65
SETTING THE STAGE FOR FUTURE MOBILITY « Aller vite… mais avec des aspects techniques solides » Prof. Dr.-Ing. Marc ANTONI Rail System Director

SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

SETTING THE STAGE FOR FUTURE MOBILITY« Aller vite… mais avec des aspects

techniques solides »

Prof. Dr.-Ing. Marc ANTONI

Rail System Director

Page 2: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

2« Aller vite… mais avec des aspects techniques solides »

• Part 1 – Asset Management in general

• Part 2 – Modelling HSL Assets for Asset Management

• Part 3 – Safety & Security : Cyber issues

Page 3: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

3

Part 1 – Asset Management in général

Page 4: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

4

L A W

Product-related

standards

Process-related

standards

• Products

• Sub-System

• Industrialisation

• Operation

• Maintenance

• Integration

• High speed

• Freight

• Asset Management

• Safety/Security

• Organisation

“Operator” responsible for the

system and the services”Manufacturer” responsible

for the products

Binding

Not binding

System vision

Asset

Management

or volontary

binding for the

members

Standardisation: Complementarity within the EUAR-ESO-UIC trio Regulation vs. Norms vs. Standards and requirements

Page 5: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

5

1 – Asset Management / Railways

Year-15 Year

Network

strategy

Requirement

analysis

Production

Asset Management system

A perfect coherent system vision:

performance requirement for assets definition, the conditions of use and the

work to be carried out

Page 6: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

6

1 – Asset Management / Railways

Asset Management system

Network

strategy

Axes

StrategiesGPMR, SNIT, contrat de

performance, …

Axes, Objectifs

performances par axe

Work

planning by

axes

Portefeuilles travaux & planification

entretien par axe

Project

Realisation

Ensemble des travaux réalisées

Constats performances,

état du réseau

Operation

Réticulaire consolidé

Trame 24h

Règles d’exploitation

Service annuel

Circulations

Constats performancesTimetable

planification

Commandes stratégiques d’axe

Règles de maintenance

Politiques produit

Règles de conception

Asset

Managemen

t Strategies

by axes

Règles d’exploitation

Par axe

Operation

strategies by

axes

Operation

strategies

Asset

Managemen

t strategies

Stratégies de financements,

RH, Système d’information…

Ressource

strategies

PROSPECTIVE PRESCRIPTION OPERATIONAL

A perfect coherent system vision:

Page 7: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

7

1 – Asset Management / Railways

Etude des modes d’exploitation et

d’évolution du réseau

Etude des modes d’exploitation et

d’évolution de l’axe

Programmation stratégique / axe

Objectifs du réseau ferroviaire Stratégies d’axes

Stratégie d’actifs Stratégie d’actifs par axe Réalisation des travaux

5 – 1 ans 1 an15 - 10 ans15 - 10 ans 10 - 5 ans

IN 08013 – V02 projet (18/01/18)

Document propriété de SNCF RESEAU

15 - 10 ans

Portefeuille travaux par axe et ligne régionale à 1 an

Affinement Besoins capacitairesCoûts estimés, ressources

Objectifs de performance/axe

Emergence

maintenance

Processus Décisionnel discret avec 6 points de

validation

Décisions de mises à jour stratégies d’actifs / nouvelles études

Proposition d’évolution des objectifs axes et de développement de l’axe

………...

Réalisation de l’entretien et des

investissements

Contrat de performance

GPMR & feuille de route

Besoins travaux correctifs moyen / long terme terme

Répartition de capacités

Gestion des projets d’investissement

Réa

lisa

tion

des

Pre

scrip

tions

de

ma

inte

nan

ce

Cadrage

capacitaire

long terme

Elaboration des objectifs long terme

par axe

Données sur actifs

Indicateursperformances réseau

Principesd’exploitation

Principesproduits

Principes Processusindustriels

Expressions de besoins de développement de produits, systèmes, , processus industriels

Planification (portefeuille travaux)

