must  take  into  account  not  only  the  variables  introduced  in  the  non-­‐discounted  economic  assessment  but  also  the  interest  rate  (r)  and  the  number  of  years  in  the  future  (n)  the  incremental  output  revenue  is  received.    The  calculation  of  the  discounted  payback  period  is  outlined  below.  

 

 

 

The  discounted  payback  period  varies  depending  on  whether  only  internal  costs  are  included  or  both  internal  and  external  costs  are  included.  The  discount  rate  used  for  the  assessment  is  3.25%  (CIA  World  Fact  Book)  for  the  Central  Bank  of  Thailand.  

Financial  Assessment  Methodology  The  financial  assessment  follows  a  similar  methodology  as  the  economic  assessment  with  the  

exception  that  other  input  values  are  included.  The  goal  of  the  financial  analysis  is  to  account  for  the  cost  of  running  a  business  centered  on  the  sale  of  the  generated  electricity  to  the  distribution  grid.  The  costs  incumbent  on  such  a  business  are  included  in  the  financial  analysis,  along  with  the  internal  costs  previously  discussed  as  part  of  the  economic  assessment.    

The  solar  modules  to  be  used  in  the  business  are  manufactured  outside  of  Thailand,  thus  the  import  duty  is  factored  into  the  repayment  period.  The  sample  business  model  for  a  company  seeking  to  profit  from  the  generated  electricity  provides  an  estimate  of  salaries,  legal  fees,  and  operational  costs  that  are  incorporated  in  the  initial  investment  cost  and  in  the  annual  system  costs  (Ventre,  Farhi  and  Szaro).    Also  the  financial  model  accounts  for  the  revenue  generated  from  sale  of  a  home  with  building-­‐integrated  photovoltaic  roofing.  With  respect  to  the  values  used  in  both  the  economic  and  financial  

Page 77: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

77    

analysis  only  the  model  price  varies.  The  financial  assessment  uses  a  real  product  cost  rather  than  an  industry  average.  The  module  used  in  the  scenarios  is  the  MSK-­‐170  manufactured  by  Suntech  Power,  a  solar  technology  company  based  out  of  China  (Whitaker  and  Tyron).    

Several  assumptions  are  made  in  financial  assessment  calculations.  Firstly,  the  housing  community  is  assumed  to  consist  of  200  homes.  The  individual  home  sales  price  is  assumed  to  be  6  million  baht  before  the  additional  cost  of  building-­‐integrated  photovoltaics.  The  housing  community  fees  are  considered  to  be  2000  baht  per  month  per  home,  and  it  is  also  set  that  the  business  will  pay  for  the  entirety  of  these  fees.    

The  results  and  analysis  of  the  financial  assessment  also  differ  slightly  from  the  economic  portion.  Since  the  financial  statement  aims  at  determining  whether  a  profitable  business  can  be  created,  the  results  also  compare  the  profit  margins  and  return  on  investment  for  each  of  the  involved  parties,  along  with  a  flat  and  discounted  payback  period.  The  rate  of  return  is  derived  from  the  total  discounted  revenue  and  the  percent  of  investment  over  a  30  year  time  period.  The  30  year  time  period  is  used  because  it  is  assumed  to  be  close  to  both  the  lifetime  of  the  solar  panels  and  the  time  frame  for  the  average  mortgage.  The  calculation  for  the  return  on  investment  is  pictured  below.    

 

  Using  this  methodology  the  business  decisions,  such  as  the  number  of  sides  to  install  BIPV  roofing  on  and  the  structuring  and  estimation  of  profit  sharing  among  the  invested  parties,  can  be  made  to  based  on  the  monetary  outputs.    

Results  of  Economic  Assessment  Business  Decisions  

The  financial  assessment  revealed  that  installing  photovoltaic  cells  on  only  the  Southern  side  of  the  roof  resulted  in  a  negative  return  on  investment  with  a  non-­‐discounted  payback  period  of  33.5  years.  Installing  BIPV  panels  on  all  4  sides  resulted  in  the  highest  return  on  investment  at  10.0%,  however  the  startup  cost  associated  with  this  plan  amounts  to  over  2  billion  baht  for  the  entire  project.  Both  scenarios  of  mounting  solar  modules  on  two  and  three  sides  of  the  home  result  in  a  positive  return  on  investment  netting  an  investor  who  supplies  1%  of  the  initial  capital  costs  with  0.5  and  1.7  million  baht  respectively.  Figure  3-­‐3  displays  the  corresponding  changes  in  net  revenue  provided  to  an  investor  with  the  addition  of  another  BIPV  array  on  the  roof.    

Page 78: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

78    

 

Figure  3-­‐3.  The  effects  of  the  amount  of  installed  BIPV  on  Return  on  Investment  

 These  figures  are  based  on  a  standardized  input  value  where  the  land  developer  repaid  50%  of  the  price  of  the  offset  roofing  cost  and  the  house  sale  price  is  3%  greater  than  its  starting  amount.  Setting  these  values  as  constants  allows  for  a  comparative  analysis  of  the  benefits  of  mounting  BIPV  on  each  additional  roofing  side.  

  Alterations  in  the  added  cost  of  the  homes  and  the  percent  of  the  offset  roofing  repayment  have  marginal  effects  on  investor  payback  period,  but  drastically  affect  the  payback  to  the  homeowners  and  land  developer.  Figure  3-­‐4  demonstrates  the  effect  of  increasing  the  added  sale  price  of  the  homes  on  both  the  homeowner  and  investor.  The  payback  period  for  the  investor  ranges  between  16.3  and  17.3  years  resulting  in  negligible  shifts  in  the  discounted  total  revenue.  However  for  the  homeowner,  changes  of  even  1%  result  in  a  dramatic  increase  in  the  payback  period.  The  return  on  investment  for  the  homeowner  reacts  similarly  to  variations  in  the  additional  home  costs.  With  a  sale  price  increase  of  roughly  3.8%  the  homeowner  receives  455,000  Thai  baht  in  revenue,  which  is  nearly  double  the  amount  of  the  initial  investment.    

 

Figure  3-­‐4.  Impact  of  home  sales  price  on  payback  period  

Page 79: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

79    

  The  land  developer  profits  come  from  the  savings  from  the  offset  roofing  cost.  The  critical  variable  for  the  developer’s  savings  is  thus  the  percent  of  the  offset  cost  that  they  pay  to  the  business  funding  the  installation  of  the  building-­‐integrated  photovoltaics.  Unless  the  housing  developer  pays  all  of  the  offset  roofing  cost,  they  will  post  positive  savings  from  the  project.  Additionally  the  investor  receives  a  positive  return  on  investment  under  all  circumstances.  Under  these  conditions  an  equitable  repayment  of  the  offset  roofing  cost  of  50%  is  a  reasonable  conclusion  as  both  parties  stand  to  benefit.    

  The  ROI  remains  constant  regardless  of  the  initial  capital  that  an  investor  raises  for  project;  however  the  amount  of  startup  capital  supplied  and  repayment  differ.  Figure  3-­‐5  shows  the  corresponding  initial  investment  size  and  total  revenue  generated.    

Percent of Startup Supplied

Initial Capital Invested(Thai baht)

Net Revenue(Thai baht)

1% 18,744,463.29

1,700,572.35

5% 93,722,316.46

8,502,861.77

10% 187,444,632.93

17,005,723.54

15% 281,166,949.39

25,508,585.31

20% 374,889,265.85

34,011,447.08

25% 468,611,582.32

42,514,308.85

30% 562,333,898.78

51,017,170.62

35% 656,056,215.25

59,520,032.39

40% 749,778,531.71

68,022,894.16

45% 843,500,848.17

76,525,755.93

50% 937,223,164.64

85,028,617.70

Figure  3-­‐5.  Percent  of  Investment  and  Net  Revenue  

Figure  3-­‐6  compares  the  amount  of  revenue  that  all  parties  involved  receive  assuming  an  initial  investment  of  5%.  

