1
Interstellar He Flow Analysis over the Past 8 Years with IBEX Neutral Observa=ons E. Möbius 1 , E. Bower 1 , M. Bzowski 2 , S.A. Fuselier 3,4 , D. Heirtzler 1 , M.A. Kubiak 2 , H. Kucharek 1 , M.A. Lee 1 T. Leonard 5 , D.J. McComas 6,7 , N. Schwadron 1 , P. Swaczyna 2 , J.M. Sokol 2 , P. Wurz 8 1 Space Science Center & Department of Physics, University of New Hampshire, Durham, NH 03824 2 Space Research Center Polish Academy of Sciences, Warszawa, Poland SH31A-2528 Supported by: NASA USA PAS Poland SNF Switzerland ISN Flow Peak Longitude: λ ISN Peak = 130.45±0.10 o from 2009-15 Χ 2 fit and λ ISN Peak = 130.45±0.06 o from weighted mean of all 2-year (2009-14) fits aRer adjusTng for: E-dependent efficiency & Secondary Neutrals ISN Parameter Tube: AdopTng λ ISN∞ = 75.0 o [3, 5] the parameter tube gives V ISN∞ = 26.0±0.1 km/s, in full agreement with values in [3, 5]. • Yearly Varia=ons of λ ISN Peak : Yearly values 2009 – 2015 vary with ±0.55 o Standard DeviaTon. 2015 strongest deviaTon, but only 5 usable values à eliminated (only 0.05 o difference in combined fit) Varia=on of Sorted 2-Year Fits: 2-year fits show much reduced variaTon (±0.32 o StdDev) and no visible temporal trend Weighted mean in full agreement with combined fit results. Next Steps in Analysis: - Replace linear fit for each orbit by fit to AnalyTc Model Results à Will increase number of usable orbits - Add 2016 results aRer despinning data from operaTons without IBEX Star Tracker & use IBEX-Lo Energy Steps 1 through 4 à Extends exisTng database Conclusions & Outlook FIGURE 5: ISN fluxes at perihelion for each usable IBEX orbit 2009-15 as a funcTon of λ Ecl adjusted for aberraTon due to IBEX moTon. Error bars contain all known and esTmated contribuTons. obtained from a Χ 2 fit to a Gaussian. Introduc=on Determina=on of the ISN Flow Peak Longitude ISN Flow Peak Longitude Fiang ISN Flow Peak Results from Mul=-Year Fits The Interstellar Boundary Explorer (IBEX) obtains a precise rela Ton between the interstellar neutral (ISN) flow longitude λ ISN∞ and speed V ISN∞ , with substanTally larger uncertainty in λ ISN∞ , which defines a parameter tube that connects ISN longitude, laTtude, speed (velocity vector V ISN∞ ), and temperature [1, 2, 3, 4, 5], in agreement with Ulysses GAS [6, 7, 8] ( Figure 1). The interstellar magne Tc field B IS is deduced from the IBEX ribbon, consistent with the heliospheric asymmetry and TeV cosmic ray anisotropy [9]. The two vectors define the B IS - V ISN∞ plane, which controls the shape of, and the flow deflecTon in, the outer heliosheath [10, 11]. A complementary determinaTon of λ ISN∞ (Poster SH31A-2529) together with Tghtening and tracking over Tme the parameter tube will refine the B IS - V ISN∞ plane and constrain any potenTal temporal variaTons [12, 13, 14]. ISN Parameter Tube Determina=on: The parameter tube is solely determined by the ISN bulk flow (ISN flow maximum) longitude λ ISN Peak at 1 AU observed with IBEX [4, 15] (discussed on this Poster). • Flow Longitude Determina=on: The ISN flow longitude λ ISN∞ is determined from the variaTon of the radial ISN flow speed V r (or the pickup ion cut-off along the Earth’s orbit, which is symmetric about λ ISN∞ (discussed on Poster SH31A-2529). The Uncertain=es of Data for each Orbit contain: - Χ 2 -fit error (x2 as fit is restricted to linear and possible curvature omimed) - uncertainty in adjusTng for IBEX moTon (translated into the rate, using the slopes of the Χ 2 -fit and of the model Gaussian in Figure 5) - uncertainTes of the efficiency and ionizaTon compensaTon References 1. M. Bzowski et al., Astrophys. J. Supp. 220:28 (2015). 2. T. Leonard et al., Astrophys. J. 804:42 (2015). 3. D. J. McComas et al., Astrophys. J. Supp. 220:22 (2015). 4. E. Möbius et al., Astrophys. J. Supp. 220:24 (2015). 