26
Ronny Pini, [email protected] March 2018 High-pressure gas sorption studies on shales Ronny Pini Department of Chemical Engineering Imperial College London ShaleXEnvironment Dissemination Event TAMUQ – 18 th March 2018

ShaleXEnvironmentDissemination Event TAMUQ –18 March 2018 · 2018. 3. 28. · Ronny Pini, [email protected] March 2018 High-pressure gas sorption studies on shales Ronny Pini

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Ronny Pini, [email protected] March 2018

    High-pressure gas sorption studies on shales

    Ronny PiniDepartment of Chemical Engineering

    Imperial College London

    ShaleXEnvironment Dissemination EventTAMUQ – 18th March 2018

  • Ronny Pini – [email protected] - Imperial College London 2

    Gas adsorption in shale

    • Most of the porosity in shale is located in pores < 50 nm–What is the accessible pore space? How does it influence fluid behaviour?

    –Gas adsorption contributes to Gas-In-Place (GIP); gas production is limited by the ability to desorb gas from the tight matrix

    • Measurement of HP adsorption isotherms is a technical challenge– Inter-laboratory comparisons are difficult (lack of standards)

    [e.g., Lancaster 1993 … Gasparik 2014]

    – Interactions with shale constituents (e.g., clays and OM) are complex[e.g., Barrer 1954 … Loring 2012; Busch 2014]

    –Fluid densification and/or depletion? [e.g., Rother 2012; Schaef 2014; Jeon 2014]

    Of practical relevance, but quantification is still a challenge

  • Ronny Pini – [email protected] - Imperial College London 3

    = ρ Ahφ −V a⎡⎣ ⎤⎦+ na = ρAhφ + nex

    GIP = free gas+ adsorbed gas

    fluid density (P,T,z)

    available pore space

    adsorbed volume

    amount adsorbed

    • Understand the pore space• Understand excess adsorption

    Excess sorption

    Pini R 2014 Energy Procedia 63: 5556-61

    !"##$%

    $% $%

    !"##

    Gas adsorption in shale and Gas-In-PlaceMaterial balance analysis with sorption effects

    &ex = !a − )*a

  • Ronny Pini – [email protected] - Imperial College London 4

    Gas adsorption in shale

    • Most of the porosity in shale is located in pores < 50 nm–What is the accessible pore space? How does it influence fluid behaviour?

    –Characterization of microporous solids relies on the adsorption and transport of confined fluids

    • Measurement of HP adsorption isotherms is a technical challenge– Inter-laboratory comparisons are difficult (lack of standards)

    [e.g., Lancaster 1993 … Gasparik 2014]

    – Interactions with shale constituents (e.g., clays and OM) are complex[e.g., Barrer 1954 … Loring 2012; Busch 2014]

    –Fluid densification and/or depletion? [e.g., Rother 2012; Schaef 2014; Jeon 2014]

    Of practical relevance, but quantification is still a challenge

  • Ronny Pini – [email protected] - Imperial College London 5

    Sing K. S. W. et al. 1985 Pure Appl. Chem. 57Thommes M. et al. 2015 Pure Appl. Chem. 87:1051-69

    Adsorption 101: Sub- vs. super-critical adsorption

    Absolute: !aIUPAC

  • Ronny Pini – [email protected] - Imperial College London 6

    Sing K. S. W. et al. 1985 Pure Appl. Chem. 57Thommes M. et al. 2015 Pure Appl. Chem. 87:1051-69

    Bulk Density [mol/L]0 5 10 15 20

    Nor

    m. E

    xces

    s Ad

    sorp

    tion

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    Silica Gel

    13X ZeoliteActivated Carbon

    CO2, 50°Cstrictly microporousstrictly mesoporous

    20 MPa

    Pini R et al. 2006 Adsorption 12:393-403; Pini R et. al 2008 Adsorption 14:133-41;

    Pini R 2014 Micropor Mesopor Mat 187:40-52

    Absolute: Surface excess:!a !ex = !a − '(aIUPAC

    Adsorption 101: Sub- vs. super-critical adsorption

  • Ronny Pini – [email protected] - Imperial College London 7

    Lack of reproducibility particularly evident on natural materials

    Supercritical gas adsorption: a technical challenge

    M. Gasparik et al. 2014 Int J Coal Geology 132, 131–146

    Supercritical CH4 adsorption on dry Posidonia shale

    ± 50 %

  • Ronny Pini – [email protected] - Imperial College London 8

    0 5 10 15 20 25Bulk density, b [mol/L]

    -600

    -400

    -200

    0

    200

    400

    600

    800

    Exce

    ss a

    mou

    nt, n

    ex [

    mol

    /g]