Total Discounted Revenue (Thai baht)

Investor/Entrepreneur

8,502,861.77

Land Developer

18,256,830.00 Homeowner 455,566.02

Figure  3-­‐6.  Total  net  revenue  for  all    parties  

Page 80: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

80    

These  results  support  the  plausibility  of  undertaking  a  business  venture,  such  as  the  one  outlined  previously.  All  partners  in  the  business  stand  to  gain  from  the  construction  of  the  solar  housing  development.  While  the  payback  period  is  relatively  high  it  is  important  to  remember  that  homes  are  considered  a  long  term  and  generally  stable  investment.  Additionally,  these  results  assess  only  the  monetary  benefits  of  the  business  and  do  not  account  for  the  positive  social  and  environmental  impacts.    

Policy  Suggestions  

  While  the  previous  results  suggest  that  financial  gains  are  possible  through  the  proposed  business  plan,  they  remain  low  when  compared  to  other  investment  opportunities.  Since  the  Thai  government  claims  to  prize  renewable  energy  projects,  testing  various  inputs  that  the  government  can  tweak  to  enhance  the  competitiveness’  of  the  business.  The  subsidy  adder  and  the  import  tax  play  an  important  role  in  the  revenue  generation  and  initial  startup  cost.  Improved  government  policies  can  help  generate  more  revenue  and  force  down  initial  capital  costs.    

Testing  with  the  subsidy  adder  currently  provided  by  the  Thai  government  for  the  sale  of  solar  energy  reveals  that  without  the  8  baht/kWh  adder  the  business  plan  would  yield  a  negative  return  for  an  investor.  Adjusting  the  subsidy  dramatically  decreases  the  discounted  payback  period  initially;  the  gains  decrease  as  the  subsidy  is  increased.  Figure  3-­‐7  shows  the  relationship  of  the  subsidy  adder  and  the  discounted  and  nominal  payback  period.    The  graph  indicates  that  increasing  the  subsidy  adder  beyond  8  baht/kWh  yields  only  marginal  improvements.    

 

Figure  3-­‐7.  Subsidy  adder  versus  payback  period  

However,  when  viewing  the  impact  of  augmenting  the  subsidy  adder  on  the  ROI  and  investor  net  revenue  the  gains  from  the  subsidy  adder  are  much  greater.  Figure  3-­‐8  shows  the  relationship  of  the  

Page 81: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

81    

subsidy  adder  and  the  ROI  and  investor  net  revenue.  Merely  adding  an  additional  2  baht/kWh  to  the  subsidy  adder  produces  a  dramatic  increase  in  the  return,  indicating  that  additional  government  support  could  make  such  a  business  venture  highly  profitable.    

Subsidy  Adder  (baht/kWh)   Return  on  Investment   Investor  Net  Revenue(million  Thai  baht)  

0 -65.63% -12.3 2 -46.96% -8.8 4 -28.28% -5.3 6 -9.60% -1.8 8 9.07% 1.7

10 27.75% 5.2 12 46.43% 8.7 14 65.10% 12.2 16 83.78% 15.7

 

Figure  3-­‐8.  Subsidy  adder  and  net  revenue  

In  Thailand  the  import  tax  on  commercial  goods  is  extremely  high  at  50%  of  the  products  value.  Thus  another  government  policy  change  that  could  impact  the  performance  of  the  business  would  be  to  reduce  the  import  tariff  on  renewable  energy  technologies.  Also  analyzing  the  impact  of  import  costs  can  yield  a  rough  estimate  of  how  the  proposed  business  would  fare  if  the  production  of  the  solar  modules  took  place  within  Thailand.  Figure  3-­‐9  displays  the  relationship  between  the  import  tax  and  the  ROI  for  an  investor.  Even  small  deductions  in  the  import  tax  generate  substantial  gains  in  returns.    

Page 82: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

82    

 

Figure  3-­‐9.  Import  tax  versus  return  on  investment  

  Reducing  the  import  tax  produces  greater  yields  in  the  ROI,  however  the  costs  absorbed  by  the  government  is  much  higher  as  well.  Figure  3-­‐10  and  figure  3-­‐11  compare  the  government  losses  due  to  increases  in  the  subsidy  adder  and  reduction  in  the  import  tax.    

Import Tax Government Spending (Thai baht)

0

1,010,905,168

0.1

808,724,134

0.2

606,543,101

0.3

404,362,067

0.4

202,181,034

0.5 0  

Figure  3-­‐10.  Cost  to  government  with  various  import  duties  

 

 

 

Page 83: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

83    

Subsidy Adder (baht/kWh)

Government Spending(Thai baht)

Government Spending (US dollars)

8 0 0

10 2,766,420 86,451

12 5,532,840 172,901

14 8,299,260 259,352

16 11,065,680 345,803

Figure  3-­‐11.  Government  spending  with  increased  subsidy  adders  

A  minimal  decrease  in  the  import  tax  to  40%  of  the  products  value  and  a  slight  increase  in  the  subsidy  adder  to  10  baht/kWh  would  cost  the  Thai  government  approximately  204,947,454  Thai  baht  ($6,404,608  US  dollars)  over  the  30  year  time  period.  These  changes  would  lead  to  an  increase  in  the  ROI  for  an  investor  from  9.1%  to  43.2%  with  an  increase  in  final  revenue  of  approximately  5.5  million  Thai  baht  ($171,875  US  dollars).  Government  support  for  this  renewable  energy  project  is  vital  to  producing  a  feasible  business.    

Conclusion     For  the  Shared  Profit  BIPV  System  in  Thailand  as  a  whole,  the  technical,  environmental,  and  economic  results,  suggest  that  there  is  a  profitable  way  for  solar  energy  to  enter  the  market  as  a  VSPP.    Residential  houses  with  monocrystalline  photovoltaic  modules  acting  as  roofs  receive  a  large  amount  of  incoming  solar  radiation  yearly  because  of  Bangkok’s  proximity  to  the  equator.    Even  with  varying  system  efficiencies,  the  robust  data  ensure  significant  electricity  is  generated  from  BIPV  installations.    Roofs  with  panels  on  three  of  four  sides  can  generate  nearly  46  MWh  per  year.      

An  interactive  Microsoft  Excel  Spreadsheet  allows  for  users  to  input  various  roof  type  scenarios,  which  then  synchronizes  with  an  environmental  impact  assessment  and  economic  analyses.    The  electricity  sold  back  to  the  grid  incurs  both  environmental  and  economic  gains.    The  amount  of  carbon  dioxide  offset  per  home  is  enough  to  account  for  several  times  the  carbon  footprint  of  an  average  Thai  citizen.  More  important  from  an  environmental  impact  assessment  viewpoint,  the  electricity  generated  by  photovoltaic  systems  displaces  the  average  Thai  electricity  mix  and  potentially  reduces  the  amount  of  CO2  per  kWh  by  thirty-­‐fold.      

Financially,  the  enterprise  is  profitable,  but  dependent  upon  the  Thai  government  VSPP  adder.    Over  the  course  of  a  thirty-­‐year  mortgage  cycle,  a  theoretical  investor  paying  one  percent  of  the  startup  cost  could  make  1.7  million  THB  (nearly  $51,000  USD).      

The  system  seems  promising,  but  relies  upon  government  subsidies  to  remain  constant.    If  the  government  increased  its  adder  for  VSPP’s,  investors  would  earn  more  profit  and  the  system  could  expand  further.    One  potential  technologically,  environmentally,  and  economically  viable  way  for  solar  

Page 84: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

84    

electricity  to  enter  the  market  is  through  building-­‐integrated  monocrystalline  photovoltaic  applications.  However,  it  may  be  necessary  for  increased  government  incentives  and  policies,  focused  on  clean,  renewable  technologies,  to  be  created  and  implemented  in  order  for  the  business  to  be  economically  viable  within  a  time  frame  attractive  to  investors.    