5. N.A. Schwadron et al., Astrophys. J. Supp. 220:25 (2015). 6. M. Wime, Astron. & Astrophys. 426, 835 (2004). 7. M. Bzowski et al., Astron. & Astrophys. 569, A8 (2014). 8. B. Wood, H.-R. Mueller & M. Wime, Astrophys. J. 801:62 (2015). 9. N.A. Schwadron et al., Science 343, 988 (2014). 10. R. Lallement et al., Science 307, 1447 (2005). 11. V. Izmodenov, D. Alexashov & A. Myasnikov, Astron. & Astrophys. 437, L35 (2005). 12. P.C. Frisch et al., Science 341, 1080 (2013). 13. P.C. Frisch et al., Astrophys. J. 801:61 (2015). 14. R. Lallement & J.-L. Bertaux, Astron. & Astrophys. 565, A41 (2014). 15. M. A. Lee, E. Möbius & T. Leonard, Astrophys. J. Supp. 220:23 (2015). 16. E. Möbius et al., Astrophys. J. Supp. 198:11 (2012). 17. M.A. Kubiak et al., Astrophys. J. Supp. 223:25 (2016). 18. C. Drews et al., J. Geophys. Res. 117, A09106 (2012). ISN Parameter Tube and Flow Longitude 3 Southwest Research InsTtute, San Antonio, TX As seen in Figure 5, there is no entry for 2012, and the yearly fit values for vary substanTally, with 2015 offset by more than 2x the standard deviaTon. According to the criteria for usable orbits, the 2012 set only contains 3 data points, not enough for a fit to a Gaussian with 3 free parameters. Thus 2012 was completely omimed. 2015 contains 5 usable orbits over a restricted range in λ Ecl , which by itself does not constrain λ ISN Peak well enough, but can be used in the overall combinaTon. Omisng 2015 from the fit in Figure 5 results in λ ISN Peak = 130.40±0.11 o , only different by 0.05 o . • Reduc=on of Systema=c Effects with stochas=c Distribu=on: ISN Good Times influence the results systemaTcally, for example, by forcing extrapolaTon or data eliminaTon, but they are distributed stochasTcally each year. Using mulT-year data reduces such systemaTc effects, as demonstrated in [18]. Here we use all 2-year combinaTons. FIGURE 2: SchemaTc view of sample ISN trajectories (dark blue) and the ISN flow vector along the Earth’s orbit (light blue). The dark blue dashed line indicates an alternate Bulk Flow Trajectory that saTsfies eq. 1), arrives at λ ISN Peak , and thus also belongs to the ISN parameter tube. The light blue dashed arrows indicate the pamern of V r , which is sensed by the pickup ion cut-off and follows eq. 2). FIGURE 3: ISN PSD distribuTon (solid black line) as a funcTon of eclipTc longitude λ Ecl . The spin integrated ISN flux (dashed dark blue line) is modified relaTve to the PSD distribuTon due to: - ISN Flux variaTon with V ISN - Slight IBEX-Lo Efficiency variaTon E ISN - Flux exTncTon from Ioniza=on as a funcTon of λ Ecl . To determine λ ISN Peak from the center of the observed flux distribuTon, these effects have to be compensated for. FIGURE 7: λ ISN Peak as obtained from Χ 2 fits to a Gaussian for data sets of 3-year combinaTons in all permutaTons, along with the weighted mean, combined fit value from Figure 5, standard deviaTon and error. FIGURE 1: RelaTonship between V ISN∞ and λ ISN∞ according to the IBEX parameter tube based on various IBEX analyses in comparison with Ulysses results (adapted from [5]). Also shown with a verTcal bar is how an independent measurement of λ ISN∞ will constrain the ISN flow vector. The effect of a precise independent determinaTon of the ISN flow longitude λ ISN∞ on the knowledge of the ISN flow parameters is indicated by the green verTcal bar. 70 80 78 76 74 72 o 30 28 26 22 24 V ISN[km/s] λ ISN∞ [ o ] The determinaTon of the the ISN Flow Peak Longitude λ ISN Peak involves the following steps [16]: ISN Good Times for each IBEX orbit [2], but retain Tme intervals that are despun at ground because of missing Star Tracker poinTng informaTon Spin integrated ISN count rates ±3σ of peak divided by σ per 512 spins Linear Χ 2 fit to these rates as