    Lack of reproducibility particularly evident on natural materials

    Supercritical gas adsorption: a technical challenge

    Supercritical CO2adsorption on dry Na-Montmorillonite

    Schaef et al. 2014

    Busch et al. 2008

    Rother et al. 2012

    This study

    CO2, 45-50∘C

    65 MPa

    Schaef et al. 2014 Energy Procedia, 63, 7844-7851Rother et al. 2013, Environ Sci Technol, 47, 205-11Busch et al. 2008 Int J Greenhous Gas Control, 2, 297-308

  • Ronny Pini – [email protected] - Imperial College London 9

    Measuring supercritical gas adsorption

    Gravimetric method – Rubotherm Magnetic Suspension balance

    Pressure:

    vacuum – 35 MPa

    Temperature:

    0 – 400°C

    Gases:

    He, CO2, HCs, N2,…

    Sample:

    < 15 g (± 50 μg)

    Qatar Complex Porous Media Lab – May 2017

  • Ronny Pini – [email protected] - Imperial College London 10

    Excess adsorbed mass:

    mex =ma − ρmVa

    =M1(ρ,T )−M10 + ρmV

    0

    Apparent weight:

    V 0 =V met +V s

    buoyancy

    M10

    Measuring the adsorption of a dense gasOperating equations

    Buoyant solid volume (Helium):

    M1(ρ,T ) = ms +mmet +ma − ρm(V

    met +V s +V a )

    weight under vacuum

    El. magnet

    Perm. magnet

    Ti Sinker

    Sample holder

    main source of error [1]

    [1] Pini R 2014 Micropor Mesopor Mat 187:40-52

    protocol includes several (repeated) pressure points

  • Ronny Pini – [email protected] - Imperial College London 11

    Experimental approach

    A combination of engineered and natural microporous solids

    Mesoporous carbons Source claysBowland Shale (UK)

    Images reproduced from:[1] Fauchille A. L. et al. 2017 Marine and Petroleum Geology, 86, 1374-1390[2] Liang C. et al. 2008 Angew. Chem. Int. Ed., 47, 3696 – 717[3] 'Images of Clay Archive' of the Mineralogical Society of Great Britain & Ireland and The Clay Minerals Society

    - Commercially available

    - Regular pore structure (10 nm)

    - Large porosity

    - Source clay mineral (Swy-2)

    - Hydrous layer silicates (2:1)

    - Micro- and meso-pores (< 50nm)- Large porosity

    [1] [2] [3]

    - Quartz + Carbonate + Clay + OM

    - Complex pore structure

    - Moderate porosity

    - Microporosity (1-200 nm) (>10%)

    - Microfracture porosity (< 5-8 %)

  • Ronny Pini – [email protected] - Imperial College London 12

    Reduced fluid density, ;/;c0 0.5 1 1.5 2

    Exce

    ss a

    dsor

    ptio

    n [7

    mol

    /g]

    0

    50

    100

    150

    200• Experimental conditions:vac. – 25 MPa, 10 – 80°C

    CO2 and CH4 adsorption on Bowland Shale (UK)

    10°C40°C

    80°C CH4

    25 MPa

  • Ronny Pini – [email protected] - Imperial College London 13

    Reduced fluid density, ;/;c0 0.5 1 1.5 2

    Exce

    ss a

    dsor

    ptio

    n [7

    mol

    /g]

    0

    50

    100

    150

    200• Experimental conditions:vac. – 25 MPa, 10 – 80°C

    CO2 and CH4 adsorption on Bowland Shale (UK)

    10°C

    40°C

    80°C

    10°C40°C

    80°C CH4

    CO2

    25 MPa

  • Ronny Pini – [email protected] - Imperial College London 14

    Reduced fluid density, ;/;c0 0.5 1 1.5 2

    Exce

    ss a

    dsor

    ptio

    n [7

    mol

    /g]

    0

    50

    100

    150

    200• Experimental conditions:vac. – 25 MPa, 10 – 80°C

    • Adsorption Capacity:

    • Selectivity:

    CO2 and CH4 adsorption on Bowland Shale (UK)

    10°C

    40°C

    80°C

    10°C40°C

    80°C CH4HCO2 HCH4 ≈ 5−8

    m3STP / t CO2 CH4Bowland 3 – 5 1.5 – 2

    Eagle Ford ~ 9*** ~ 4*Barnett** ~ 5 ~ 2

    *Jang et al. 2016 Energy Sources,38(16), 2336-2342** Heller and Zoback 2014 Journal of Unconventional Oil and Gas Resources 8, 14–24***Carey JW, Pini R et al. 2017 Caprock Integrity in Geological storage – AGU Monograph.