The  results  of  the  assessment  confirm  the  ability  of  this  system  to  work  presently  and  improve  as  technology  and  Thailand’s  infrastructure  progresses.  

                                                     

Page 85: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

85    

 Appendix  1  

All  figures  in  Appendix  1  are  provided  by  PVSYST  Version  4.37    (Mermoud,  Roecker  and  Bonvin).  

 

Figure  A-­‐1.  Measurement-­‐Simulation  Comparison  for  Incident  Irradiation,  Marzili  Daily  Values  

 

Page 86: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

86    

Figure  A-­‐2.  Measurement-­‐Simulation  Comparison  for  Incident  Irradiation,  Marzili  Hourly  Values  

 

Figure  A-­‐3.  Comparison  of  the  Measured  Temperature  with  Respect  to  the  Model,  Marzili  

 

Page 87: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

87    

Figure  A-­‐4.  Simulation-­‐Measurement  Comparison  for  PV  Field  Output,  LESO-­‐sheds  Daily  Values  

 

Figure  A-­‐5.  Simulation-­‐Measurement  Comparison  PV  Field  Output,  LESO-­‐sheds  Hourly  Values  

 

Figure  A6.  Comparisons  for  Amorphous  Collectors  of  LESO-­‐USSC,  Strong  Beam  

Page 88: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

88    

 

Figure  A-­‐6.  Comparisons  for  the  Amorphous  Collectors  of  LESO-­‐USSC,  Purely  Diffuse  Irradiation  

 

 Figure  A-­‐7.  Inverter  Response  with  Standard  Available  Inverter  Specification,  Marzili  

Page 89: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

89    

 

Figure  A-­‐8.  Inverter  Response  After  Manual  Adjustment,  Marzili    

 

                             

Page 90: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

90    

Appendix  2  

Business  Plan  General  Company  Description  

Mission  Statement:  Our  mission  is  to  introduce  renewable  energy  into  everyday  life  by  aiding  housing  developers  in  home  power  production  through  the  use  of  building-­‐integrated  photovoltaic  systems  in  order  to  promote  the  reduction  of  greenhouse  gas  emissions  and  increase  Thailand’s  energy  independence.    

Goals  and  Objectives:    

• As  a  means  of  addressing  the  problem  of  global  climate  change  and  adopting  environmental  responsibility,  the  aim  of  this  venture  is  to  contribute  to  the  reduction  of  Thailand’s  dependency  on  fossil  fuels.    As  such,  the  main  goal  of  our  organization  is  to  become  a  profitable  leader  in  small  scale,  community-­‐based  solar  power  production.    

• Our  objective  is  to  build  a  housing  community  in  which  solar  cells  are  completely  building-­‐integrated  on  the  roofs  of  the  homes,  in  order  to  generate  carbon  free  energy  for  sale  into  the  energy  grid.  

• Finally,  it  is  important  that  we  maintain  a  constant  status  as  a  socially  responsible  business,  adopting  policies  and  programs  that  contribute  to  the  welfare  of  the  local  community  and  making  sure  that  our  business  has  a  positive  impact  on  people  and  the  environment.    

Business  Philosophy:  The  driving  philosophy  behind  our  business  venture  is  that  environmental  and  social  responsibilities  do  not  necessitate  drastic  changes,  but  can  be  achieved  incrementally  on  a  community  level.  Small  changes  can  have  a  large  impact.    By  building  solar  communities,  we  hope  to  show  that  environmental  responsibility,  such  as  reducing  carbon  emissions  and  promoting  renewable  energy  technologies,  does  not  require  radical  lifestyle  changes.    Our  business  was  created  to  promote  sustainable  living  through  photovoltaic  technology  while  providing  luxury  residences.    This  decision  is  due  to  the  ability  of  affluent  communities  to  pioneer  new  technologies  and  promote  the  example  of  sustainable  living  due  to  specific  income  levels.      

Our  philosophy  extends  beyond  our  products  and  services  as  well.  It  is  important  that  we  maintain  our  status  as  a  socially  responsible  business  by  giving  back  to  the  community,  as  specified  in  our  formal  corporate  social  responsibility  policy.    We  will  institute  a  corporate  social  responsibility  structure  that  is  referred  to  as  the  4-­‐1s  plan.    While  adhering  to  this  policy,  our  business  will  set  aside  1%  of  company  profit,  1%  of  employee  time,  1%  of  our  product,  and  1%  of  our  equity  to  give  back  to  the  local  community.    We  believe  in  the  importance  of  positive  environmental  and  social  business  changes  in  order  to  gain  the  consumer  vote  in  today’s  market.  

Page 91: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

91    

To  achieve  our  goal  of  a  subsidy-­‐free  project,  the  solar  housing  development  will  be  marketed  towards  high  income  consumers.  Higher  income  consumers  will  be  less  sensitive  to  the  added  costs  of  the  building  integrated  system.    In  addition,  affluent  consumers  tend  to  have  a  higher  willingness  to  pay  for  renewable  energy  sources,  leading  us  to  believe  that  this  is  the  prime  marketing  group  based  on  annual  income  levels.    

The  energy  market  in  Thailand  is  a  rapidly  growing  industry  as  the  country  continues  to  industrialize.  The  renewable  energy  sector  is  beginning  to  demand  a  larger  portion  of  the  energy  growth  as  the  Thai  government  attempts  to  promote  its  own  energy  security  by  decreasing  its  dependence  on  foreign  fuel  sources.  The  housing  sector  also  continues  to  show  growth  in  Thailand  despite  the  global  financial  crisis.    

Our  business  will  register  as  an  Ordinary  Partnership  with  Thailand’s  Ministry  of  Commerce  and  as  a  Very  Small  Power  Producer.  The  liability  of  the  company  will  fall  equally  upon  its  establishing  members.    

 

Products  and  Services  

The  nature  of  our  business  requires  that  we  provide  a  wide  range  of  services.  Initially,  our  business  will  partner  with  a  land  development  firm  to  create  a  high  end  housing  community  equipped  with  building  integrated  photovoltaic  cells.  In  this  capacity,  we  will  facilitate  and  fund  the  procurement  and  installation  of  the  BIPV  modules.    We  will  raise  the  capital  for  the  added  cost  of  the  solar  modules  versus  using  standard  roofing  practices.    

The  solar  modules  chosen  to  be  integrated  onto  the  rooftops  of  our  community  are  the  Suntech  Power  170  Wp  cells  in  the  MSK  line  (Whitaker  and  Tyron).    These  were  chosen  due  to  their  maximum  output  and  efficiency,  taking  module  cost  and  payback  period  into  consideration.      

Monocrystalline  cells,  while  more  expensive,  have  proven  to  be  a  more  reliable  technology,  providing  a  larger  energy  output  when  compared  with  polycrystalline  and  amorphous  silicon  solar  cells.    Monocrystalline  photovoltaic  solar  energy  panels  are  among  the  most  dependable,  efficient,  and  commercially  viable  options  in  building-­‐integrated  solar  technology.    A  single  silicon  crystal  is  used  to  make  each  module,  leading  to  higher  module  efficiency.    This  can  be  compared  to  the  option  of  multiple  crystals  fused  together,  as  seen  in  polycrystalline  technology,  which  has  a  lower  efficiency.  

However,  due  to  the  high  efficiency  increase,  there  is  also  a  corresponding  price  increase.    Essentially,  the  increase  in  cost  is  buying  the  additional  efficiency,  an  important  consideration  due  to  the  limited  rooftop  space  available  on  the  homes  in  our  prospective  community.    Generally,  monocrystalline  solar  cell  technology  is  the  best  type  to  use  when  space  is  a  concern,  as  it  usually  is  with  building-­‐integrated  projects.    This  type  of  technology  allows  more  wattage  per  square  foot  to  be  produced.    In  addition,  the  lifespan  of  a  monocrystalline  cell  can  range  from  25-­‐  30  years  at  least,  proving  them  to  be  an  advisable  investment  for  long-­‐term  power  production.        