funcTon of λ Ecl à obtain rate at λ Ecl where IBEX spin points exactly at the Sun in λ, adjusted for IBEX moTon Compensate rates (see Figure 3) for - ObservaTon of ISN flux, while ISN bulk flow corresponds to peak in Phase Space Density (PSD) of the ISN distribuTon and Flux ~ PSD x V 3 - Weakly E-dependent IBEX-Lo efficiency due to variaTon of ISN energy (E ISN ) with λ Ecl (relaTve in-flight calibraTon for different IBEX-Lo E-Steps) - ExTncTon by ionizaTon along trajectory in λ Ecl using TIMED & SDO data. Figure 4: RaTo of combined ISN and secondary He (WB) flux and ISN flux as a funcTon of λ Ecl (by IBEX orbit) obtained from the best fit secondary soluTon in [17] for 2009 - 11 and 2013 – 15 (2012 not shown because not used here). The relaTve contribuTon of the WB is largest at low λ Ecl and during solar minimum (2009-11). The two unusually high points in 2015 are for IBEX spin axis orientaTons at +5 o laTtude, indicaTng increased viewing of the WB for this orientaTon. The observed ISN fluxes in each orbit are compensated for these raTos. To obtain a value for λ ISN Peak the adjusted rates from each IBEX orbit (or orbit arc aRer 2011) are evaluated for their variaTon with λ Ecl . Usable orbits saTsfy: - ObservaTons are within 110 o λ Ecl ≤ 160 o - PosiTon at exact Sun poinTng of the spin axis is inside of or the extrapolaTon is less than the range of the data interval in λ Ecl These rates are Χ 2 fimed to a Gaussian for each individual year or the combinaTon of all data aRer normalizing the rates to the peak rate (as shown in Figure 5). FIGURE 6: λ ISN Peak as obtained from Χ 2 fits to a Gaussian for the data set of each year, along with the weighted mean, combined fit value from Figure 5, standard deviaTon and error. V ISNSun θ = λ ISN+ λ ISN Peak 1 cos( θ ) = 1 + ( r E V ISN 2 GM s ) V r 1 1.1 1.2 1.3 1.4 1.5 100 110 120 130 140 150 160 ISN&WB 2009 - 2011 (ISN + WB)/ISN λ Ecl [ o ] 2010 2011 2009 100 110 120 130 140 150 160 170 ISN&WB 2013 - 2015 2014 2015 2013 Contact: [email protected] 4 University of Texas, San Antonio, TX 5 Laboratory for Atmospheric and Space Physics, Boulder, CO 6 Department of Astrophysical Sciences, Princeton University, NJ 7 Office of the VP for the Princeton PPL, Princeton University, NJ 8 Physikalisches InsTtut, Universität Bern, Switzerland 1) Contribu=on of Secondary He Neutrals: The observed IBEX ISN flux distribuTon also contains a variable contribuTon from secondary He neutrals that originate in the outer heliosheath. The ISN distribuTon is adjusted for the secondary contribuTon according to Figure 4 [from 17]. 0.1 1 100 110 120 130 140 150 160 2009-15 TL&DH 120516 Norm Rate (adj. for PSD) λ Ecl (Aberration) [ o ] λ Peak = 130.45±0.10 o σ λ = 11.47±0.10 o 126 128 130 132 134 2009 2010 2011 2012 2013 2014 2015 Single Year Fits λ ISN Peak Years Std Dev Std Error Weighted Mean Combined Fit Fits to yearly data sets are similar to the combined set in Figure 5, but with larger errors. The yearly fit results are compiled in Figure 6, along with the weighted mean of all yearly fit results and the combined fit result from Figure 5. 130 o 110 o 150 o λ Ecl ISN PSD Distribution λ ISN Peak Effects of - Flux ~ PSD x V 3 - Efficiency Variation with E ISN - Ionization 120 140 133 eV 76 82 80 km/s E ISN V ISN (Earth) θ 125 o 135 o 115 o Ionization 2) v r 2 = 2 + v ISN 2 (1cos λ ) v ISN 2 sin 2 λ + v ISN sin | λ | [v ISN 2 sin 2 λ + 4(1cos λ )] 1/2 /2 126 128 130 132 134 9 10 11 12 13 14 2-Year-Fits 2009 - 2014 λ ISN Peak Years Combined Fit Weighted Mean Std Dev Std Error Figure 7 shows all 2-year combinaTons sorted by their center Tme. CombinaTons with idenTcal center Tme vary more than those with different Tmes à Consistent with no trend! Adding more data points and extending Tme will reduce uncertainTes.

