151
Random Point Processes Models, Characteristics and Structural Properties Volker Schmidt Department of Stochastics University of Ulm S ¨ ollerhaus–Workshop, March 2006  1

Sh Schmidt

Embed Size (px)

Citation preview

Page 1: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 1/151

Random Point Processes

Models, Characteristics and Structural Properties 

Volker Schmidt

Department of Stochastics

University of Ulm

Sollerhaus–Workshop, March 2006   1

Page 2: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 2/151

IntroductionAims 

1. Explain some basic ideas for stochastic modelling ofspatial point patterns

stationarity (homogeneity) vs. spatial trendsisotropy (rotational invariance)

complete spatial randomness

interaction between points (clustering, repulsion)

Sollerhaus–Workshop, March 2006   2

Page 3: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 3/151

IntroductionAims 

1. Explain some basic ideas for stochastic modelling ofspatial point patterns

stationarity (homogeneity) vs. spatial trendsisotropy (rotational invariance)

complete spatial randomness

interaction between points (clustering, repulsion)2. Describe some basic characteristics of point–process

models

Intensity measure, conditional intensitiesPair correlation function, Ripley’s K-function, etc.

Sollerhaus–Workshop, March 2006   2

Page 4: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 4/151

IntroductionAims 

1. Explain some basic ideas for stochastic modelling ofspatial point patterns

stationarity (homogeneity) vs. spatial trendsisotropy (rotational invariance)

complete spatial randomness

interaction between points (clustering, repulsion)2. Describe some basic characteristics of point–process

models

Intensity measure, conditional intensitiesPair correlation function, Ripley’s K-function, etc.

3. Present techniques for the statistical analysis of spatial

point patterns

Sollerhaus–Workshop, March 2006   2

Page 5: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 5/151

IntroductionOverview 

1. Examples of spatial point patterns

Sollerhaus–Workshop, March 2006   3

Page 6: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 6/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

Sollerhaus–Workshop, March 2006   3

Page 7: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 7/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

Sollerhaus–Workshop, March 2006   3

Page 8: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 8/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Sollerhaus–Workshop, March 2006   3

Page 9: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 9/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Poisson point processes

Sollerhaus–Workshop, March 2006   3

Page 10: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 10/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Poisson point processes

Cluster and hard–core processes

Sollerhaus–Workshop, March 2006   3

Page 11: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 11/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Poisson point processes

Cluster and hard–core processes

Gibbs point processes

Sollerhaus–Workshop, March 2006   3

Page 12: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 12/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Poisson point processes

Cluster and hard–core processes

Gibbs point processes

3. Characteristics of point processes

Sollerhaus–Workshop, March 2006   3

Page 13: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 13/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Poisson point processes

Cluster and hard–core processes

Gibbs point processes

3. Characteristics of point processes4. Some statistical issues

Sollerhaus–Workshop, March 2006   3

Page 14: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 14/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Poisson point processes

Cluster and hard–core processes

Gibbs point processes

3. Characteristics of point processes4. Some statistical issues

Nonparametric estimation of model characteristics

Sollerhaus–Workshop, March 2006   3

Page 15: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 15/151

IntroductionOverview 

1. Examples of spatial point patterns

point patterns in networks

other point patterns

2. Models for spatial point patterns

Poisson point processes

Cluster and hard–core processes

Gibbs point processes

3. Characteristics of point processes4. Some statistical issues

Nonparametric estimation of model characteristics

Maximum pseudolikelihood estimation

Sollerhaus–Workshop, March 2006   3

Page 16: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 16/151

ExamplesPoint patterns in networks 

Street system of Paris Cytoskeleton of a leukemia cell  

Sollerhaus–Workshop, March 2006   4

Page 17: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 17/151

ExamplesRandom tessellations 

Poisson line (PLT) Poisson-Voronoi (PVT) Poisson-Delaunay (PDT)

Simple and iterated tessellation models

PLT/PLT PLT/PDT PVT/PLT  

Sollerhaus–Workshop, March 2006   5

Page 18: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 18/151

ExamplesModel fitting for network data 

Street system of Paris    Cutout Tessellation model 

(PLT/PLT)

Model fitting for telecommunication networks

Sollerhaus–Workshop, March 2006   6

Page 19: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 19/151

ExamplesAnalysis of biological networks 

a) Actin network at the cell periphery

b) Lamellipodium   c) Region behind lamellipodia

Actin filament networks

Sollerhaus–Workshop, March 2006   7

Page 20: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 20/151

ExamplesAnalysis of biological networks 

SEM image (keratin)   Graph structure Tessellation model 

(PVT/PLT)

Model fitting for keratin and actin networks

SEM image (actin) Graph structure  Tessellation model (PLT/PDT)

Sollerhaus–Workshop, March 2006   8

Page 21: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 21/151

Other examplesModelling of tropical storm tracks 

Storm tracks of cyclons over Japan 

1945-2004 

Estimated intensity field for initial points of 

storm tracks over Japan 

Sollerhaus–Workshop, March 2006   9

Page 22: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 22/151

Other examplesPoint patterns in biological cell nuclei 

Heterochromatin structures in interphase nuclei

3D-reconstruction of NB4 cell nuclei (DNA shown in gray

levels) and centromere distributions (shown in red)

Sollerhaus–Workshop, March 2006   10

Page 23: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 23/151

Other examplesPoint patterns in biological cell nuclei 

Projections of the 3D chromocenter distributions of anundifferentiated (left) NB4 cell and a differentiated (right)

NB4 cell onto the xy-plane

Sollerhaus–Workshop, March 2006   11

Page 24: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 24/151

Other examplesPoint patterns in biological cell nuclei 

Capsides of 

cytomegalovirus Extracted point pattern 

Model for a point field 

(cluster)

Sollerhaus–Workshop, March 2006   12

Page 25: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 25/151

ModelsBasic ideas 

1. Mathematical definition of spatial point processes

Let {X 1, X 2,...} be a sequence of random vectors

with values in

  2

andlet X (B) = #{n : X n  ∈ B} denote the number of

„points” X n  located in a set B  ⊂  2.

Sollerhaus–Workshop, March 2006   13

Page 26: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 26/151

ModelsBasic ideas 

1. Mathematical definition of spatial point processes

Let {X 1, X 2,...} be a sequence of random vectors

with values in

  2

andlet X (B) = #{n : X n  ∈ B} denote the number of

„points” X n  located in a set B  ⊂  2.

If X (B) < ∞ for each bounded set B ⊂

  2, then{X 1, X 2,...} is called a random point process.

Sollerhaus–Workshop, March 2006   13

Page 27: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 27/151

ModelsBasic ideas 

1. Mathematical definition of spatial point processes

Let {X 1, X 2,...} be a sequence of random vectors

with values in

  2

andlet X (B) = #{n : X n  ∈ B} denote the number of

„points” X n  located in a set B  ⊂  2.

If X (B) < ∞ for each bounded set B ⊂

  2, then{X 1, X 2,...} is called a random point process.

2. A point process {X 1, X 2,...} is called

stationary (homogeneous) if the distribution of{X 1, X 2,...} is invariant w.r.t translations of the origin,

i.e.  {X n}  d= {X n − u} ∀ u ∈

  2

Sollerhaus–Workshop, March 2006   13

Page 28: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 28/151

ModelsBasic ideas 

1. Mathematical definition of spatial point processes

Let {X 1, X 2,...} be a sequence of random vectors

with values in

  2

andlet X (B) = #{n : X n  ∈ B} denote the number of

„points” X n  located in a set B  ⊂  2.