Page 92: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

92    

Using  a  building  integrated  photovoltaic  system  instead  of  standalone  or  attached  panel  arrays  provides  several  advantages.  Firstly,  the  net  cost  of  building  integrated  cells  is  much  less  as  they  replace  the  cost  of  roofing  materials.    Because  the  solar  panels  themselves  serve  as  a  roofing  material,  they  eliminate  the  need  to  purchase  standard  concrete  roofing  tiles.    Essentially,  the  building-­‐integrated  photovoltaic  system  acts  as  multi-­‐functional  building  material,  serving  as  a  roof  and  as  an  electricity-­‐generating  system.    There  is  a  financial  value  to  the  displaced  building  materials  and  reduced  installation  costs.    In  addition,  there  is  also  the  value  of  the  electricity  generated.    Most  building-­‐integrated  systems  are  made  up  of  highly  efficient  solar  cells  in  order  to  maximize  energy  and  profit  obtained  from  a  small  amount  of  space.  

  After  the  housing  project  is  completed,  we  will  take  ownership  of  the  BIPV  cells  and  register  with  the  Energy  Distribution  Authority  as  a  Very  Small  Power  Producer  (VSPP)  to  sell  the  generated  electricity  to  the  grid.  The  Energy  Distribution  Authority  buys  energy  from  a  VSPP  at  the  same  rate  at  which  they  purchase  power  from  the  government  run  Energy  Generating  Authority  of  Thailand  (EGAT).  In  addition  to  the  retail  price,  the  Thai  government  has  instated  a  subsidy  adder  for  VSPPs  providing  renewable  energy.    The  subsidy  adder  increases  the  profitability  of  renewable  energy  projects  and  reduces  the  payback  period.  In  comparison  with  other  renewable  energy  sources,  solar  energy  receives  the  highest  subsidy  adder  at  8  Thai  baht/kWh  (Master  Power).    

In  addition  to  selling  energy  to  the  grid,  we  will  pay  to  maintain  the  housing  community,  by  not  requiring  that  residence  pay  the  customary  community  fee.    The  aim  of  this  service  is  to  entice  prospective  home  buyers  with  reduced  monthly  costs  and  create  an  incentive  for  home  owners  to  practice  good  stewardship  of  their  roofs.  Our  offices  will  be  located  on  site  in  the  community  offices,  and  since  we  will  be  funding  part  of  the  community,  our  rent  and  utilities  will  be  covered  as  part  of  our  contribution  to  the  community.    Over  time,  we  can  decrease  the  amount  of  the  community  cost  we  provide  as  efficiency  of  the  solar  cells  decline  and  the  subsidy  adder  is  removed.    

 

Marketing  Plan  

Economics  

  The  structure  of  our  business  plan  requires  us  to  look  at  two  different  markets  and  assess  the  potential  of  each  one.    The  Thai  real  estate  market  will  determine  the  initial  cost  and  payback  of  the  solar  community  and  the  willingness  of  land  developers  to  undertake  such  a  venture.    Secondly,  the  energy  market  will  determine  the  future  sales  price  of  energy  and  overall  generated  revenue  of  the  company.  

The  2008  global  credit  crisis  severely  hampered  the  growth  of  markets  worldwide.    The  demand  in  the  real  estate  market  increased  in  2008  from  the  previous  year,  but  by  the  end  of  the  fourth  quarter,  the  impact  of  the  financial  crisis  had  resulted  in  a  weakening  in  consumer  demand  (Land  and  House  PCL).    In  March  of  2008,  the  Thai  government  instituted  a  real  estate  stimulus  plan  which  reduces  taxes  on  property  transfers  and  mortgage  registration  fees.    These  measures,  along  with  the  government’s  

Page 93: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

93    

general  stimulus  plan,  falling  construction  costs,  and  lower  interest  rates,  have  allowed  the  real  estate  market  to  continue  its  positive  growth  into  2009  (Bank  of  Thailand  Monetary  Group).  

The  financial  crisis  has  also  impacted  the  supply  side  of  the  real  estate  market  as  credit  institutions  have  strengthened  their  lending  standards.  Larger  development  firms  remain  strong,  but  the  small  to  medium  sized  firms  have  suffered  from  lack  of  investor  confidence  (Bank  of  Thailand  Monetary  Group).  Real  estate  trends  also  indicate  a  decline  in  large  housing  developments  in  favor  of  condominiums.  Rising  gas  prices  have  created  a  demand  for  condominiums  located  near  public  transit  (Land  and  House  PCL).  The  changing  demand  creates  an  unfavorable  environment  for  a  detached  housing  development.  However,  as  our  development  is  aimed  at  attracting  high  income  customers,  our  customer  demand  for  housing  near  public  transit  will  be  fairly  inelastic  with  regards  to  gas  prices.  

The  global  economic  crisis  in  2008  also  affected  the  energy  sector.  Energy  demand  for  2008  dropped  for  the  first  time  in  decade  as  a  result  of  the  economic  situation  (EGAT).  The  slow  economic  growth  in  major  markets  translated  into  a  decreased  energy  demand.  However,  the  climate  differential  between  2007  and  2008  also  accounts  for  the  dip  in  electricity  demand.  In  2008,  Thailand  experienced  an  unusually  short  summer  and  lower  average  temperatures  (EGAT).    

The  Electricity  Generating  Authority  of  Thailand  (EGAT)  makes  up  approximately  50%  of  Thailand’s  energy  generating  capacity  providing  15,020.96  MW  of  the  total  29,891.65  MW  (EGAT).  In  comparison,  small  power  producers  accounted  for  a  capacity  of  2,079.10  MW  (EGAT).  However,  the  rising  global  price  of  oil  creates  a  favorable  situation  for  the  growth  of  the  renewable  energy  industry  and  for  small  power  producers.  The  Thai  government  also  has  made  a  commitment  to  bolstering  the  renewable  energies  sector.  

  Even  with  favorable  government  support  and  economic  conditions,  we  will  have  to  face  several  barriers  upon  our  entrance  into  the  solar  energy  market.  Firstly,  solar  cells  have  yet  to  become  widely  used  enough  for  production  costs  to  have  decreased  significantly.  As  such,  high  initial  capital  cost  will  be  incurred  early  on.  Also,  the  Thai  solar  industry  is  not  developed  enough  to  completely  support  our  endeavors.    Therefore,  we  will  need  to  ship  in  solar  modules  from  overseas.  Thailand  is  an  export-­‐  based  economy  and  thus  has  higher  tariffs  on  imported  goods.  However,  once  installed,  solar  technology  requires  little  in  the  way  of  operational  and  maintenance  costs.    Thus,  the  major  of  the  capital  needs  will  come  during  start  up.  Another  potential  barrier  is  consumer  acceptance.  For  our  project  to  succeed,  customers  must  accept  the  aesthetic  changes  to  their  homes  with  the  integration  of  PV  modules.    

  As  a  technology  centered  business,  changes  in  solar  cell  technology  greatly  impact  our  strategy.  Currently,  our  business  plans  to  install  monocrystalline  solar  cells,  as  they  are  a  mature  and  reliable  technology  with  a  high  output.    As  amorphous  thin  film  technology  progresses  and  matures,  we  may  utilize  such  technology  in  future  projects.  The  lower  cost  of  thin  film  solar  modules  may  allow  us  to  break  into  a  wider  market  and  build  home  developments  for  all  income  levels.    

  Currently,  the  government  policies  in  Thailand  are  favorable  to  renewable  energy  producers  and  to  VSPPs.  Changes  in  these  regulations  may  increase  the  payback  period  of  our  projects  and  drive  away  potential  investors.  Also  the  Thai  government  continues  to  struggle  with  stability.  As  the  government  

Page 94: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

94    

turmoil  increases,  investor  and  consumer  confidence  wanes,  causing  weakened  economic  conditions.  EGAT  sited  government  instability  and  consumer  lack  of  confidence  as  a  reason  for  the  slow  growth  in  2009  along  with  the  global  financial  crisis.  The  probability  of  continued  political  upheaval  remains  high.  