SH31A-2528 Interstellar He Flow Analysis over the Past 8 ...posters.unh.edu/.../2016/12/08/AGU2016_ISN-Analysis... · 12/8/2016  · ISN&WB 2009 - 2011 SN λ Ecl [o] 2010 2011 2009

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SH31A-2528 Interstellar He Flow Analysis over the Past 8 ...posters.unh.edu/.../2016/12/08/AGU2016_ISN-Analysis... · 12/8/2016  · ISN&WB 2009 - 2011 SN λ Ecl [o] 2010 2011 2009

InterstellarHeFlowAnalysisoverthePast8YearswithIBEXNeutralObserva=onsE.Möbius1,E.Bower1,M.Bzowski2,S.A.Fuselier3,4,D.Heirtzler1,M.A.Kubiak2,H.Kucharek1,M.A.Lee1T.Leonard5,D.J.McComas6,7,N.Schwadron1,P.Swaczyna2,J.M.Sokol2,P.Wurz8

1SpaceScienceCenter&DepartmentofPhysics,UniversityofNewHampshire,Durham,NH03824 2SpaceResearchCenterPolishAcademyofSciences,Warszawa,Poland

SH31A-2528

Supportedby:NASAUSAPASPolandSNFSwitzerland

•ISNFlowPeakLongitude:λISNPeak=130.45±0.10ofrom2009-15Χ2fitandλISNPeak=130.45±0.06ofromweightedmeanofall2-year(2009-14)fitsaReradjusTngfor:E-dependentefficiency&SecondaryNeutrals

•ISNParameterTube:AdopTngλISN∞=75.0o[3,5]theparametertubegivesVISN∞=26.0±0.1km/s,infullagreementwithvaluesin[3,5].

•YearlyVaria=onsofλISNPeak:Yearlyvalues2009–2015varywith±0.55oStandardDeviaTon.2015strongestdeviaTon,butonly5usablevaluesàeliminated(only0.05odifferenceincombinedfit)

•Varia=onofSorted2-YearFits:2-yearfitsshowmuchreducedvariaTon(±0.32oStdDev)andnovisibletemporaltrendWeightedmeaninfullagreementwithcombinedfitresults.

•NextStepsinAnalysis:-ReplacelinearfitforeachorbitbyfittoAnalyTcModelResultsàWillincreasenumberofusableorbits-Add2016resultsaRerdespinningdatafromoperaTonswithoutIBEXStarTracker&useIBEX-LoEnergySteps1through4àExtendsexisTngdatabase

Conclusions&Outlook

FIGURE5:ISNfluxesatperihelionforeachusableIBEXorbit2009-15asafuncTonofλEcladjustedforaberraTonduetoIBEXmoTon.ErrorbarscontainallknownandesTmatedcontribuTons.obtainedfromaΧ2fittoaGaussian.