Gestion approvisionnements & logistique

Stratégie système

ferroviaire

Pilotage de la robustesse et de la performance

Contributionstous métiers

Commande

production/

établissement

Allocation budgétaire et contrôle de gestion

Connaissance du

patrimoine

Données de sollicitation du réseau

Réalisation des prescript ions d’exploitat ion par axe

Conception et adaptation du service

Gestion opérationnelle des circulations

Livrables

Politiques de renouvellement & référentiel entretien

Commande stratégique pluriannuelle développement & maintenance & exploitation par axe & segment

Portefeuilleopérations FIR 5 ansSchémas

capacitaires

Données sur les actifs

Portefeuillebudgétisé

PortefeuillePrécisé V1

Portefeuille précisé V2

Portefeuillevalidé

Portefeuilleopérationnel

Emergence

développement

Commande de production à 3 ans /

établissement

Portefeuille prévisionnel

Planification

par axe

Planification prévisionnelle

Planifications pré-opérationnelle et opérationnelle

1

2

3 6

11

7

8

9

10

12

14

13

22

23

25

Elaboration des

objectifs long

terme du réseau5

Stratégie de

maintenance par

domaine19

Indicateurssur actifs

18

Planification par axe

Processus de bouclage (REX)

Stratégie d’exploitation Stratégie d’exploitation par axe ExploitationConstruction de l’horaire

Besoins d’adaptation (consignes de

conception / structuration de l’axe)

Besoins d’adaptation (consignes de conception / structuration du réseau)

Référentiel d’exploitation du réseau & axes

Contributionstous métiers

Macro-processus asset management

Réa

lisa

tion

des

Pre

scrip

tions

de

conc

ep

tion

16

Ge

stio

n du

cyc

le d

e vi

e

pro

du

it

4 Référentiel conception

Politiques produits

Référentiel d’entretien

Schémas de ressources

Affection des MOA / projet d’investissement

Eléments de cadrage capacitaire à long terme

Gestion des emplois et des compétences

Stratégie industrielle

Stratégie de partenariats / achats / etc

Stratégie de financement

Stratégie GPEC & externalisation

Stratégie système informatisés, moyens industriels, externalisation des travaux….

17

Stratégie de moyens

Nouveauxproduits

0

1 2

3 4

5

24

26

Plan d’exploitation de l’axe de référence long terme,(inclus trame horaire 2h, graphique espace-temps et GOV & vérification de la robustesse)

27

28

29

Commercialisation15

8

11

Plan d’exploitation final (inclus graphique horaire

Sillons tracés

Réalisation des prescript ions d’exploitat ion du réseau

5

Modes d’exploitation du réseau Mode d’exploitation de

l’axe

Target MACRO-PROCESS for:

✓ PROSPECTIVE

✓ PRESCRIPTION

✓ OPERATIONAL

Page 8: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

8

Network Objectives

Objectives by corridor

Asset Knowledge, Asset

performances, Return of

experiences

Measured network

performances by

subsystem « customer

vision »

ASSET MANAGEMENT STRATEGIES

INTEGRATION OF TECHNICAL NEEDS

Product policies,

Technology policies

Design specification /

maintenance /operation

Different investment &

maintenance policies

Resource strategies

OPERATION

STRATEGIES

ASSET

MANAGEMENT

STRATEGIES

1 – Asset Management / Railways

Page 9: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

9

Model-

based

predictive

Maintenance

and

advanced

data analysis

Conditional

Maintenance

Based on

statements or

measures

revealing a

degradation

Preventative

Maintenance

Based on

calendar

concepts or

use unitsCorrective

maintenan-

ce

1 – Asset Management / Railways

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0 100 200 300 400 500 600

Tau

x c

um

ulé

de d

éfa

illa

nce -

H(t

)

TBC (Mt)

H(t) empirique toutes LN

H(t) estimée toutes LN

Demi Aiguillage LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Demi aiguillage Beton

Demi aiguillage Bois

Coûts de maintien de la géométrie (yc surveillance)

sur voie ballastée LGV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250 300 350

Voie Gr2 Sans Meulage

Voie Gr2 Avec Meulage Préventif

Predictive maintenance goes

through processing and

cross-data. This is our

number one challenge.