Despite  the  constant  fluctuations  in  the  Thai  political  environment,  the  bureaucratic  framework  has  remained  intact,  allowing  for  businesses  to  continue  functioning  and  keeping  foreign  investment  flowing  into  the  country.  The  Thai  government  has  also  continued  to  remain  in  support  of  renewable  energy  as  it  has  the  political  incentive  to  reduce  the  nation’s  dependence  on  foreign  fuel  sources.  

  As  previously  discussed,  the  real  estate  market  is  changing  and  moving  toward  higher  density  accommodations,  such  as  condominiums,  with  easy  access  to  public  transit.    If  this  trend  continues,  our  business  model  will  need  to  adapt  to  the  changing  housing  demand.    Building  integrated  photovoltaic  cells  can  and  have  been  incorporated  into  large  single  structures.    While  roof  space  may  decrease,  façades  may  be  utilized  to  generate  solar  energy.  The  flexibility  of  building  integrated  photovoltaic  cells  should  insulate  us  from  shifting  consumer  preferences.    

Product  

  Our  housing  project  will  cater  to  the  high-­‐income  home  owner  and  should  be  viewed  as  an  affordable  accompaniment  to  a  luxury  housing  development.  The  addition  of  building-­‐integrated  solar  cells  will  differentiate  our  community  from  other  similar  developments.  Solar  cells  will  create  the  appearance  of  a  certain  lifestyle  for  our  customer,  reflecting  both  environmental  and  social  responsibility.    In  a  time  of  rising  environmental  awareness  due  to  the  current  problems  of  increasing  carbon  emissions,  depletion  of  fossil  fuel  resources,  climate  change,  and  planetary  warming,  we  are  an  eco-­‐friendly  community  that  utilizes  solar  power  production  to  combat  these  issues.    In  addition,  our  commitment  to  renewable  energy  will  help  reduce  Thailand’s  dependence  on  dirty  energy  mixes  and  increase  the  country’s  overall  energy  independence.  

  Our  community  is  considered  “environmentally  friendly”  due  to  the  home  designs  that  include  building-­‐integrated  photovoltaic  systems  and  rooftops  that  are  designed  and  oriented  in  an  optimal  manner  for  maximizing  energy  production.    Another  community  advantage  is  the  elimination  of  the  typical  community  fees  that  are  residents  are  required  to  pay  for  community  upkeep.    Our  business  will  cover  the  community  fees  for  all  residents  as  an  incentive  to  live  in  the  community  and  maintain  proper  care  of  their  homes  and  their  roofs.    In  addition,  the  home  owners  will  be  earning  a  monthly  percentage  of  the  money  made  from  the  energy  that  is  produced  by  their  roof  and  sold  to  the  grid.      Finally,  while  money  is  being  made  in  increments  by  community  fee  savings  and  rooftop  energy  production,  there  is  also  an  increase  in  the  property  values  of  homes  with  building-­‐integrated  photovoltaic  systems.    This  could  constitute  large  monetary  gains  in  the  future  if  a  customer  is  contemplating  the  sale  of  his  or  her  home.      

  Another  important  consideration  when  marketing  our  community  to  consumers  is  our  socially  responsible  business  strategies.    These  strategies  range  from  charitable  contributions  to  the  local  community  to  funding  for  small  scale  solar  power  projects  in  rural  areas.    Simply  by  residing  in  our  community  and  choosing  to  live  in  a  house  equipped  with  solar  panels,  community  members  are  

Page 95: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

95    

contributing  to  the  betterment  of  their  local  communities  and  the  expansion  of  renewable  energy.    For  example,  our  corporate  social  responsibility  policy  is  the  4-­‐ones  model  in  which  we  plan,  as  a  company  and  a  very  small  power  producer,  to  set  aside  1%  of  company  product,  1%  of  profit,  1%  of  employee  time,  and  1%  of  equity  in  order  to  give  back  to  our  local  and  global  communities.    It  is  therefore  important  for  our  future  community  members  to  be  aware  of  our  socially  responsible  business  practices,  as  a  main  marketing  scheme  for  our  product.  

Customers  

Our  company  must  market  to  three  separate  groups.  First,  we  will  partner  with  a  land  developer  to  create  our  solar  housing  community.  Post-­‐production,  we  must  market  the  houses  to  prospective  home  owners.  Finally,  we  will  sell  electricity  to  the  Energy  Distribution  Authority,  either  the  Provincial  Energy  Authority  or  the  Metropolitan  Energy  Authority.    

Due  to  the  lack  of  confidence  of  financial  institutions  in  small  to  medium  sized  development  firms,  our  target  costumer/partner  in  the  building  and  development  phase  will  be  the  larger  well  established  developers.  We  will  aim  to  partner  with  one  of  two  Thai  land  developers;  Land  and  House,  or  Noble  Development.      These  developers  operate  in  the  Bangkok  metropolitan  area  and  have  large  existing  financial  assets.  Our  optimal  partner  would  be  the  largest  of  these  firms,  Land  and  House  LTD.  In  2008  Land  and  House  Public  Company  Limited,  accrued  10.382  billion  baht  from  the  sale  of  single  detached  houses  alone  (Land  and  House  PCL).  Along  with  their  subsidiary  companies,  Land  and  House  brought  in  16.008  billion  baht  in  total  revenue.  Noble  Development  Public  Company  Limited  in  comparison  posted  the  second  highest  total  revenue  during  2008  bring  in  roughly  2.345  billion  baht  (Noble  Development).    

As  a  luxury  housing  development  our  target  home  buyers  earn  higher  incomes.    Our  target  demographic  will  consist  mainly  of  well  educated  professionals.  The  home  buyers  will  range  from  families  with  children  to  single  occupants.  The  concept  of  our  environmentally  responsibility  community  will  entice  individuals  who  care  about  the  environment,  but  do  not  wish  to  dramatically  alter  their  lifestyles.    

Competition  

  Our  major  competitors  will  be  the  other  development  companies,  who  open  new  luxury  housing  communities  in  a  similar  time  period.  Depending  on  which  development  firm  agrees  to  partner  with  us,  our  major  competition  will  be  the  other  large  development  firms  that  build  luxury  residences.  Considering  the  current  trend  of  condominiums  replacing  detached  housing  units,  one  of  our  largest  competitors  in  attracting  high  income  home  buyers  shall  be  Major  Development  Public  Company  Limited.  Major  Development  focuses  on  building  high-­‐end,  luxury  residential  condominiums.  Their  condominiums  are  ideally  located  around  Bangkok  in  some  of  the  most  prime  real  estate  areas.  Major  Development  posted  substantial  earnings  in  2008  with  1.298  billion  baht  of  total  revenue  (Major  Development).  

Page 96: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

96    

  While  Major  Development  will  compete  for  our  customer  base,  they  are  focused  more  on  developments  in  the  middle  of  the  Bangkok  metropolitan  area  and  thus  will  not  compete  with  us  for  land.  Other  land  developers  which  do  build  residential  communities,  however,  will  compete  for  customers  and  for  land.  For  this  reason,  our  best  option  will  be  to  partner  with  Land  and  House  as  they  are  the  largest  firm  and  have  the  assets  to  procure  land  and  the  reputation  to  attract  customers.  

While  not  a  direct  competitor,  the  Electricity  Generating  Authority  of  Thailand  (EGAT)  is  responsible  for  the  sale  price  of  electricity.  If  EGAT  continues  to  rely  on  fossil  fuels  for  electricity  generation,  then  the  sale  price  will  rise  in  conjunction  with  the  global  rise  in  fossil  fuel  prices.    