    CO2

  • Ronny Pini – [email protected] - Imperial College London 15

    CO2 and CH4 adsorption on Bowland Shale (UK)

    GIP [m3STP/m3]

    0 5 10 15 20

    P/z

    [MPa

    ]

    0

    10

    20

    30

    40

    50

    Production of adsorbed gas

    kicks in

    Gas sorption most effective

    volum

    etric

    reserv

    oir

    volumetric reservoir

    CH4

    CO280°C

    Gas recovery Gas storage

    Potential for enhanced gas recovery?

  • Ronny Pini – [email protected] - Imperial College London 16

    Reduced fluid density, ;/;c0 0.5 1 1.5 2

    Exce

    ss a

    dsor

    ptio

    n [7

    mol

    /g]

    0

    50

    100

    150

    200

    Scaling of shale data: the role of organics

    [1] Fauchille A. L. et al. 2017 Marine and Petroleum Geology, 86, 1374-1390

    MC (10 nm)Shale

    40°C

    80°C

    40°C80°C CH4

    • Independent measurements on mesoporous carbon

    • Scaling factor (5%) ≈ shale sample TOC (6%wt.[1])

    • Observations–Pronounced features of

    mesoporosity

    CO2

  • Ronny Pini – [email protected] - Imperial College London 17

    Reduced fluid density, ;/;c0 0.5 1 1.5 2

    Exce

    ss a

    dsor

    ptio

    n [7

    mol

    /g]

    0

    50

    100

    150

    200

    Bulk Density [mol/L]0 5 10 15 20

    Nor

    m. E

    xces

    s Ad

    sorp

    tion

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    [1] Fauchille A. L. et al. 2017 Marine and Petroleum Geology, 86, 1374-1390

    Scaling of shale data: the role of organics

    • Independent measurements on mesoporous carbon

    • Scaling factor (5%) ≈ shale sample TOC (6%wt.[1])

    • Observations–Pronounced features of

    mesoporosity– Some indications of

    microporosity–MC analogue for TOC (?)

  • Ronny Pini – [email protected] - Imperial College London 18

    100

    101

    102

    0 0.2 0.4 0.6 0.8 1

    Adsorbedamount,n[cm

    3 STP/g]

    Relative pressure, p/p0 [-]

    MC

    Pore space characterisation of shaleLow-pressure (< 1 bar) N2 adsorption isotherms at 77K

    Micromeritics 3flex and Tristar

    Bowland #6

    Clays

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 - 2 nm 2 - 20 nm 20 - 50 nm

    Normalizedcumulativeporevolum

    e,V p[-]

    Pore diameter, d [nm]

    BowlandEagleFordMontmorilloniteKaoliniteMes.Carbon

  • Ronny Pini – [email protected] - Imperial College London 19

    100

    101

    102

    0 0.2 0.4 0.6 0.8 1

    Adsorbedamount,n[cm

    3 STP/g]

    Relative pressure, p/p0 [-]

    MC

    Pore space characterisation of shaleLow-pressure (< 1 bar) N2 adsorption isotherms at 77K

    Micromeritics 3flex and Tristar

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 - 2 nm 2 - 20 nm 20 - 50 nm

    Normalizedcumulativeporevolum

    e,V p[-]

    Pore diameter, d [nm]

    BowlandEagleFordMontmorilloniteKaoliniteMes.Carbon

    Bowland #6

    [1] Fauchille A. L. et al. 2017 Marine and Petroleum Geology, 86, 1374-1390

    Clays

    • Mesopores occupy majority of pore space in shale (> 80%)• Shale does contain microporosity (5 – 10%)• Clays contribute to microporosity (Bowland ~ 7%wt.[1])

  • Ronny Pini – [email protected] - Imperial College London 20

    Pore space characterization: Bowland shaleLow-pressure (< 1 bar) N2 adsorption isotherms at 77K

    [1] Fauchille A. L. et al. 2017 Marine and Petroleum Geology, 86, 1374-1390

    • Mesopores occupy majority of pore space in shale (> 80%)• Shale does contain microporosity (5 – 10%)• Bowland case study: apparent correlation between SSAN2 and TOC

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 - 2 nm 2 - 20 nm 20 - 50 nm

    Normalizedcumulativepore

    volum

    e,V p[-] Bowland-8

    Bowland-5Bowland-2Bowland-6KaoliniteMes.Carbon

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 - 2 nm 2 - 20 nm 20 - 50 nm

    Normalizedcumulativeporevolum

    e,V p[-]

    Pore diameter, d [nm]