If X (B) < ∞ for each bounded set B ⊂

  2, then{X 1, X 2,...} is called a random point process.

2. A point process {X 1, X 2,...} is called

stationary (homogeneous) if the distribution of{X 1, X 2,...} is invariant w.r.t translations of the origin,

i.e.  {X n}  d= {X n − u} ∀ u ∈

  2

isotropic if the distribution of {X n} is invariantw.r.t rotations around the origin

Sollerhaus–Workshop, March 2006   13

Page 29: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 29/151

ModelsBasic ideas 

1. Stochastic model vs. single realization

Sollerhaus–Workshop, March 2006   14

Page 30: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 30/151

ModelsBasic ideas 

1. Stochastic model vs. single realization

Point processes are mathematical models

Sollerhaus–Workshop, March 2006   14

Page 31: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 31/151

ModelsBasic ideas 

1. Stochastic model vs. single realization

Point processes are mathematical models

Observed point patterns are their realizations

Sollerhaus–Workshop, March 2006   14

M d l

Page 32: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 32/151

ModelsBasic ideas 

1. Stochastic model vs. single realization

Point processes are mathematical models

Observed point patterns are their realizations

2. Some further remarks

Equivalent notions:

point field instead of spatial point process

Sollerhaus–Workshop, March 2006   14

M d l

Page 33: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 33/151

ModelsBasic ideas 

1. Stochastic model vs. single realization

Point processes are mathematical models

Observed point patterns are their realizations

2. Some further remarks

Equivalent notions:

point field instead of spatial point process

Point processes are not necessarily dynamic

Sollerhaus–Workshop, March 2006   14

M d l

Page 34: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 34/151

ModelsBasic ideas 

1. Stochastic model vs. single realization

Point processes are mathematical models

Observed point patterns are their realizations

2. Some further remarks

Equivalent notions:

point field instead of spatial point process

Point processes are not necessarily dynamic

Dynamics (w.r.t. time/space) can be added=> spatial birth-and-death processes

Sollerhaus–Workshop, March 2006   14

M d l

Page 35: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 35/151

ModelsStationary Poisson process 

1. Definition of stationary Poisson processes

Poisson distribution of point counts:

X (B) ∼ Poi(λ|B|) for any bounded B ⊂

  2

and someλ > 0

Sollerhaus–Workshop, March 2006   15

M d l

Page 36: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 36/151

ModelsStationary Poisson process 

1. Definition of stationary Poisson processes

Poisson distribution of point counts:

X (B) ∼ Poi(λ|B|) for any bounded B ⊂

  2

and someλ > 0

Independent scattering of points: the point counts

X (B1), . . . , X  (Bn) are independent random variablesfor any pairwise disjoint sets B1, . . . , Bn  ⊂  2

Sollerhaus–Workshop, March 2006   15

M d l

Page 37: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 37/151

ModelsStationary Poisson process 

1. Definition of stationary Poisson processes

Poisson distribution of point counts:

X (B) ∼ Poi(λ|B|) for any bounded B ⊂

  2

and someλ > 0

Independent scattering of points: the point counts

X (B1), . . . , X  (Bn) are independent random variablesfor any pairwise disjoint sets B1, . . . , Bn  ⊂  2

2. Basic properties

X (B) = λ|B| =⇒ λ = intensity of pointsVoid–probabilities:

  (X (B) = 0) = exp(−λ|B|)

Sollerhaus–Workshop, March 2006   15

M d l

Page 38: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 38/151

ModelsStationary Poisson process 

1. Definition of stationary Poisson processes

Poisson distribution of point counts:

X (B) ∼ Poi(λ|B|) for any bounded B ⊂

  2

and someλ > 0

Independent scattering of points: the point counts

X (B1), . . . , X  (Bn) are independent random variablesfor any pairwise disjoint sets B1, . . . , Bn  ⊂  2

2. Basic properties

X (B) = λ|B| =⇒ λ = intensity of pointsVoid–probabilities:

  (X (B) = 0) = exp(−λ|B|)

Conditional uniformity: Given X (B) = n, the locations

of the n points in B  are independent and uniformlydistributed random variables

Sollerhaus–Workshop, March 2006   15

Models

Page 39: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 39/151

ModelsStationary Poisson process 

Simulated realization of a stationary Poisson process

Sollerhaus–Workshop, March 2006   16

Models

Page 40: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 40/151

ModelsStationary Poisson process 

Simulated realization of a stationary Poisson process

convincingly shows

Complete spatial randomness

Sollerhaus–Workshop, March 2006   16

Models

Page 41: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 41/151

ModelsStationary Poisson process 

Simulated realization of a stationary Poisson process

convincingly shows

Complete spatial randomness

No spatial trend

Sollerhaus–Workshop, March 2006   16

Models

Page 42: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 42/151

ModelsStationary Poisson process 

Simulated realization of a stationary Poisson process

convincingly shows

Complete spatial randomness

No spatial trend

No interaction between the pointsSollerhaus–Workshop, March 2006   16

Models

Page 43: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 43/151

ModelsGeneral Poisson process 

1. Definition of general (non–homogeneous) Poissonprocesses

Poisson distribution of point counts:X (B) ∼ Poi(Λ(B)) for any bounded B ⊂  2 and

some measure Λ : B (  2) → [0, ∞]

Sollerhaus–Workshop, March 2006   17

Models

Page 44: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 44/151

ModelsGeneral Poisson process 

1. Definition of general (non–homogeneous) Poissonprocesses

Poisson distribution of point counts:X (B) ∼ Poi(Λ(B)) for any bounded B ⊂  2 and

some measure Λ : B (  2) → [0, ∞]

Independent scattering of points: the point countsX (B1), . . . , X  (Bn) are independent random variables

for any pairwise disjoint sets B1, . . . , Bn  ⊂  2

Sollerhaus–Workshop, March 2006   17

Models

Page 45: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 45/151

ModelsGeneral Poisson process 

1. Definition of general (non–homogeneous) Poissonprocesses

Poisson distribution of point counts:X (B) ∼ Poi(Λ(B)) for any bounded B ⊂  2 and

some measure Λ : B (  2) → [0, ∞]

Independent scattering of points: the point countsX (B1), . . . , X  (Bn) are independent random variables

for any pairwise disjoint sets B1, . . . , Bn  ⊂  2

2. Basic properties

X (B) = Λ(B) =⇒ Λ = intensity measure

Sollerhaus–Workshop, March 2006   17

Models

Page 46: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 46/151

ModelsGeneral Poisson process 

1. Definition of general (non–homogeneous) Poissonprocesses

Poisson distribution of point counts:X (B) ∼ Poi(Λ(B)) for any bounded B ⊂  2 and

some measure Λ : B (  2) → [0, ∞]

Independent scattering of points: the point countsX (B1), . . . , X  (Bn) are independent random variables

for any pairwise disjoint sets B1, . . . , Bn  ⊂  2

2. Basic properties

X (B) = Λ(B) =⇒ Λ = intensity measure

Void–probabilities:

  (X (B) = 0) = exp(−Λ(B))

Sollerhaus–Workshop, March 2006   17

Models

Page 47: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 47/151

ModelsGeneral Poisson process 

1. Definition of general (non–homogeneous) Poissonprocesses

Poisson distribution of point counts:X (B) ∼ Poi(Λ(B)) for any bounded B ⊂  2 and

some measure Λ : B (  2) → [0, ∞]

Independent scattering of points: the point countsX (B1), . . . , X  (Bn) are independent random variables

for any pairwise disjoint sets B1, . . . , Bn  ⊂  2

2. Basic properties

X (B) = Λ(B) =⇒ Λ = intensity measure

Void–probabilities:

  (X (B) = 0) = exp(−Λ(B))

Intensity function λ(x) ≥ 0 if Λ(B) =  B λ(x) dx

Sollerhaus–Workshop, March 2006   17

Further basic models

Page 48: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 48/151

Further basic modelsPoisson hardcore process 

Realisation of a Poisson hardcore process

Sollerhaus–Workshop, March 2006   18

Further basic models

Page 49: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 49/151

Further basic modelsPoisson hardcore process 

Realisation of a Poisson hardcore process

Constructed from stationary Poisson processes (byrandom deletion of points)

Sollerhaus–Workshop, March 2006   18

Further basic models

Page 50: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 50/151

Further basic modelsPoisson hardcore process 

Realisation of a Poisson hardcore process

Constructed from stationary Poisson processes (byrandom deletion of points)

Realizations are relatively regular point patterns (withsmaller spatial variability than in the Poisson case)Sollerhaus–Workshop, March 2006   18

Further basic models

Page 51: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 51/151

Further basic modelsPoisson hardcore process 

Description of the model

Start from a stationary Poisson process (with some

intensity λ > 0)

Sollerhaus–Workshop, March 2006   19

Further basic models

Page 52: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 52/151

Further basic modelsPoisson hardcore process 

Description of the model

Start from a stationary Poisson process (with some

intensity λ > 0)

Cancel all those points whose distance to their nearestneighbor is smaller than some R > 0

Sollerhaus–Workshop, March 2006   19

Further basic models

Page 53: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 53/151

Further basic modelsPoisson hardcore process 

Description of the model

Start from a stationary Poisson process (with some

intensity λ > 0)

Cancel all those points whose distance to their nearestneighbor is smaller than some R > 0

Minimal (hardcore) distance between point–pairs=> R/2 = hardcore radius

Sollerhaus–Workshop, March 2006   19

Further basic models

Page 54: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 54/151

Further basic modelsPoisson hardcore process 

Description of the model

Start from a stationary Poisson process (with some

intensity λ > 0)

Cancel all those points whose distance to their nearestneighbor is smaller than some R > 0

Minimal (hardcore) distance between point–pairs=> R/2 = hardcore radius

Spatial interaction between points (mutual repulsion)

Sollerhaus–Workshop, March 2006   19

Further basic models

Page 55: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 55/151

Further basic modelsPoisson hardcore process 

Description of the model

Start from a stationary Poisson process (with some

intensity λ > 0)

Cancel all those points whose distance to their nearestneighbor is smaller than some R > 0

Minimal (hardcore) distance between point–pairs=> R/2 = hardcore radius

Spatial interaction between points (mutual repulsion)

Two–parametric model (with parameters λ and R)

Sollerhaus–Workshop, March 2006   19

Further basic models

Page 56: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 56/151

Further basic modelsMatern–cluster process 

Realization of a Matern-cluster process

Sollerhaus–Workshop, March 2006   20

Further basic models

Page 57: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 57/151

Further basic modelsMatern–cluster process 

Realization of a Matern-cluster process

Constructed from stationary Poisson processes (ofso–called cluster centers)

Sollerhaus–Workshop, March 2006   20

Further basic models

Page 58: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 58/151

Further basic modelsMatern–cluster process 

Realization of a Matern-cluster process

Constructed from stationary Poisson processes (ofso–called cluster centers)

Realizations are clustered point patterns (with higherspatial variability than in the Poisson case)Sollerhaus–Workshop, March 2006   20

Further basic models

Page 59: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 59/151

Further basic modelsMatern–cluster process 

Description of the model

Centers of clusters form a stationary Poisson process

(with intensity λ0 > 0)

Sollerhaus–Workshop, March 2006   21

Further basic models

Page 60: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 60/151

Further basic modelsMatern–cluster process 

Description of the model

Centers of clusters form a stationary Poisson process

(with intensity λ0 > 0)

Cluster points are within a disc of radius R > 0 (aroundthe cluster center)

Sollerhaus–Workshop, March 2006   21

Further basic models

Page 61: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 61/151

u t e bas c ode sMatern–cluster process 

Description of the model

Centers of clusters form a stationary Poisson process

(with intensity λ0 > 0)

Cluster points are within a disc of radius R > 0 (aroundthe cluster center)

Inside these discs stationary Poisson processes arerealized (with intensity λ1 > 0)

Sollerhaus–Workshop, March 2006   21

Further basic models

Page 62: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 62/151

Matern–cluster process 

Description of the model

Centers of clusters form a stationary Poisson process

(with intensity λ0 > 0)

Cluster points are within a disc of radius R > 0 (aroundthe cluster center)

Inside these discs stationary Poisson processes arerealized (with intensity λ1 > 0)

Spatial interaction between points (mutual attraction,clustering of points)

Sollerhaus–Workshop, March 2006   21

Further basic models

Page 63: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 63/151

Matern–cluster process 

Description of the model

Centers of clusters form a stationary Poisson process

(with intensity λ0 > 0)

Cluster points are within a disc of radius R > 0 (aroundthe cluster center)

Inside these discs stationary Poisson processes arerealized (with intensity λ1 > 0)

Spatial interaction between points (mutual attraction,clustering of points)

Three–parametric model (with parameters λ0

, λ1

 and R)

Sollerhaus–Workshop, March 2006   21

More advanced models

Page 64: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 64/151

Gibbs point processes 

1. Define Gibbs processes via conditional intensities:

Sollerhaus–Workshop, March 2006   22

More advanced models

Page 65: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 65/151

Gibbs point processes 

1. Define Gibbs processes via conditional intensities:

For each location u ∈  2 and for each realization

x

 = {x1, x2,...} of the point process X

 = {X 1, X 2,...},consider the value λ(u,x) ≥ 0,

Sollerhaus–Workshop, March 2006   22

More advanced models

Page 66: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 66/151

Gibbs point processes 

1. Define Gibbs processes via conditional intensities:

For each location u ∈  2 and for each realization

x

 = {x1, x2,...} of the point process X

 = {X 1, X 2,...},consider the value λ(u,x) ≥ 0,

where λ(u,x) du is the conditional probability thatX has a point in du, given the positions of all pointsx \ {u} of  X outside of the infinitesimal region du

Sollerhaus–Workshop, March 2006   22

More advanced models

Page 67: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 67/151

Gibbs point processes 

1. Define Gibbs processes via conditional intensities:

For each location u ∈  2 and for each realization

x

 = {x1, x2,...} of the point process X

 = {X 1, X 2,...},consider the value λ(u,x) ≥ 0,

where λ(u,x) du is the conditional probability thatX has a point in du, given the positions of all pointsx \ {u} of  X outside of the infinitesimal region du

2. Special cases

stationary Poisson process:  λ(u,x

) = λ

Sollerhaus–Workshop, March 2006   22

More advanced models

Page 68: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 68/151

Gibbs point processes 

1. Define Gibbs processes via conditional intensities:

For each location u ∈  2 and for each realization

x

 = {x1, x2,...} of the point process X

 = {X 1, X 2,...},consider the value λ(u,x) ≥ 0,

where λ(u,x) du is the conditional probability thatX has a point in du, given the positions of all pointsx \ {u} of  X outside of the infinitesimal region du

2. Special cases

stationary Poisson process:  λ(u,x

) = λgeneral Poisson process:  λ(u,x) = λ(u)