Marketing  Strategy  :  

Our  marketing  campaign  shall  be  targeted  at  the  home  buyer  and  the  development  firm  that  we  partner  with  rather  than  at  the  Distribution  Authority  to  whom  we  sell  electricity.    As  part  of  our  services  provided  to  the  development  company,  we  will  actively  engage  in  promotion  of  our  new  solar  housing  community.    As  our  community  is  targeted  at  people  with  a  high  income  level,  we  will  distribute  our  promotional  materials  along  appropriate  distribution  channels.    This  includes  measures  such  as  providing  brochures  and  pamphlets  to  high  end  realtors.    We  plan  to  design  and  operate  a  website  that  will  promote  our  solar  community  and  provide  a  forum  for  potential  buyers  to  ask  questions  and  take  a  virtual  tour  of  a  model  housing  unit.    

  Our  pitch  to  the  land  development  firm  will  include  the  revenue  gains  that  are  possible.  The  developer  will  save  by  not  paying  for  the  construction  and  material  costs  of  the  roof.  As  part  of  our  agreement  with  the  housing  developer  we  will  request  that  the  offset  roofing  cost  is  evenly  divided.  Under  this  plan  the  housing  developer  still  stands  to  save  approximately  18  million  dollars  for  the  entire  community.  We  will  also  stress  to  the  land  developer  how  our  services  will  differentiate  the  housing  community  from  their  competitors.  The  main  source  of  income  for  the  housing  developer  is  from  the  sale  of  the  homes  and  thus  by  partnering  with  us  they  stand  to  gain  an  edge  on  their  competition  and  sell  their  homes  faster.  

  Yet  another  element  of  our  marketing  strategy  is  our  corporate  social  responsibility  (CSR)  policy.    We  have  chosen  to  use  the  4-­‐ones  plan,  a  model  in  which  we  will  set  aside  1%  of  company  profit,  1%  of  employee  time,  1%  of  our  product,  and  1%  of  our  equity  to  give  back  to  the  local  community.    We  believe  in  the  importance  of  positive  environmental  and  social  business  changes  in  order  to  gain  the  consumer  vote  in  today’s  market.    A  main  part  of  our  marketing  strategy  includes  advertising  our  social  and  community  efforts  to  show  our  residents  that  while  living  in  our  specific  neighborhood,  not  only  are  they  having  an  impact  on  important  environmental  changes,  but  they  are  also  contributing  to  the  betterment  of  their  local  and  global  communities.    In  general,  people  believe  in  “doing  the  right  thing”  and  ethics  play  a  large  role  in  people’s  daily  lives.    A  high-­‐quality,  distinct  social  responsibility  structure  can  influence  consumer  decision  if  they  believe  that  investing  in  this  product  is  supporting  a  business  built  on  integrity,  public  responsibility,  and  ethical  values.    Finally,  a  complete  CSR  policy  is  important  when  presenting  our  business  proposal  to  stakeholders,  as  it  can  be  a  key  selling  point  to  potential  investors  and  shareholders  who  value  companies  with  responsible  behaviors.      

Page 97: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

97    

Operational  Plan  

 

Production  

The  design  and  production  of  the  individual  housing  units  and  the  community  offices  will  be  primarily  the  undertaking  of  the  development  firm.  As  a  well  established  company  the  developer  will  have  contacts  in  the  construction  industry  and  can  determine  which  firm  to  use.  

 The  installation  of  the  BIPV  roofing  will  be  our  responsibility.  The  product  we  have  chosen  to  use,  has  a  simple  installation  procedure  and  thus  the  installation  can  be  contracted  out  to  a  standard  roofing  installer.  The  wiring  and  technical  aspects  however  will  be  supervised  be  an  experienced  electrical  engineer  with  previous  exposure  to  solar  arrays.    

Location  

  The  location  of  the  community  will  be  chosen  at  the  discretion  of  our  partner  development  firm.  Since  the  developer  will  be  the  major  stakeholder  in  the  project,  the  design  and  planning  decisions  will  fall  upon  them.  However,  we  have  selected  to  work  with  a  firm  that  operates  in  the  Bangkok  metropolitan  area.  The  level  of  development  in  the  Bangkok  area  has  led  to  a  larger  population  of  high  income  individuals  and  families,  our  target  customers.    

The  location  of  the  main  offices  would  ideally  be  located  on  site  as  part  of  the  community  office  building.  Our  location  in  the  community  office  is  essential  so  that  residence  and  easily  walk  in  and  report  problems  or  issues,  and  so  that  our  metering  devices  are  easily  accessible  to  company  personnel.    

Considering  that  we  provide  a  portion  of  the  community  cost,  our  rent  and  utilities  will  be  covered.  Small  amounts  of  space  are  required  for  operation  of  the  solar  cells,  with  the  office  serving  a  dual  purpose  of  monitoring  output  and  providing  customer  service.    

Legal  Environment  

Prior  to  selling  energy  into  the  grid,  an  application  for  VSPP  status  and  grid  connection  must  be  filed  with  the  local  Distribution  Authority,  either  the  Provincial  Electricity  Authority    or  Metropolitan  Electricity  Authority.  The  application  requires  a  complete  technical  write-­‐up  of  the  system  from  the  mode  of  generation  i.e.  solar  module  specifications  to  the  grid  interconnection  point  (See  Appendix  1).    

Once  the  application  has  been  filed  with  the  Distribution  Authority,  notification  of  acceptance  is  sent  within  45  days.  The  costs  for  interconnection  are  then  sent  to  the  VSPP  within  15  days  of  acceptance.  The  VSPP  firm  is  then  required  to  undertake  and  pay  for  the  gird  interconnection  and  sign  a  contract  with  the  Distribution  Authority  within  60  days  of  acceptance.  When  the  interconnection  is  complete,  the  Distribution  Authority  requires  an  inspection  of  interconnection  point  before  the  VSPP  can  begin  feeding  energy  into  the  grid.    

Page 98: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

98    

Personnel  

The  working  personnel  will  remain  low  due  to  the  passive  nature  of  the  energy  production  and  the  low  maintenance  requirements  of  solar  cell  technology.  The  office  and  monitoring  station  will  require  at  least  one  person  to  run  during  normal  operating  hours.  Our  business  will  employ  three  full-­‐time  office  workers  who  will  be  responsible  for  a  variety  of  tasks.  These  employees  will  be  expected  to  conduct  customer  service,  handle  the  business  financials,  and  engage  in  strategic  development  and  expansion  plans.    

Aside  from  the  day  to  day  tasks  of  running  the  company,  laborers  may  be  required  every  few  months  to  perform  routine  maintenance  of  the  solar  panels.  A  specially  trained  technician  will  be  required  to  conduct  basic  maintenance  and  to  address  system  problems.  Considering  the  size  and  scale  of  the  project,  two  technicians  may  be  required;  however,  one  will  be  kept  on  permanent  retainer.  Additional  labors  and  technicians  will  be  contracted  on  a  case  by  case  basis.    

Inventory  

Little  inventory  will  be  kept  considering  the  high  cost  and  special  nature  of  replacements.  The  most  common  significant  maintenance  issue  with  solar  arrays  is  the  inverter  breaking  before  the  normal  25  year  replacement  period.  However  inverters  are  specialized  and  costly,  thus  will  not  be  kept  in  inventory.  Also  since  our  business  is  technology  based  waiting  for  newer  and  cheaper  products  to  enter  the  market  instead  of  keeping  older  products  in  inventory  would  be  wise.  The  majority  of  inventory  will  consist  of  maintenance  equipment  and  simple  repair  products.  These  products  will  be  kept  in  storage  on  site.    

Supplier  

  We  will  purchase  our  solar  panels  from  Suntech  Power,  a  solar  energy  products  company  based  out  of  China  (Whitaker  and  Tyron).  They  will  supply  us  with  their  MSK  line  BIPV  solar  module  products  in  the  “Just  Roof”  line.  We  will  install  72  panels  per  side  totaling  216  panels  for  each  house.  For  the  entire  community  we  will  require  43200  solar  panels.  The  cells  we  have  chosen  to  use  are  the  MSK  170  module.  Suntech  Power  has  the  production  capabilities  and  reliable  product  for  a  reasonable  cost.  Suntech  successfully  installed  their  “Just  Roof”  panels  on  over  500  homes  in  Japan,  demonstrating  the  capacity  to  supply  our  endeavor  (Whitaker  and  Tyron).    

