36
Shape Optimization Involving Eigenvalues of Laplace-Beltrami Operator Chiu-Yen Kao Joint work with Colin Macdonald, Daryl J. Springer AMS Sectional Meeting in Tucson, University of Arizona, Oct 26 2012 This work is partially supported by NSF, DMS1216742

Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Embed Size (px)

Citation preview

Page 1: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Shape Optimization Involving Eigenvalues of Laplace-Beltrami Operator

Chiu-Yen Kao

Joint work with Colin Macdonald, Daryl J. Springer

AMS Sectional Meeting in Tucson, University of Arizona, Oct 26 2012 This work is partially supported by NSF, DMS1216742

Page 2: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

2

1.  Introduction to shape optimization on eigenvalue problems

2.  Theoretical Results 3.  Previous Numerical Approaches 4.  Rearrangement algorithm: 5.  Closest Point Method and Surface Problem

Outline

Page 3: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

3

Consider an open bounded , a positive , and satisfies the elliptic eigenvalue problem The eigenvalues are Q1: Shape problem. Q2: Composition problem.

RD→:ρ

⎩⎨⎧

∂∈=

∈=Δ−

.0)(,)()()(DxxuDxxuxxu λρ

nRD⊂

!

(",u)

0 < !1(D,") ! !2 (D,") ! !3(D,") ! ..."#

Shape of the drum

Page 4: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

4

Theoretical Results

Q1: Shape problem: 1.  Rayleigh (1877) conjectured, and Faber (1923) and Krahn (1925) proved,

that if you fix the area of a drum, the lowest eigenvalue is minimized uniquely by the disk.

2.  Payne, Pólya, and Weinberger conjecture (1955): The disk maximizes the ratio of to has been proved by Ashbaugh and Benguria (1992)

Q2: composition problem: 1.  Krein (1955) provided one dimensional optimal density distribution for

maximal and minimal . 2.  Cox and McLaughling (1993): minimal for higher dimensions.

1λ2λ

nλDinea ..0))(( =−− βραρ

Page 5: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

5

Krein Theorem (1955)

Page 6: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

The Optimal Distribution

Page 7: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

7

Composition Problem

Q2: composition problem Let Find àshape optimization problem:

Dinea ..0))(( =−− βραρ

∫ =≤≤→Dn MdxD ρβραρλρ ,),,(

constD =Ω+= ΩΩ ||,\αχβχρ

)(max)(min kk ForF λλΩΩ

Page 8: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

8

Numerical Approaches 1 Shape derivative: Osher Santosa (drum) 2001, Kao Lou

Yanagida (population dynamics) 2008, Kao Osher Yablonovitch(photonic crystal) 2005

2  Topological derivative: He Kao Osher (drum,

photonic crystal) 2007 3 Multi-level set method: Haber 2004 4 Rearrangement:

Cox 1990, Kao Shu 2010 Hintermuller Kao Laurain 2011

Page 9: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

9

An Efficient Algorithm:

infρλ1 = inf

ρinf

u∈W01,2

|∇u |∫2dx

ρu2dx∫

Idea: 1.  Based on Rayleigh quotient formulation of eigenvalue 2.  Monotone iterative scheme

* Find eigenfunction * Find density such that

infu∈W0

1,2

|∇u |∫2dx

ρu2dx∫

infρ

|∇u |∫2dx

ρu2dx∫= sup

ρρu2dx∫

!

" fixed :eigenvalueforwardproblem

!

u fixed : rearrangement of r

ρnew

ρnew = argsupρ

ρu2dx∫

Ωmin(λ1)

Page 10: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

10

Monotone Iterative Scheme Initial: Iteration: * How to find with ? There exists such that

ρ,λ1(ρ),u1(ρ)

ρnew = argsupρ

ρu12dx∫

λ1(ρnew ) = infu∈W0

1,2

|∇u |∫2dx

ρnewu2dx∫

<|∇u1 |∫

2dx

ρnewu12dx∫

<|∇u1 |∫

2dx

ρu12dx∫

= λ1(ρ)

ρnew = argsupρ

ρu2dx∫

ρ = ρ2χΩ + ρ1χD \Ω, |Ω |= const

u*

Ω={x | u2(x) > u*2}= const

ρnew = ρ2χΩ + ρ1χD \Ω

Page 11: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Discrete Case: Rearrangment Inequality

11

n

n

jj

jnjj

and

constwwhere

ψψ

ρρρρρρρ

≤≤

=Ω≈===<=== ∑+=

+

...

||,.....