Sollerhaus–Workshop, March 2006   22

More advanced models

Page 69: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 69/151

Gibbs point processes 

1. Define Gibbs processes via conditional intensities:

For each location u ∈  2 and for each realization

x

 = {x1, x2,...} of the point process X

 = {X 1, X 2,...},consider the value λ(u,x) ≥ 0,

where λ(u,x) du is the conditional probability thatX has a point in du, given the positions of all pointsx \ {u} of  X outside of the infinitesimal region du

2. Special cases

stationary Poisson process: λ(u,

x

) = λgeneral Poisson process:  λ(u,x) = λ(u)

Stationary Strauss process λ(u,x) = λγ t(u,x), where

t(u,x) = #{n : |u − xn| < r} is the number of pointsin  x = {xn} that have a distance from u less than r

Sollerhaus–Workshop, March 2006   22

More advanced models

Page 70: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 70/151

Strauss process 

3 Properties of the Strauss process with conditional

intensity λ(u,x) = λγ t(u,x)

Sollerhaus–Workshop, March 2006   23

More advanced models

Page 71: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 71/151

Strauss process 

3 Properties of the Strauss process with conditional

intensity λ(u,x) = λγ t(u,x)

γ  ∈ [0, 1] is the interaction parameter, and r > 0 theinteraction radius

Sollerhaus–Workshop, March 2006   23

More advanced models

Page 72: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 72/151

Strauss process 

3 Properties of the Strauss process with conditional

intensity λ(u,x) = λγ t(u,x)

γ  ∈ [0, 1] is the interaction parameter, and r > 0 theinteraction radius

Three-parametric model (with parameters λ, γ, r)

Sollerhaus–Workshop, March 2006   23

More advanced models

Page 73: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 73/151

Strauss process 

3 Properties of the Strauss process with conditional

intensity λ(u,x) = λγ t(u,x)

γ  ∈ [0, 1] is the interaction parameter, and r > 0 theinteraction radius

Three-parametric model (with parameters λ, γ, r)

4 Special cases:If γ  = 1, then λ(u,x) = λ (Poisson process)

Sollerhaus–Workshop, March 2006   23

More advanced models

Page 74: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 74/151

Strauss process 

3 Properties of the Strauss process with conditional

intensity λ(u,x) = λγ t(u,x)

γ  ∈ [0, 1] is the interaction parameter, and r > 0 theinteraction radius

Three-parametric model (with parameters λ, γ, r)

4 Special cases:If γ  = 1, then λ(u,x) = λ (Poisson process)

If γ  = 0, then hardcore process

λ(u,x) =   0   for t(u,x) > 0

λ   for t(u,x) = 0

Sollerhaus–Workshop, March 2006   23

More advanced models

Page 75: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 75/151

Strauss process 

3 Properties of the Strauss process with conditional

intensity λ(u,x) = λγ t(u,x)

γ  ∈ [0, 1] is the interaction parameter, and r > 0 theinteraction radius

Three-parametric model (with parameters λ, γ, r)

4 Special cases:If γ  = 1, then λ(u,x) = λ (Poisson process)

If γ  = 0, then hardcore process

λ(u,x) =   0   for t(u,x) > 0

λ   for t(u,x) = 0

If 0 < γ < 1, then softcore process (repulsion)Sollerhaus–Workshop, March 2006   23

More advanced models

Page 76: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 76/151

Strauss processes in bounded sets 

Probability density w.r.t. stationary Poisson processes=> simulation algorithm

Sollerhaus–Workshop, March 2006   24

More advanced models

Page 77: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 77/151

Strauss processes in bounded sets 

Probability density w.r.t. stationary Poisson processes=> simulation algorithm

Consider an open bounded set  W   ⊂

  2

, a Straussprocess  X in W , and a (stationary) Poisson processXPoi  in W   with

  X Poi(W ) = 1

Sollerhaus–Workshop, March 2006   24

More advanced modelsS i b d d

Page 78: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 78/151

Strauss processes in bounded sets 

Probability density w.r.t. stationary Poisson processes=> simulation algorithm

Consider an open bounded set  W   ⊂

  2

, a Straussprocess  X in W , and a (stationary) Poisson processXPoi  in W   with

  X Poi(W ) = 1

Then,

  (X ∈ A) =  A f (x)

  (XPoi ∈ dx) for some (local)probability density f (x) with

Sollerhaus–Workshop, March 2006   24

More advanced modelsS i b d d

Page 79: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 79/151

Strauss processes in bounded sets 

Probability density w.r.t. stationary Poisson processes=> simulation algorithm

Consider an open bounded set  W   ⊂

  2

, a Straussprocess  X in W , and a (stationary) Poisson processXPoi  in W   with

  X Poi(W ) = 1

Then,

  (X ∈ A) =  A f (x)

  (XPoi ∈ dx) for some (local)probability density f (x) with

f (x

) ∼ λ

n(x)

γ 

s(x)

Sollerhaus–Workshop, March 2006   24

More advanced modelsS i b d d

Page 80: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 80/151

Strauss processes in bounded sets 

Probability density w.r.t. stationary Poisson processes=> simulation algorithm

Consider an open bounded set  W   ⊂

  2

, a Straussprocess  X in W , and a (stationary) Poisson processXPoi  in W   with

  X Poi(W ) = 1

Then,

  (X ∈ A) =  A f (x)

  (XPoi ∈ dx) for some (local)probability density f (x) with

f (x

) ∼ λ

n(x)

γ 

s(x)

where n(x) is the number of points of  x ⊂ W , and

Sollerhaus–Workshop, March 2006   24

More advanced modelsSt i b d d t

Page 81: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 81/151

Strauss processes in bounded sets 

Probability density w.r.t. stationary Poisson processes=> simulation algorithm

Consider an open bounded set  W   ⊂

  2

, a Straussprocess  X in W , and a (stationary) Poisson processXPoi  in W   with

  X Poi(W ) = 1

Then,

  (X ∈ A) =  A f (x)

  (XPoi ∈ dx) for some (local)probability density f (x) with

f (x

) ∼ λ

n(x)

γ 

s(x)

where n(x) is the number of points of  x ⊂ W , and

s(x) the number of pairs x, x ∈ x with |x − x| < r

Sollerhaus–Workshop, March 2006   24

More advanced modelsSt i b d d t

Page 82: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 82/151

Strauss processes in bounded sets 

MCMC simulation by spatial birth-and-death processes

Sollerhaus–Workshop, March 2006   25

More advanced modelsSt i b d d t

Page 83: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 83/151

Strauss processes in bounded sets 

MCMC simulation by spatial birth-and-death processes

a)

Initial configuration

b)

Birth of a point

Sollerhaus–Workshop, March 2006   25

More advanced modelsSt i b d d t

Page 84: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 84/151

Strauss processes in bounded sets 

MCMC simulation by spatial birth-and-death processes

a)

Initial configuration

b)

Birth of a point

c)

Birth of another point

d)