Introduc=on Determina=onoftheISNFlowPeakLongitude ISNFlowPeakLongitudeFiang ISNFlowPeakResultsfromMul=-YearFitsTheInterstellarBoundaryExplorer(IBEX)obtainsapreciserelaTonbetweentheinterstellarneutral(ISN)flowlongitudeλISN∞andspeedVISN∞,withsubstanTallylargeruncertaintyinλISN∞,whichdefinesaparametertubethatconnectsISNlongitude,laTtude,speed(velocityvectorVISN∞),andtemperature[1,2,3,4,5],inagreementwithUlyssesGAS[6,7,8](Figure1).TheinterstellarmagneTcfieldBISisdeducedfromtheIBEXribbon,consistentwiththeheliosphericasymmetryandTeVcosmicrayanisotropy[9].ThetwovectorsdefinetheBIS-VISN∞plane,whichcontrolstheshapeof,andtheflowdeflecTonin,theouterheliosheath[10,11].AcomplementarydeterminaTonofλISN∞(PosterSH31A-2529)togetherwithTghteningandtrackingoverTmetheparametertubewillrefinetheBIS-VISN∞planeandconstrainanypotenTaltemporalvariaTons[12,13,14].

•ISNParameterTubeDetermina=on:TheparametertubeissolelydeterminedbytheISNbulkflow(ISNflowmaximum)longitudeλISNPeakat1AUobservedwithIBEX[4,15](discussedonthisPoster).•FlowLongitudeDetermina=on:TheISNflowlongitudeλISN∞isdeterminedfromthevariaTonoftheradialISNflowspeedVr(orthepickupioncut-offalongtheEarth’sorbit,whichissymmetricaboutλISN∞(discussedonPosterSH31A-2529).

TheUncertain=esofDataforeachOrbitcontain:-Χ2-fiterror(x2asfitisrestrictedtolinearandpossiblecurvatureomimed)-uncertaintyinadjusTngforIBEXmoTon(translatedintotherate,usingtheslopesoftheΧ2-fitandofthemodelGaussianinFigure5)-uncertainTesoftheefficiencyandionizaToncompensaTon

References1.  M.Bzowskietal.,Astrophys.J.Supp.220:28(2015).2.  T.Leonardetal.,Astrophys.J.804:42(2015).3.  D.J.McComasetal.,Astrophys.J.Supp.220:22(2015).4.  E.Möbiusetal.,Astrophys.J.Supp.220:24(2015).5.  N.A.Schwadronetal.,Astrophys.J.Supp.220:25(2015).6.  M.Wime,Astron.&Astrophys.426,835(2004).7.  M.Bzowskietal.,Astron.&Astrophys.569,A8(2014).8.  B.Wood,H.-R.Mueller&M.Wime,Astrophys.J.801:62(2015).9.  N.A.Schwadronetal.,Science343,988(2014).10. R.Lallementetal.,Science307,1447(2005).11. V.Izmodenov,D.Alexashov&A.Myasnikov,Astron.&Astrophys.437,L35(2005).12. P.C.Frischetal.,Science341,1080(2013).13. P.C.Frischetal.,Astrophys.J.801:61(2015).14. R.Lallement&J.-L.Bertaux,Astron.&Astrophys.565,A41(2014).15. M.A.Lee,E.Möbius&T.Leonard,Astrophys.J.Supp.220:23(2015).16. E.Möbiusetal.,Astrophys.J.Supp.198:11(2012).17. M.A.Kubiaketal.,Astrophys.J.Supp.223:25(2016).18. C.Drewsetal.,J.Geophys.Res.117,A09106(2012).

ISNParameterTubeandFlowLongitude

3SouthwestResearchInsTtute,SanAntonio,TX

AsseeninFigure5,thereisnoentryfor2012,andtheyearlyfitvaluesforvarysubstanTally,with2015offsetbymorethan2xthestandarddeviaTon.Accordingtothecriteriaforusableorbits,the2012setonlycontains3datapoints,notenoughforafittoaGaussianwith3freeparameters.Thus2012wascompletelyomimed.2015contains5usableorbitsoverarestrictedrangeinλEcl,whichbyitselfdoesnotconstrainλISNPeakwellenough,butcanbeusedintheoverallcombinaTon.Omisng2015fromthefitinFigure5resultsinλISNPeak=130.40±0.11o,onlydifferentby0.05o.