 

 

 

 

 

Page 99: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

99    

Financial  Plan  

Startup  Expenses        

Startup Construction Costs Cost (Thai baht) Solar Modules 1,015,098,480 Inverter 250,894,908 Balance of System 24,476 Installation 4,953,375 Offset Roof Price 18,256,830.00 Total Construction 1,252,714,409 Import Costs Import Duty 507,549,250.00

125,447,464.00 Excise Tax 681,782,588.06

56,170,528.66 Interior Tax 68,178,258.81

5,617,052.87 VAT 159,082,603.88

30,669,100.25 Fees 50.00 50.00 Total Construction w/ Import Costs

1,634,496,846.52 217,904,145.77

Total Adjusted Construction Cost

1,872,112,775

Figure  A2-­‐1  Startup  construction  costs  

 

 

 

 

 

 

 

 

 

 

 

Page 100: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

100    

Capital Office Equipment List Cost Furniture

116,550.00 Equipment

753.26 Other

500,000.00 Total Capital Equipment

617,303.26 Location and Admin Expenses Legal and accounting fees

200,000.00 Prepaid insurance

- Pre-opening salaries

720,000.00 Total Location and Admin Expenses

920,000.00

Opening Inventory Office supplies

3,300.00 Basic Replacement Parts

489,951.00 Total Inventory

493,251.00 Advertising and Promotional Expenses

Advertising 200,000.00

Printing 20,000.00

Travel 3,000.00

Total Advertising/Promotional Expenses

223,000.00

Figure  A2-­‐2.  Capital  office  equipment  list  and  cost  

The  majority  of  the  startup  costs  are  come  from  the  price  of  the  solar  modules  and  from  the  inverter.  The  high  import  tax  compounds  the  enormous  cost  of  the  modules  and  inverters.  

The  other  startup  costs  are  nominal  when  compared  to  the  cost  of  the  solar  array.  The  advertising  costs  are  low  as  the  land  developer  will  also  engage  in  their  customary  advertising  campaign  with  our  business  acting  as  a  complimentary  resource.  The  administrational  expenses  account  for  the  second  largest  source  of  startup  cost  followed  by  office  supplies  such  as  desks,  computers,  printers,  phones,  paper,  pens,  etc.    

Page 101: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

101    

   While  these  startup  expenses  are  quite  high  it  is  important  to  view  the  housing  community  as  a  long  term  investment.  The  life  time  of  the  cells  are  quite  high  and  even  with  a  long  payback  period  plenty  of  revenue  can  be  generated  in  the  lifetime  of  the  solar  panels.  Assuming  a  30  year  lifetime  for  the  solar  cells  an  investor  who  supplies  1%  of  the  initial  costs  can  receive  1.7  million  baht  with  a  return  of  investment  of  9.1%.    

  Testing  with  the  increase  in  house  sale  price,  offset  roofing  price  repayment,  and  installation  of  BIPV  on  various  sides  of  the  roof  yielded  plausible  realistic  estimates  of  profits  for  the  home  owner  seen  in  the  figure  below.  These  are  modest  paybacks;  however  with  increased  government  support  the  revenue  possible  for  an  investor  can  grow  dramatically    

Total Discounted Revenue (Thai baht)

Investor/Entrepreneur

8,502,861.77

Land Developer

18,256,830.00 Homeowner 455,566.02

Figure  A2-­‐3.  Total  discounted  revenue  

A  minimal  decrease  in  the  import  tax  to  40%  of  the  products  value  and  a  slight  increase  in  the  subsidy  adder  to  10  baht/kWh  would  cost  the  Thai  government  approximately  204,947,454  Thai  baht  over  the  30  year  time  period.  These  changes  would  lead  to  an  increase  in  the  ROI  for  an  investor  from  9.1%  to  43.2%  with  an  increase  in  final  revenue  of  approximately  5.5  million  Thai  baht.  Government  support  for  this  renewable  energy  project  is  vital  to  producing  a  feasible  business.  However  the  loss  or  reduction  of  the  government  subsidy  adder  creates  negative  return  on  investment  for  an  investor.    

 

Works  Cited  Advantages  and  Disadvantages  of  Monocrystalline  Solor  Panels.  23  November  2009  <http://www.solarpowerfast.com/build-­‐solar-­‐panel/monocrystalline-­‐solar-­‐panels/>.  

Aguiar,  R.  J.  and  M.  Collares-­‐Pereira.  "TAG:  a  Time-­‐dependent,  Autoregressive,  Gaussian  Model  for  Generating  Synthetic  Hourly  Radiation."  Solar  Energy  (1992):  167-­‐174.  

Aguiar,  R.  J.,  M.  Collares-­‐Pereira  and  J.  P.  Conde.  "Simple  Procedure  for  Generating  Sequences  of  Daily  Radiation  Values  Using  a  Library  of  Markov  Transition  Matrices."  Solar  Energy  (1988):  269-­‐279.  

Althaus,  Hans-­‐Jorg,  et  al.  "Manufacturing  and  disposal  of  building  materials  and  inventorying  infrastructure  in  ecoinvent."  International  Journal  of  Life  Cycle  Assessment  (2005):  35-­‐42.  

Amorphous  Silicon  Technology.  2007.  22  November  2009  <http://www.solarthinfilms.com/index.php?st_location=home%2Fphotovoltaics%2Famorphous_silicon_technology&st_version=active>.  

Page 102: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

102    

Bank  of  Thailand  Monetary  Group.  Thailand's  Economic  and  Monetary  Conditions  2008.  March  2009.  November  2009  <http://www.bot.or.th/English/EconomicConditions/Thai/report/DocLib_Econ_Report/annual_2008.pdf>.  

Bank  of  Thailand.  Thailand's  Economic  and  Monetary  Conditions  in  2008.  Bangkok,  2008.  

Bhattacharya,  Tapan.  Terrestrial  Solar  Voltaics.  Delhi:  Narosa  Publishing  House,  1998.  

Ceccaroli,  Bruno  and  Lohne  Otto.  "Solar  Grade  Silicon  Feedstock."  Luque,  Antonio  et.  al.  Handbook  of  Photovoltaic  Science  and  Engineering.  Chichester:  John  Wiley  &  Sons  Ltd,  2003.  153-­‐202.  

Central  Intelligence  Agency.  "CIA  World  Factbook:  Thailand."  November  2009.  15  November  2009  <https://www.cia.gov/library/publications/the-­‐world-­‐factbook/geos/th.html>.  

Chandler  and  Thongek.  Summary  of  the  15-­‐Year  Alternative  Energy  Development  Plan  (Translation).  2008.  

Chirarattananon,  S.  Building  for  Energy  Efficiency.  Asian  Institute  of  Technology,  2005.  

DEDE.  Thailand  Energy  Situation.  Bangkok:  Ministry  of  Energy,  2008.  

Duffie,  John  A.  and  William  A.  Beckman.  Solar  Engineering  of  Thermal  Processes.  John  Wiley  &  Sons,  1980.  

EGAT.  2008  Annual  Report.  Bangkok,  2008.  

Energy  and  the  Environment.  17  November  2009  <http://www.esru.strath.ac.uk/Courseware/Class-­‐16110/#pv>.  

EPPO.  "Regulations  for  the  Purchase  of  Power  from  Very  Small  Power  Producers  (for  the  Generation  Using  Renewable  Energy)."  2002.  

—.  "VSPP  Regulations."  2009  November  17.  Energy  Policy  and  Planning  Office.  20  November  2009  <http://www.eppo.go.th/power/index.html>.  

Erge,  T.,  V.U.  Hoffman  and  K.  Kiefer.  "The  German  Experience  With  Grid-­‐Connected  PV-­‐Systems."  Solar  Energy  (2001):  479-­‐487.  