Death of a pointSollerhaus–Workshop, March 2006   25

More advanced modelsSt h d

Page 85: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 85/151

Strauss hardcore process 

1. Definition of Strauss hardcore processes:

Sollerhaus–Workshop, March 2006   26

More advanced modelsStra ss hardcore process

Page 86: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 86/151

Strauss hardcore process 

1. Definition of Strauss hardcore processes:

For some λ, γ, r, R > 0 with r < R, the conditionalintensity λ(u,x) is given by

λ(u,x) =

  0   if tr(u,x) > 0

λγ tR(u,x) if tr(u,x) = 0

where ts(u,x) = #{n : |u − xn| < s}

Sollerhaus–Workshop, March 2006   26

More advanced modelsStrauss hardcore process

Page 87: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 87/151

Strauss hardcore process 

1. Definition of Strauss hardcore processes:

For some λ, γ, r, R > 0 with r < R, the conditionalintensity λ(u,x) is given by

λ(u,x) =

  0   if tr(u,x) > 0

λγ tR(u,x) if tr(u,x) = 0

where ts(u,x) = #{n : |u − xn| < s}

2. Properties:

Sollerhaus–Workshop, March 2006   26

More advanced modelsStrauss hardcore process

Page 88: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 88/151

Strauss hardcore process 

1. Definition of Strauss hardcore processes:

For some λ, γ, r, R > 0 with r < R, the conditionalintensity λ(u,x) is given by

λ(u,x) =

  0   if tr(u,x) > 0

λγ tR(u,x) if tr(u,x) = 0

where ts(u,x) = #{n : |u − xn| < s}

2. Properties:

Minimal interpoint distance r  (hardcore radius r/2)

Sollerhaus–Workshop, March 2006   26

More advanced modelsStrauss hardcore process

Page 89: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 89/151

Strauss hardcore process 

1. Definition of Strauss hardcore processes:

For some λ, γ, r, R > 0 with r < R, the conditionalintensity λ(u,x) is given by

λ(u,x) =

  0   if tr(u,x) > 0

λγ tR(u,x) if tr(u,x) = 0

where ts(u,x) = #{n : |u − xn| < s}

2. Properties:

Minimal interpoint distance r  (hardcore radius r/2)(r, R) = interval of interaction distances(attraction/clustering if γ > 1, repulsion if γ < 1)

Sollerhaus–Workshop, March 2006   26

More advanced modelsStrauss hardcore process

Page 90: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 90/151

Strauss hardcore process 

1. Definition of Strauss hardcore processes:

For some λ, γ, r, R > 0 with r < R, the conditionalintensity λ(u,x) is given by

λ(u,x) =

  0   if tr(u,x) > 0

λγ tR(u,x) if tr(u,x) = 0

where ts(u,x) = #{n : |u − xn| < s}

2. Properties:

Minimal interpoint distance r  (hardcore radius r/2)(r, R) = interval of interaction distances(attraction/clustering if γ > 1, repulsion if γ < 1)

Four-parametric model (with parameters λ, γ, r, R)Sollerhaus–Workshop, March 2006   26

More advanced modelsStrauss hardcore processes in bounded sets

Page 91: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 91/151

Strauss hardcore processes in bounded sets 

Probability density f (x) w.r.t. stationary Poisson

process in an open bounded set W   ⊂  2:

(X ∈ A) =  A

f (x)

  (XPoi ∈ dx)

Sollerhaus–Workshop, March 2006   27

More advanced modelsStrauss hardcore processes in bounded sets

Page 92: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 92/151

Strauss hardcore processes in bounded sets 

Probability density f (x) w.r.t. stationary Poisson

process in an open bounded set W   ⊂  2:

(X ∈ A) =  A

f (x)

  (XPoi ∈ dx)

MCMC simulation by spatial birth-and-death processes

Sollerhaus–Workshop, March 2006   27

More advanced modelsStrauss hardcore processes in bounded sets

Page 93: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 93/151

Strauss hardcore processes in bounded sets 

Probability density f (x) w.r.t. stationary Poisson

process in an open bounded set W   ⊂  2:

(X ∈ A) =  A

f (x)

  (XPoi ∈ dx)

MCMC simulation by spatial birth-and-death processes

Initial configuration    Death of a point Death of another point 

Sollerhaus–Workshop, March 2006   27

Characteristics of point processesIntensity measure

Page 94: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 94/151

Intensity measure 

Consider an arbitrary point process {X 1, X 2, . . .} ⊂  2

Sollerhaus–Workshop, March 2006   28

Characteristics of point processesIntensity measure

Page 95: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 95/151

Intensity measure 

Consider an arbitrary point process {X 1, X 2, . . .} ⊂  2

Intensity measure Λ(B) =

  X (B)

Sollerhaus–Workshop, March 2006   28

Characteristics of point processesIntensity measure

Page 96: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 96/151

Intensity measure 

Consider an arbitrary point process {X 1, X 2, . . .} ⊂  2

Intensity measure Λ(B) =

  X (B)

Stationary case Λ(B) = λ|B|, where λ = intensity

Sollerhaus–Workshop, March 2006   28

Characteristics of point processesIntensity measure

Page 97: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 97/151

Intensity measure 

Consider an arbitrary point process {X 1, X 2, . . .} ⊂  2

Intensity measure Λ(B) =

  X (B)

Stationary case Λ(B) = λ|B|, where λ = intensity

λ = 0.01   λ = 0.1Sollerhaus–Workshop, March 2006   28

Characteristics of point processesFactorial moment measure; product density

Page 98: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 98/151

Factorial moment measure; product density 

Consider the second-order factorial moment measureα(2) : B (

  2) ⊗ B (  2) → [0, ∞] with

Sollerhaus–Workshop, March 2006   29

Characteristics of point processesFactorial moment measure; product density

Page 99: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 99/151

Factorial moment measure; product density 

Consider the second-order factorial moment measureα(2) : B (

  2) ⊗ B (  2) → [0, ∞] with

α(2)

(B1 × B2) =

  #{(i, j) :   X i ∈ B1, X  j  ∈ B2   ∀ i = j}

Sollerhaus–Workshop, March 2006   29

Characteristics of point processesFactorial moment measure; product density

Page 100: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 100/151

Factorial moment measure; product density 

Consider the second-order factorial moment measureα(2) : B (

  2) ⊗ B (  2) → [0, ∞] with

α(2)

(B1 × B2) =

  #{(i, j) :   X i ∈ B1, X  j  ∈ B2   ∀ i = j}Then

X (B1)X (B2)

 = α(2)(B1 × B2) + Λ(B1 ∩ B2)

Sollerhaus–Workshop, March 2006   29

Characteristics of point processesFactorial moment measure; product density

Page 101: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 101/151

Factorial moment measure; product density 

Consider the second-order factorial moment measureα(2) : B (

  2) ⊗ B (  2) → [0, ∞] with

α(2)

(B1 × B2) =

  #{(i, j) :   X i ∈ B1, X  j  ∈ B2   ∀ i = j}Then

X (B1)X (B2)

 = α(2)(B1 × B2) + Λ(B1 ∩ B2)

and   VarX (B) = α(2)

(B × B) + Λ(B) − Λ(B)2

Sollerhaus–Workshop, March 2006   29

Characteristics of point processesFactorial moment measure; product density

Page 102: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 102/151

Factorial moment measure; product density 

Consider the second-order factorial moment measureα(2) : B (

  2) ⊗ B (  2) → [0, ∞] with

α(2)

(B1 × B2) =

  #{(i, j) :   X i ∈ B1, X  j  ∈ B2   ∀ i = j}Then

X (B1)X (B2)

 = α(2)(B1 × B2) + Λ(B1 ∩ B2)

and   VarX (B) = α(2)

(B × B) + Λ(B) − Λ(B)2Often α(2)(B1 × B2) =

 B1

 B2

ρ(2)(u1, u2) du1 du2

ρ

(2)

(u1, u2) = product density

Sollerhaus–Workshop, March 2006   29

Characteristics of point processesFactorial moment measure; product density

Page 103: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 103/151

Factorial moment measure; product density 

Consider the second-order factorial moment measureα(2) : B (

  2) ⊗ B (  2) → [0, ∞] with

α(2)