    BowlandEagleFordMontmorilloniteKaoliniteMes.Carbon

    0

    2

    4

    6

    8

    10

    0 1 2 3 4 5 6 7

    BETSSA,[m2 /g]

    TOC, [wt%]

    Bowland-2

    Bowland-5

    Bowland-6

    Bowland-8

    [1]

  • Ronny Pini – [email protected] - Imperial College London 21

    [1] Aranovich and Donohue J Colloid Interface Sci 1998, 200: 273-90 [2] Hocker et al, Langmuir 2003, 19: 1254-67[3] Ottiger et al. Langmuir 2010, 24: 9531-40[4] Pini et al. Adsorption 2010, 16: 37-46[5] Qajar et al. Fuel 2016, 163: 205-13

    1 2 30

    0.2

    0.4

    0.6

    0.8

    1

    i

    θ i

    1 2 3 4 5 6 7 8 9 100

    0.2

    0.4

    0.6

    0.8

    1

    i

    θ i

    1 10 20 30 40 50 600

    0.5

    1

    i

    θ i

    1nm 3.3 nm

    20 nm

    qB=0.1

    qB=0.7

    qB=0.1

    qB=0.7

    Density profiles in the poresCO2, T = 45°C

    • Lattice DFT model[1]:– Discretization of the pore space

    – Slit pores, hexagonal lattice– Nearest-neighbors interactions– Successfully applied to both

    engineered materials [2] and rocks [3-5]

    Modelling of gas adsorption in shale

    21 3… J

    j

    i

    jk(a) (b) (c)

    How can we account for the complexity of shale’s pore space?

  • Ronny Pini – [email protected] - Imperial College London 22

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Ads

    orbe

    d am

    ount

    , n [m

    mol

    /g]

    Relative pressure, p/po

    ×10-3

    0.0 0.5 1.00.0

    0.1

    0.2

    Application example: source clay (SWy-2)Sub- and super-critical data in a unique, consistent framework

    LDFT

    experiment

    N2 adsorption at 77K

    1 10 1000.000

    0.002

    0.004

    0.006

    0.008

    0.010

    0.012

    0.014

    11%

    11%

    9%8%7%

    21%

    18%

    15%

    ba

    Pore

    vol

    ume,

    ∆V

    [cc/

    g]

    Pore width, wp [nm]1 10 100

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    Pore

    vol

    ume

    [cc/

    g]

    Pore width [nm]

    Pore size distribution

  • Ronny Pini – [email protected] - Imperial College London 23

    Application example: source clay (SWy-2)

    Identification of relevant pore-classes from N2 physisorption

    Calibrated model applied to match supercritical isotherms

    Solid-fluid interaction used as a fitting parameter (fluid-dependent)

    0 5 10 15 200

    100

    200

    300

    400

    Exce

    ss a

    mou

    nt, nex

    [m

    ol/g

    ]

    Bulk density, b [mol/L]

    25°C50°C80°C115°C

    CO2

    CH4

    Sub- and super-critical data in a unique, consistent framework

    Supercritical adsorption

    ✓CO2

    CH4

  • Ronny Pini – [email protected] - Imperial College London 24

    Application example: source clay (SWy-2)

    0 5 10 15 200

    100

    200

    300

    400

    Exce

    ss a

    mou

    nt, nex

    [m

    ol/g

    ]

    Bulk density, b [mol/L]

    25°C50°C80°C115°C

    CO2

    CH4

    CO2

    CH4

    Sub- and super-critical data in a unique, consistent framework

    Supercritical adsorption

    2.5 3.0 3.5

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.4 0.6 0.8 1.00.3

    0.5

    0.7

    CH4 ×10-3

    Satu

    ratio

    n fa

    ctor

    , csat

    1/T [1/K]

    CO2

    Tc/T

    Filling capacity

    CO2

    CH4

  • Ronny Pini – [email protected] - Imperial College London 25

    Concluding remarks• Understanding the shale’s pore space requires understanding

    gas adsorption (and vice versa)

    • Shale and clay-rich systems retains characteristics of a mesoporous material

    • The presence of microporosity is confirmed from both sub-and supercritical adsorption studies

    • Mesoporous carbon as analogue of OM?

    • Significant adsorption selectivity of CO2 vs. CH4

    • The complexity of the pore space requires rigorous modeling approaches that incorporate PSD and chemical heterogeneity

  • Ronny Pini – [email protected] - Imperial College London 26

    • Postdocs/students:

    Dr. Lisa Joss, Humera Ansari, Junyoung Hwang

    • Collaborators

    Prof. Geoffrey Maitland, Imperial College LondonProf. Martin Trusler, Imperial College London

    Prof. Alberto Striolo, University College London

    • Funding

    Acknowledgments