•Reduc=onofSystema=cEffectswithstochas=cDistribu=on:ISNGoodTimesinfluencetheresultssystemaTcally,forexample,byforcingextrapolaTonordataeliminaTon,buttheyaredistributedstochasTcallyeachyear.UsingmulT-yeardatareducessuchsystemaTceffects,asdemonstratedin[18].Hereweuseall2-yearcombinaTons.

FIGURE2:SchemaTcviewofsampleISNtrajectories(darkblue)andtheISNflowvectoralongtheEarth’sorbit(lightblue).ThedarkbluedashedlineindicatesanalternateBulkFlowTrajectorythatsaTsfieseq.1),arrivesatλISNPeak,andthusalsobelongstotheISNparametertube.ThelightbluedashedarrowsindicatethepamernofVr,whichissensedbythepickupioncut-offandfollowseq.2).

FIGURE3:ISNPSDdistribuTon(solidblackline)asafuncTonofeclipTclongitudeλEcl.ThespinintegratedISNflux(dasheddarkblueline)ismodifiedrelaTvetothePSDdistribuTondueto:-  ISNFluxvariaTonwithVISN-  SlightIBEX-LoEfficiencyvariaTonEISN

-  FluxexTncTonfromIoniza=on

asafuncTonofλEcl.TodetermineλISNPeakfromthecenteroftheobservedfluxdistribuTon,theseeffectshavetobecompensatedfor.

FIGURE7:λISNPeakasobtainedfromΧ2fitstoaGaussianfordatasetsof3-yearcombinaTonsinallpermutaTons,alongwiththeweightedmean,combinedfitvaluefromFigure5,standarddeviaTonanderror.

FIGURE1:RelaTonshipbetweenVISN∞andλISN∞accordingtotheIBEXparametertubebasedonvariousIBEXanalysesincomparisonwithUlyssesresults(adaptedfrom[5]).AlsoshownwithaverTcalbarishowanindependentmeasurementofλISN∞willconstraintheISNflowvector.TheeffectofapreciseindependentdeterminaTonoftheISNflowlongitudeλISN∞ontheknowledgeoftheISNflowparametersisindicatedbythegreenverTcalbar.

70 8078767472λISN∞ [

o]

30

28

26

22

24

VISN

∞ [km/s]

λISN∞[o]

ThedeterminaTonofthetheISNFlowPeakLongitudeλISNPeakinvolvesthefollowingsteps[16]:•ISNGoodTimesforeachIBEXorbit[2],butretainTmeintervalsthataredespunatgroundbecauseofmissingStarTrackerpoinTnginformaTon•SpinintegratedISNcountrates±3σ ofpeakdividedbyσper512spins•LinearΧ2fittotheseratesasfuncTonofλEclàobtainrateatλEclwhereIBEXspinpointsexactlyattheSuninλ,adjustedforIBEXmoTon•Compensaterates(seeFigure3)for-ObservaTonofISNflux,whileISNbulkflowcorrespondstopeakinPhaseSpaceDensity(PSD)oftheISNdistribuTonandFlux~PSDxV3-WeaklyE-dependentIBEX-LoefficiencyduetovariaTonofISNenergy(EISN)withλEcl(relaTvein-flightcalibraTonfordifferentIBEX-LoE-Steps)-ExTncTonbyionizaTonalongtrajectoryinλEclusingTIMED&SDOdata.

Figure4:RaToofcombinedISNandsecondaryHe(WB)fluxandISNfluxasafuncTonofλEcl(byIBEXorbit)obtainedfromthebestfitsecondarysoluTonin[17]for2009-11and2013–15(2012notshownbecausenotusedhere).TherelaTvecontribuTonoftheWBislargestatlowλEclandduringsolarminimum(2009-11).Thetwounusuallyhighpointsin2015areforIBEXspinaxisorientaTonsat+5olaTtude,indicaTngincreasedviewingoftheWBforthisorientaTon.TheobservedISNfluxesineachorbitarecompensatedfortheseraTos.