(B1 × B2) =

  #{(i, j) :   X i ∈ B1, X  j  ∈ B2   ∀ i = j}Then

X (B1)X (B2)

 = α(2)(B1 × B2) + Λ(B1 ∩ B2)

and   VarX (B) = α(2)

(B × B) + Λ(B) − Λ(B)2Often α(2)(B1 × B2) =

 B1

 B2

ρ(2)(u1, u2) du1 du2

ρ

(2)

(u1, u2) = product densityρ(2)(u1, u2) du1 du2  ≈ probability that in each of the setsdu1, du2  there is at least one point of {X n}

Sollerhaus–Workshop, March 2006   29

Characteristics of point processesFactorial moment measure; product density

Page 104: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 104/151

Factorial moment measure; product density 

Consider the second-order factorial moment measureα(2) : B (

  2) ⊗ B (  2) → [0, ∞] with

α(2)

(B1 × B2) =

  #{(i, j) :   X i ∈ B1, X  j  ∈ B2   ∀ i = j}Then

X (B1)X (B2)

 = α(2)(B1 × B2) + Λ(B1 ∩ B2)

and   VarX (B) = α(2)

(B × B) + Λ(B) − Λ(B)2Often α(2)(B1 × B2) =

 B1

 B2

ρ(2)(u1, u2) du1 du2

ρ

(2)

(u1, u2) = product densityρ(2)(u1, u2) du1 du2  ≈ probability that in each of the setsdu1, du2  there is at least one point of {X n}

In the stationary case:  ρ(2)(u1, u2) = ρ(2)(u1 − u2)Sollerhaus–Workshop, March 2006   29

Characteristics of motion-invariant point processePair correlation function

Page 105: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 105/151

Pair correlation function 

For stationary and isotropic point processes:

ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

Sollerhaus–Workshop, March 2006   30

Characteristics of motion-invariant point processePair correlation function

Page 106: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 106/151

Pair correlation function 

For stationary and isotropic point processes:

ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

In the Poisson case:  ρ(2)(s) = λ2

Sollerhaus–Workshop, March 2006   30

Characteristics of motion-invariant point processePair correlation function

Page 107: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 107/151

Pair correlation function 

For stationary and isotropic point processes:

ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

In the Poisson case:  ρ(2)(s) = λ2

Pair correlation function:   g(s) = ρ(2)(s) / λ2

Sollerhaus–Workshop, March 2006   30

Characteristics of motion-invariant point processePair correlation function 

Page 108: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 108/151

a co e at o u ct o

For stationary and isotropic point processes:

ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

In the Poisson case:  ρ(2)(s) = λ2

Pair correlation function:   g(s) = ρ(2)(s) / λ2

Examples: Poisson case:  g(s) ≡ 1

Sollerhaus–Workshop, March 2006   30

Characteristics of motion-invariant point processePair correlation function 

Page 109: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 109/151

For stationary and isotropic point processes:

ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

In the Poisson case:  ρ(2)(s) = λ2

Pair correlation function:   g(s) = ρ(2)(s) / λ2

Examples: Poisson case:  g(s) ≡ 1

whereas g(s) > (<)1 indicates clustering (repulsion)

Sollerhaus–Workshop, March 2006   30

Characteristics of motion-invariant point processePair correlation function 

Page 110: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 110/151

For stationary and isotropic point processes:

ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

In the Poisson case:  ρ(2)(s) = λ2

Pair correlation function:   g(s) = ρ(2)(s) / λ2

Examples: Poisson case:  g(s) ≡ 1

whereas g(s) > (<)1 indicates clustering (repulsion)

Matern-cluster process g(s) > 1 for s ≤ 2R

Sollerhaus–Workshop, March 2006   30

Characteristics of motion-invariant point processePair correlation function 

Page 111: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 111/151

For stationary and isotropic point processes:

ρ(2)(u1, u2) = ρ(2)(s) where s = |u1 − u2|

In the Poisson case:  ρ(2)(s) = λ2

Pair correlation function:   g(s) = ρ(2)(s) / λ2

Examples: Poisson case:  g(s) ≡ 1

whereas g(s) > (<)1 indicates clustering (repulsion)

Matern-cluster process g(s) > 1 for s ≤ 2R

Hardcore processes g(s) = 0 for s < dmin

where dmin = minimal interpoint distanceSollerhaus–Workshop, March 2006   30

Characteristics of motion-invariant point processeReduced moment measure; Ripley’s K-function 

Page 112: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 112/151

; p y

Instead of using ρ(2)(s) or g(s), we can write

α(2)(B1 × B2) = λ2

 B1

K(B2 − u) du

where λ2K(B) = 

B ρ(2)(x) dx

Sollerhaus–Workshop, March 2006   31

Characteristics of motion-invariant point processeReduced moment measure; Ripley’s K-function 

Page 113: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 113/151

; p y

Instead of using ρ(2)(s) or g(s), we can write

α(2)(B1 × B2) = λ2

 B1

K(B2 − u) du

where λ2K(B) = 

B ρ(2)(x) dx

Furthermore, K (s) = K(Bs(o)) is Ripley’s K-function,

where Bs(o) = {u ∈ R

2

:   |u| ≤ s} for s > 0

Sollerhaus–Workshop, March 2006   31

Characteristics of motion-invariant point processeReduced moment measure; Ripley’s K-function 

Page 114: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 114/151

p y

Instead of using ρ(2)(s) or g(s), we can write

α(2)(B1 × B2) = λ2

 B1

K(B2 − u) du

where λ2K(B) = 

B ρ(2)(x) dx

Furthermore, K (s) = K(Bs(o)) is Ripley’s K-function,

where Bs(o) = {u ∈ R

2

:   |u| ≤ s} for s > 0

λK (s) = mean number of points within a ball of radius scentred at the „typical” point of {X n}, which itself is not

counted   =⇒ K = reduced moment measure

Sollerhaus–Workshop, March 2006   31

Characteristics of motion-invariant point processeReduced moment measure; Ripley’s K-function 

Page 115: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 115/151

p y

Instead of using ρ(2)(s) or g(s), we can write

α(2)(B1 × B2) = λ2

 B1

K(B2 − u) du

where λ2K(B) = 

B ρ(2)(x) dx

Furthermore, K (s) = K(Bs(o)) is Ripley’s K-function,

where Bs(o) = {u ∈ R

2

:   |u| ≤ s} for s > 0

λK (s) = mean number of points within a ball of radius scentred at the „typical” point of {X n}, which itself is not

counted   =⇒ K = reduced moment measure

In the Poisson case:  K (s) = πs2 (= |Bs(o)|)

Sollerhaus–Workshop, March 2006   31

Characteristics of motion-invariant point processeReduced moment measure; Ripley’s K-function 

Page 116: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 116/151

y

Instead of using ρ(2)(s) or g(s), we can write

α(2)(B1 × B2) = λ2

 B1

K(B2 − u) du

where λ2K(B) = 

B ρ(2)(x) dx

Furthermore, K (s) = K(Bs(o)) is Ripley’s K-function,

where Bs(o) = {u ∈ R

2

:   |u| ≤ s} for s > 0

λK (s) = mean number of points within a ball of radius scentred at the „typical” point of {X n}, which itself is not

counted   =⇒ K = reduced moment measure

In the Poisson case:  K (s) = πs2 (= |Bs(o)|)

Thus, K (s) > (<)πs2 indicates clustering (repulsion)Sollerhaus–Workshop, March 2006   31