1

12

1211

*

**

∑∑∫ =≈= jjjjjnew uwdxu ψρρρρ

ρ

22suparg

Page 12: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Summary

12

Page 13: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

13

Ωmin(λ1) : Level Set Approach

Page 14: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

14

Ωmin(λ1) : Efficient Approach

Page 15: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

15

Ωmin(λ2) : Efficient Approach

Page 16: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Symmetry Breaking

S. Chanillo et. al., 2000

Page 17: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

17

•  Consider the elliptic eigenvalue problem

Let be a domain inside , and Solve the optimization: Subject to the constraint:

Eigenvalue Problem on Surfaces

Ω D

!"su(x) = !m(x)u(x) x # D,$u$n

+"u = 0 x #$D.

%

&'

('

min!!1

Page 18: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

18

Parametrization Approach

!su(x)

!su(x)

!su(x) =

Page 19: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

19

Definition (Closest point function):

Definition (Closest point extension): Let S be a smooth surface in Rd. The closest point extension of a surface function u : S → R is a function v : Ω → R, defined in a neighborhood Ω ⊂ Rd of S, as

We will say that v is the closest point extension of u.

Closest Point Approach

cp(x) = x ! d"d

v(x) = u(cp(x))

Page 20: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

20

Closest Point on Hemisphere

Page 21: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

21

Laplace-Beltrami Operator

1.  Interpolation Method for closest points on the surfaces (may not on the Cartesian grids): bicubic interpolation for second order scheme

2.  Standard Discretization in the neighboring Cartesian grids near the surface

* Keep center point without evaluating it at closest point.

Page 22: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

22

Boundary Condition

Boundary Condition: Discretization:

!u!n

+!u = 0

u(x2 )!u(cp(x2 ))2 | cp(x2 )! cp(x2 ) |

+!u(x2 )+u(cp(x2 ))

2"

#$

%

&'= 0

Page 23: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

23

Closest Point Method – Matrix Implementation (COLIN B. MACDONALD, JEREMY BRANDMAN, STEVEN J. RUUTH)

1.  Interpolation Method for closest points on the surfaces (may not on the Cartesian grids): bicubic interpolation for second order scheme

2.  Standard Discretization in the neighboring Cartesian grids near the surface

Page 24: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Sparsity Matrix

24

Page 25: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

25

Minimal Set of Points

Page 26: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

26

!min(!1D ) = 0.54

Minimization of First Eigenvalue

Page 27: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

!min(!2D ) " 2.15

Higher Eigenmodes

!min(!3D ) " 4.91

!min(!1D ) " 2.15

Page 28: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Circular Shape !min(!2P ) " 0.54

!min(!4P ) " 2.16

Page 29: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Ellipse !min(!2P ) " 0.22

!min(!4P ) " 0.91

Page 30: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

!min(!1D ) "1.02

Page 31: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

!min(!2D ) " 3.05

Page 32: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

!min(!3D ) " 6.06

!min(!4D ) " 6.09

Page 33: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

!min(!2N ) "1.04

!min(!3R,"=1) "1.65

!min(!3R,"=10 ) " 2.72

!min(!3D ) " 3.04

Page 34: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Ring

Page 35: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Future Directions •  Nonlinear constrain:

•  Manifold problem:

•  Higher order PDEs and Nonlinear Eigenvalue Problem,

e.g. thin plate problem •  General objective function

35

!

"Pdx = MD#

!

"2u(x) = #$(x)u(x) x %&,

u(x) ='u'n

= 0 x %'&.

(

) *

+ *

L(x,u,!su(x),"su(x)) = !"(x)u(x) x # D,B(u(x),!su(x)) = 0 x #$D.

%&'

Page 36: Shape Optimization Involving Eigenvalues of Laplace ...math.arizona.edu/~dido/ubiquitous/KaoAMSClosestPointMethod.pdf · that if you fix the area of a drum, the lowest eigenvalue

Thank you

The End