ToobtainavalueforλISNPeaktheadjustedratesfromeachIBEXorbit(ororbitarcaRer2011)areevaluatedfortheirvariaTonwithλEcl.UsableorbitssaTsfy:-ObservaTonsarewithin110o≤λEcl≤160o-PosiTonatexactSunpoinTngofthespinaxisisinsideofortheextrapolaTonislessthantherangeofthedataintervalinλEclTheseratesareΧ2fimedtoaGaussianforeachindividualyearorthecombinaTonofalldataaRernormalizingtheratestothepeakrate(asshowninFigure5).

FIGURE6:λISNPeakasobtainedfromΧ2fitstoaGaussianforthedatasetofeachyear,alongwiththeweightedmean,combinedfitvaluefromFigure5,standarddeviaTonanderror.

VISN∞

Sunθ∞ = λISN∞ + λISN Peak

1cos(θ∞ )

=1+ (rEVISN∞2

GMs

)

Vr

1

1.1

1.2

1.3

1.4

1.5

100 110 120 130 140 150 160 170

ISN&WB 2009 - 2011

(ISN

+ W

B)/I

SN

λEcl

[o]

2010

2011

2009

100 110 120 130 140 150 160 170

ISN&WB 2013 - 2015

20142015

2013

Contact:[email protected]

4UniversityofTexas,SanAntonio,TX 5LaboratoryforAtmosphericandSpacePhysics,Boulder,CO6DepartmentofAstrophysicalSciences,PrincetonUniversity,NJ 7OfficeoftheVPforthePrincetonPPL,PrincetonUniversity,NJ 8PhysikalischesInsTtut,UniversitätBern,Switzerland

1)

Contribu=onofSecondaryHeNeutrals:TheobservedIBEXISNfluxdistribuTonalsocontainsavariablecontribuTonfromsecondaryHeneutralsthatoriginateintheouterheliosheath.TheISNdistribuTonisadjustedforthesecondarycontribuTonaccordingtoFigure4[from17].

0.1

1

100 110 120 130 140 150 160

2009-15 TL&DH 120516

Nor

m R

ate

(adj

. for

PSD

)

λEcl

(Aberration) [o]

y = m2*exp(-(x-m3)^ 2/m4^ 2/...ErrorValue

0.0677873.9687m2 0.11829131.78m3 0.2549412.282m4

NA15.688ChisqNA0.98868R

y = m2*exp(-(x-m3)^ 2/m4^ 2/...ErrorValue

0.0125731.0092m2 0.11154130.45m3 0.1044511.471m4

NA88.673ChisqNA0.99137R

λPeak

= 130.45±0.10o

σλ = 11.47±0.10o

126

128

130

132

134

2009

2010

2011

2012

2013

2014

2015

Single Year Fits

λ ISN Peak

Years

Std

Dev

Std

Err

or

WeightedMean

Combined Fit

FitstoyearlydatasetsaresimilartothecombinedsetinFigure5,butwithlargererrors.TheyearlyfitresultsarecompiledinFigure6,alongwiththeweightedmeanofallyearlyfitresultsandthecombinedfitresultfromFigure5.

130o110o 150o λEcl

ISN PSD Distribution

λ ISN

Pea

k

Effects of- Flux ~ PSD x V3

- Efficiency Variation with EISN- Ionization

120 140133 eV76 8280 km/s

EISN

VISN(Earth)θ∞125o135o 115o

Ionization

2)vr2 =2+vISN∞2 −(1−cosλ)−vISN∞2 sin2λ+vISN∞sin |λ |⋅[vISN∞2 sin2λ+4(1−cosλ)]1/2⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪/ 2

126

128

130

132

134

9 10 11 12 13 14

2-Year-Fits 2009 - 2014

λISN

Peak

Years

Combined Fit

WeightedMean

Std

Dev

Std

Err

or

Figure7showsall2-yearcombinaTonssortedbytheircenterTme.CombinaTonswithidenTcalcenterTmevarymorethanthosewithdifferentTmesàConsistentwithnotrend!AddingmoredatapointsandextendingTmewillreduceuncertainTes.