Foll,  Helmut.  Electronic  Materials.  17  November  2009  <http://www.tf.uni-­‐kiel.de/matwis/amat/elmat_en/index.html>.  

Fraile,  Daniel,  et  al.  "Methodology  Guidelines  on  Life  Cycle  Assessment  of  Photovoltaic  Electricity."  2009.  

Fthenakis,  Vasilis  M.  "End-­‐of-­‐life  management  and  recycling  of  PV  modules."  Energy  Policy  (2000):  1051-­‐1058.  

Page 103: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

103    

"Global  Property  Guide."  2009.  November  2009  <http://www.globalpropertyguide.com/Asia/Thailand/Price-­‐History>.  

Goetzberger,  Adolf,  Christopher  Hebling  and  Hans-­‐Werner  Schock.  "Photovoltaic  materials,  history,  status  and  outlook."  Materials  Science  and  Engineering  (2003).  

Greogy  A.  Keoleian,  Geoffrey  Lewis.  Modeling  the  life  cycle  energy  and  environmental  performance  of  amorphous  silicon  BIPV  roofing  in  the  US.  Ann  Arbor,  MI:  Center  for  Sustainable  Systems,  University  of  Michigan,  2002.  

Halwatura,  R  U  and  M  Jayasinghe.  "Influence  of  insulated  roof  slabs  on  air  conditioned  spaces  in  tropical  climatic  conditions-­‐  A  life  cycle  cost  approach."  Energy  and  Buildings  (2009):  678-­‐686.  

Halwatura,  R  U  and  M.T.R.  Jayasinghe.  "Influence  of  insulated  roof  slabs  on  air  conditioned  spaces  in  tropical  climatic  conditions—A  life  cycle  cost  approach."  Energy  and  Buildings  (2009):  678-­‐686.  

IEA  Photovoltaic  Power  Systems  Programme.  "Trends  in  photovoltaic  applications:  Survey  report  of  selected  IEA  countries  between  1992  and  2008."  2009.  

Ignacio,  Tobias,  Carlos  del  Canizo  and  Jesus  Alonso.  Handbook  of  Photovoltaic  Science  and  Engineering.  John  Wiley  &  Sons,  Ltd,  2003.  

Jungbluth,  Niels,  Christian  Bauer  and  Rolf  Frischknecht.  "Life  cycle  assessment  for  emerging  technologies:  case  studies  for  photovoltaic  and  wind  power."  International  Journal  of  LCA  (2005):  24-­‐34.  

Keokeian,  Geoffrey  Lewis  and  Gregory.  Life  Cycle  Design  of  Amorphous  Silicon  Photovoltaic  Modules.  Cincinatti,  OH:  United  States  EPA  National  Risk  Management  Research  Laboratory,  1997.  

Knapp,  K  and  T  Jester.  "Empirical  investigation  of  the  energy  payback  time  for  photovoltaic  modules."  Solar  energy  (2001):  165-­‐172.  

Kofoworola,  Oyeshola  and  Shabbir  H  Gheewala.  "Environmental  life  cycle  assessment  of  a  commercial  office  building  in  Thailand."  International  Journal  of  Life  Cycle  Assessment  (2008):  498-­‐511.  

Krauter,  S  and  R  Ruther.  "Considerations  for  the  calculation  of  greenhouse  gas  reduction  by  photovoltaic  solar  energy."  Renewable  Energy  (2003):  345-­‐355.  

Land  and  House  PCL.  Investor  Information:  Financial  Information.  2009.  November  2009  <http://www.lh.co.th/LHWeb/page/front_en/corporate/ir_finance.jsp>>.  

Larsen,  Kari.  "End-­‐Of-­‐Life  PV:  then  what?"  Renewable  Energy  Focus  (2009):  48-­‐53.  

Lewis,  Geoffrey,  et  al.  PV-­‐BILD:  A  Life  Cycle  Environmental  and  Economic  Assessment  Tool  for  Building-­‐  Integrated  Photovoltaic  Installations.  Ann  Arbor:  University  of  Michigan,  1999.  

Mahabir,  Ron.  Asia  Cleantech.  2008.  November  2009  <http://asiacleantech.wordpress.com/2008/02/11/thailands-­‐greener-­‐energy-­‐future/>.  

Page 104: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

104    

Major  Development.  Financial  Statement.  July  2008.  November  2009  <http://www.majordevelopment.co.th>.  

Master  Power.  VSPP  News.  2007.  August  2009.  

Meike,  Wolfgang.  Hot  Climate  Performance  Comparison  Between  Poly-­‐Crystalline  and  Amorphous  Silicon  Cells  Connected  to  an  Utility  Mini-­‐Grid.  research  update  presentation.  Christchurch,  New  Zealand:  Northern  Territory  Centre  for  Energy  Research,  1998.  

Mermoud,  André,  Christian  Roecker  and  Jacques  Bonvin.  PVSYST  Version  4.37.  Geneva,  Switzerland,  9  June  2009.  

Noble  Development.  "Investor  Relations:  Annual  Report."  2009.  

Pacca,  Sergio,  Sivaraman  Deepak  and  Gregory  Keoleian.  "Parameters  affecting  the  life  cycle  performance  of  PV  technologies  and  systems."  Energy  Policy  (2007):  3316-­‐3326.  

PCD.  "Vehicle  Emission  Data."  2003.  

Project,  NEED.  Photovoltaics  Student  Guide.  informative  report.  Manassas:  NEED,  2007.  

"Promoting  Renewable  Energy  in  Mae  Hong  Son  Province."  UNDP  Project  Document.  2008.  

Reddy,  B.V.  Ventakarama  and  K  S  Jagadish.  "Embodied  energy  of  common  and  alternative  building  materials  and  technologies."  Energy  and  Buildings  (2003):  129-­‐137.  

Shrestha,  Ram  M.,  et  al.  Report  on  Role  of  Renewable  Energy  for  Productive  Uses  in  Rural  Thailand.  Bangkok:  Asian  Institute  of  Technology,  2006.  

Sovacool,  Benjamin  K.  "Valuing  the  greenhouse  gas  emissions  from  nuclear  power:  A  critical  survey."  Energy  Policy  (2008):  2950-­‐2963.  

Suebsukcharoen,  Nina.  "The  highs  and  lows,  ups  and  downs  of  the  Bangkok  property  market."  Real  Estate  Magazine  2009.  

Thongrung,  Watcharapong.  "Government  can  purchase  all  'clean  power.'."  2009.  VSPP  Thai.  November  2009  <http://www.vsppthai.org/en/index.php?name=news&file=readnews&id=7>.  

Varun,  A  F  Sherwani  and  J  A  Usmani.  "Life  cycle  assessment  of  solar  PV  based  electricity  generation  systems:  A  review."  Renewable  and  Sustainable  Energy  Reviews  (2009):  540-­‐544.  

Ventre,  Gerard,  et  al.  "Reducing  the  Costs  of  Grid-­‐Connected  Photovoltaic  Systems:  Proceedings  of  Solar  Forum  2001."  Cocoa:  Florida  Solar  Energy  Center-­‐  University  of  Central  Florida,  2001.  

Webber,  Chris.  "Does  a  small  scale  power  scheme  work?"  2007.  VSPP  Thai.  November  2009  <http://www.vsppthai.org/en/index.php?name=news&file=readnews&id=5>.  

Page 105: SharedProfitBuilding8 IntegratedPhotovoltaic Systems ...ie.unc.edu/files/2016/03/integrated_pv_systems.pdf5" "! Abstract’" This"paper"researches"the"technical,"environmental,"and"economic"aspects"of"aproposed"

105    

Whitaker,  Romulus  and  James  Tyron.  "Company  Overview:  Suntech."  2009.  Solar  Panel  Buzz.  15  November  2009  <http://www.solarpanelbuzz.com/solarpanels.suntech.html>.  

World  Wildlife  Fund  for  Nature.  "G8  Climate  Scorecards."  2009.