Characteristics of motion-invariant point processeOther functions 

Page 117: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 117/151

Spherical contact distribution function

H (s) = 1 −

X (Bs(o)) = 0

, s > 0

Sollerhaus–Workshop, March 2006   32

Characteristics of motion-invariant point processeOther functions 

Page 118: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 118/151

Spherical contact distribution function

H (s) = 1 −

X (Bs(o)) = 0

, s > 0

Nearest-neighbor distance distribution function

D(s) = 1 − limε↓0

X (Bs(o) \ Bε(o)) = 0 | X (Bε(o)) > 0

Sollerhaus–Workshop, March 2006   32

Characteristics of motion-invariant point processeOther functions 

Page 119: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 119/151

Spherical contact distribution function

H (s) = 1 −

X (Bs(o)) = 0

, s > 0

Nearest-neighbor distance distribution function

D(s) = 1 − limε↓0

X (Bs(o) \ Bε(o)) = 0 | X (Bε(o)) > 0

The J-function is then defined by

J (s) =

  1 − D(s)

1 − H (s)   for any s > 0 with H (s) < 1

Sollerhaus–Workshop, March 2006   32

Characteristics of motion-invariant point processeOther functions 

Page 120: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 120/151

Spherical contact distribution function

H (s) = 1 −

X (Bs(o)) = 0

, s > 0

Nearest-neighbor distance distribution function

D(s) = 1 − limε↓0

X (Bs(o) \ Bε(o)) = 0 | X (Bε(o)) > 0

The J-function is then defined by

J (s) =

  1 − D(s)

1 − H (s)   for any s > 0 with H (s) < 1

In the Poisson case:  J (s) ≡ 1

Sollerhaus–Workshop, March 2006   32

Characteristics of motion-invariant point processeOther functions 

Page 121: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 121/151

Spherical contact distribution function

H (s) = 1 −

X (Bs(o)) = 0

, s > 0

Nearest-neighbor distance distribution function

D(s) = 1 − limε↓0

X (Bs(o) \ Bε(o)) = 0 | X (Bε(o)) > 0

The J-function is then defined by

J (s) =

  1 − D(s)

1 − H (s)   for any s > 0 with H (s) < 1

In the Poisson case:  J (s) ≡ 1

whereas J (s) > (<)1 indicates clustering (repulsion)Sollerhaus–Workshop, March 2006   32

Estimation of model characteristicsIntensity 

Page 122: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 122/151

Suppose that

the point process {X n} is stationary with intensity λ

Sollerhaus–Workshop, March 2006   33

Estimation of model characteristicsIntensity 

Page 123: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 123/151

Suppose that

the point process {X n} is stationary with intensity λ

and can be observed in the bounded samplingwindow W   ⊂

  2

Sollerhaus–Workshop, March 2006   33

Estimation of model characteristicsIntensity 

Page 124: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 124/151

Suppose that

the point process {X n} is stationary with intensity λ

and can be observed in the bounded samplingwindow W   ⊂

  2

Then, λ = X (W )/|W | is a natural estimator for λ

Sollerhaus–Workshop, March 2006   33

Estimation of model characteristicsIntensity 

Page 125: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 125/151

Suppose that

the point process {X n} is stationary with intensity λ

and can be observed in the bounded samplingwindow W   ⊂

  2

Then, λ = X (W )/|W | is a natural estimator for λ

Properties:

 λ is unbiased, i.e.,

 λ = λ

Sollerhaus–Workshop, March 2006   33

Estimation of model characteristicsIntensity 

Page 126: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 126/151

Suppose that

the point process {X n} is stationary with intensity λ

and can be observed in the bounded samplingwindow W   ⊂

  2

Then, λ = X (W )/|W | is a natural estimator for λ

Properties:

 λ is unbiased, i.e.,

 λ = λ

If {X n} is ergodic, then

 λ → λ with probability 1

(as |W | → ∞), i.e.

 λ is strongly consistent

Sollerhaus–Workshop, March 2006   33

Estimation of model characteristicsK-function 

Page 127: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 127/151

Recall that λK (s) = mean number of points within a ball ofradius s centered at the „typical” point of {X n}, which itselfis not counted

Sollerhaus–Workshop, March 2006   34

Estimation of model characteristicsK-function 

Page 128: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 128/151

Recall that λK (s) = mean number of points within a ball ofradius s centered at the „typical” point of {X n}, which itselfis not counted

Edge effects occurring in the estimation of λK (r)Sollerhaus–Workshop, March 2006   34

Estimation of model characteristicsK-function 

Page 129: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 129/151

Therefore, estimation of λ2K (s) =  Bs(o) ρ(2)(x) dx

by „weighted” average

Sollerhaus–Workshop, March 2006   35

Estimation of model characteristicsK-function 

Page 130: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 130/151

Therefore, estimation of λ2K (s) =  Bs(o) ρ(2)(x) dx

by „weighted” average

Edge-corrected estimator for λ2K (s):

  λ2K (s) =

X i,X j∈W,i= j

1(|X i − X  j| < s)

|(W  + X i) ∩ (W  + X  j )|

Sollerhaus–Workshop, March 2006   35

Estimation of model characteristicsK-function 

Page 131: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 131/151

Therefore, estimation of λ2K (s) =  Bs(o) ρ(2)(x) dx

by „weighted” average

Edge-corrected estimator for λ2K (s):

  λ2K (s) =

X i,X j∈W,i= j

1(|X i − X  j| < s)

|(W  + X i) ∩ (W  + X  j )|

Notice that   λ2K (s) is unbiased, i.e.,   λ2K (s) = λ2K (s)

Sollerhaus–Workshop, March 2006   35

Estimation of model characteristicsK-function 

Page 132: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 132/151

Therefore, estimation of λ2K (s) =  Bs(o) ρ(2)(x) dx

by „weighted” average

Edge-corrected estimator for λ2K (s):

  λ2K (s) =

X i,X j∈W,i= j

1(|X i − X  j| < s)

|(W  + X i) ∩ (W  + X  j )|

Notice that   λ2K (s) is unbiased, i.e.,   λ2K (s) = λ2K (s)

=> Edge-corrected estimator for K (s):  K (s) =

  1

 λ2

X i,X j∈W, i= j

1(|X i − X  j | < s)

|(W  + X i) ∩ (W  + X  j )|

where λ2 = X (W )(X (W ) − 1)/|W |Sollerhaus–Workshop, March 2006   35

Estimation of model characteristicsFurther edge-corrected estimators 

Page 133: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 133/151

Product density ρ(2)(s):

 ρ(2)(s) =  1

2πr X i,X j∈W, i= j

k(|X i − X  j| − s)

|(W  + X i) ∩ (W  + X  j)|

where k :

  →

  is some kernel function.

Sollerhaus–Workshop, March 2006   36

Estimation of model characteristicsFurther edge-corrected estimators 

Page 134: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 134/151

Product density ρ(2)(s):

 ρ(2)(s) =  1

2πr X i,X j∈W, i= j

k(|X i − X  j| − s)

|(W  + X i) ∩ (W  + X  j)|

where k :

  →

  is some kernel function.

Pair correlation function g(s):

 g(s) =

 ρ(2)(s)/

 λ2

Sollerhaus–Workshop, March 2006   36

Estimation of model characteristicsFurther edge-corrected estimators 

Page 135: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 135/151

Product density ρ(2)(s):

 ρ(2)(s) =  1

2πr X i,X j∈W, i= j

k(|X i − X  j| − s)

|(W  + X i) ∩ (W  + X  j)|

where k :

  →

  is some kernel function.

Pair correlation function g(s):

 g(s) =

 ρ(2)(s)/

 λ2

where λ2 = X (W )(X (W ) − 1)/|W |

Sollerhaus–Workshop, March 2006   36

Estimation of model characteristicsFurther edge-corrected estimators 

Page 136: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 136/151

Spherical contact distribution function H (s):

 H (s) =|W   Bs(o) ∪

X n∈W  Bs(X n)|

|W   Bs(o)|

Sollerhaus–Workshop, March 2006   37

Estimation of model characteristicsFurther edge-corrected estimators 

Page 137: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 137/151

Spherical contact distribution function H (s):

 H (s) =|W   Bs(o) ∪

X n∈W  Bs(X n)|

|W   Bs(o)|

Nearest-neighbor distance distribution function

 D(s):

 D(s) = X n∈W 

1(X n ∈ W   Bd(X n)(o))  1(d(X n) < s)|W   Bd(X n)(o)|

Sollerhaus–Workshop, March 2006   37

Estimation of model characteristicsFurther edge-corrected estimators 

Page 138: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 138/151

Spherical contact distribution function H (s):

 H (s) =|W   Bs(o) ∪

X n∈W  Bs(X n)|

|W   Bs(o)|

Nearest-neighbor distance distribution function

 D(s):

 D(s) = X n∈W 

1(X n ∈ W   Bd(X n)(o))  1(d(X n) < s)|W   Bd(X n)(o)|

where d(X n) is the distance from X n  to its nearestneighbor

Sollerhaus–Workshop, March 2006   37

Maximum pseudolikelihood estimationBerman-Turner device 

Page 139: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 139/151

Suppose that

{X n} is a Gibbs process with conditional intensityλθ(u,x) which depends on some parameter θ

Sollerhaus–Workshop, March 2006   38

Maximum pseudolikelihood estimationBerman-Turner device 

Page 140: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 140/151

Suppose that

{X n} is a Gibbs process with conditional intensityλθ(u,x) which depends on some parameter θ

and that the realization  x = {x1, . . . , xn} ⊂ W   of {X n}is observed

Sollerhaus–Workshop, March 2006   38

Maximum pseudolikelihood estimationBerman-Turner device 

Page 141: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 141/151

Suppose that

{X n} is a Gibbs process with conditional intensityλθ(u,x) which depends on some parameter θ

and that the realization  x = {x1, . . . , xn} ⊂ W   of {X n}is observed

Consider the pseudolikelihood

PL(θ;x) =n

i=1

λθ(xi,x) exp− W 

λθ(u,x) du

Sollerhaus–Workshop, March 2006   38

Maximum pseudolikelihood estimationBerman-Turner device 

Page 142: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 142/151

Suppose that

{X n} is a Gibbs process with conditional intensityλθ(u,x) which depends on some parameter θ

and that the realization  x = {x1, . . . , xn} ⊂ W   of {X n}is observed

Consider the pseudolikelihood

PL(θ;x) =n

i=1

λθ(xi,x) exp− W 

λθ(u,x) duThe maximum pseudolikelihood estimate

 θ  of θ  is the

value which maximizes PL(θ;x)

Sollerhaus–Workshop, March 2006   38

Maximum pseudolikelihood estimationBerman-Turner device 

Page 143: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 143/151

To determine the maximum θ, discretise the integral

 W 

λθ

(u,x) du ≈m

 j=1

w j

λθ

(u j

,x)

Sollerhaus–Workshop, March 2006   39

Maximum pseudolikelihood estimationBerman-Turner device 

Page 144: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 144/151

To determine the maximum θ, discretise the integral

 W 

λθ

(u,x) du ≈m

 j=1

w j

λθ

(u j

,x)

where u j  ∈ W   are „quadrature points” and w j  ≥ 0 the

associated „quadrature weights”

Sollerhaus–Workshop, March 2006   39

Maximum pseudolikelihood estimationBerman-Turner device 

Page 145: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 145/151

To determine the maximum θ, discretise the integral

 W 

λθ

(u,x) du ≈m

 j=1

w j

λθ

(u j

,x)

where u j  ∈ W   are „quadrature points” and w j  ≥ 0 the

associated „quadrature weights”

The Berman-Turner device involves choosing a set ofquadrature points {u j }

Sollerhaus–Workshop, March 2006   39

Maximum pseudolikelihood estimationBerman-Turner device 

Page 146: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 146/151

To determine the maximum θ, discretise the integral

 W 

λθ

(u,x) du ≈m

 j=1

w j

λθ

(u j

,x)

where u j  ∈ W   are „quadrature points” and w j  ≥ 0 the

associated „quadrature weights”

The Berman-Turner device involves choosing a set ofquadrature points {u j }

which includes all the data points x j  as well as some„dummy” points

Sollerhaus–Workshop, March 2006   39

Maximum pseudolikelihood estimationBerman-Turner device 

Page 147: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 147/151

To determine the maximum θ, discretise the integral

 W 

λθ

(u,x) du ≈m

 j=1

w j

λθ

(u j

,x)

where u j  ∈ W   are „quadrature points” and w j  ≥ 0 the

associated „quadrature weights”

The Berman-Turner device involves choosing a set ofquadrature points {u j }

which includes all the data points x j  as well as some„dummy” points

Let z  j  = 1 if u j  is a data point, and z  j  = 0 if u j   is a

dummy pointSollerhaus–Workshop, March 2006   39

Maximum pseudolikelihood estimationBerman-Turner device 

Page 148: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 148/151

Then

log PL(θ;x) =m

 j=1z  j log λθ(u j ,x) − w j λθ(u j ,x)=

m

 j=1

w j(y j log λ j − λ j)

where y j  = z  j /w j  and λ j  = λθ(u j,x)

Sollerhaus–Workshop, March 2006   40

Maximum pseudolikelihood estimationBerman-Turner device 

Page 149: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 149/151

Then

log PL(θ;x) =m

 j=1z  j log λθ(u j ,x) − w j λθ(u j ,x)=

m

 j=1

w j(y j log λ j − λ j)

where y j  = z  j /w j  and λ j  = λθ(u j,x)

This is the log likelihood of m  independent Poissonrandom variables Y  j  with means λ j  and responses y j.

Sollerhaus–Workshop, March 2006   40

Maximum pseudolikelihood estimationBerman-Turner device 

Page 150: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 150/151

Then

log PL(θ;x) =m

 j=1z  j log λθ(u j ,x) − w j λθ(u j ,x)=

m

 j=1

w j(y j log λ j − λ j)

where y j  = z  j /w j  and λ j  = λθ(u j,x)

This is the log likelihood of m  independent Poissonrandom variables Y  j  with means λ j  and responses y j.

Thus, standard statistical software for fitting

generalized linear models can be used to compute θSollerhaus–Workshop, March 2006   40

References

Page 151: Sh Schmidt

8/13/2019 Sh Schmidt

http://slidepdf.com/reader/full/sh-schmidt 151/151

A. Baddeley, P. Gregori, J. Mateu, R. Stoica, D. Stoyan (eds.):  Case Studies in 

Spatial Point Process Modeling . Lecture Notes in Statistics  185, Springer, New York

2006.

J. Moeller, R.P. Waagepetersen:  Statistical Inference and Simulation for Spatial Point 

Processes . Monographs on Statistics and Applied Probability  100, Chapman and

Hall, Boca Raton 2004.

D. Stoyan, W.S. Kendall, J. Mecke:  Stochastic Geometry and Its Applications 

(2nd ed.). J. Wiley & Sons, Chichester 1995.

D. Stoyan, H. Stoyan:  Fractals, Random Shapes and Point Fields . J. Wiley & Sons,

Chichester 1994.