→ Part 2 for HSL

from digital to asset Management

Page 10: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

10

State of the patrimony of the

axis/corridors

Emergences Asset Performances

Commands Strategic

axis:

• Circulable capacity

• Object works framed to

achieve

• Performance schedule to be

achieved

• Resource plans

Refined means strategies

Estimation of the maintenance

needs

ASSET

MANAGEMENT

STRATEGIES

OPERATION

STRATEGIES

Network Objectives

Objectives by axis

Measured network

performances/

subsystem

« customer vision

Product policies, Technology

policies

Design/maintenance/operating

requirements

Differentiated Investment &

Maintenance policies means

strategies

Estimation of the maintenance

needs and costs

300 €

320 €

340 €

360 €

380 €

400 €

420 €

440 €

2005 2010 2015 2020 2025 2030

Millio

ns

Entr. Ss Renouv

Scénario de base

Variante 1 (+50%2-4)

Variante 2 (+50%5-6)

Variante 3 (+100%5-6)

Variante 4 (base prolongé)

Entr. Renouv à date (<1000km/an)

1 – Asset Management / Railways

ASSET MANAGEMENT

INTEGRATION OF WORK NEEDS

Page 11: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

11

2 – Asset Management /value-based approach

Contribution of a corridor or line to enhance the value of the

network

The value of a line brought to the network can be expressed by different

considerations:

• Commercial performance (performance from the customer's point of

view): passenger traffic, freight traffic, travel time, Traffic flow, regularity,

Incident recovery time…

• Strategic performance (functions provided by the line): contribution to the

resilience of the network (alternative route function), contribution to the

economy of the territory, contribution to the interoperability of the network,

etc.

• Revenue: tolls collected / train route

Page 12: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

12

Asset StrategiesAxes strategy

Decision on network piorities

(performance contract)

National network

rank 1*

National network

rank 2*

Local lines*

10-year evaluation of

sustainability / business /

performance needs

Definition of possible technical

responses (CAPEX / OPEX)

Sustainable axes / Traffic increase

or maintenance / Performance

requirements / Important revenues

Network strategy

Long-term axes / Traffic increase

or maintenance / Performance

requirement

Axes with low traffic / low traffic &

decreasing

Axes with uncertain traffic

prospects or not guaranteeing

certain economic criteria **

Renewals to ensure safety and

increase performance

requirements

Modernizations

New offers

A-1

0

Adapted maintenance (renewal /

maintenance mix) to ensure safety

& security to control performance

or performance decline

Modernizations

(subject to an economic model)

Permanent lines / Increased traffic

/ Performance requirement

Long-term lines with stability or

even reduction in traffic

Adapted maintenance (renewal /

maintenance mix) to ensure safety

or renewals & developments if

CPER financing

Maintenance adapted to ensure

safety & lower performance ***

2 – Asset Management / value-based approach

Futureless lines

Maintenance or adapted renewal

submitted to CPER to ensure

safety & reduced performance

OPTIMAL

MAINTENANCE

ADAPTATED

MAINTENANCE

LIMITED

MAINTENANCE

FOR SAFETY

Value structuration

Page 13: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

13

Scénarios alternatifs (mixtes investissements & entretien)

1. Maintien de la sécurité

2. Disponibilité

budgétaire

3. Rationalisation

opérationnelle

Scénarios alternatifs (mixtes investissements & entretien)

1. Maintien de la sécurité

2. Disponibilité

budgétaire

3. Rationalisation

opérationnelle

Scénarios alternatifs (mixtes investissements & entretien)

1. Maintien de la sécurité

2. Disponibilité

budgétaire

3. Rationalisation

opérationnelle

2 – Asset Management / value-based approach

Global renewal

scenario

Global renewal

Alternative

maintenance

scenarios (mix Investment &

maintenance)

Lig

ht

ren

ew

al

Lim

ite

d r

ene

wal fo

r safe

ty

Global renewal: one-time renewal

Light renewal: smooth renewal and minimization of performance degradation related to the asset safety

Safe renewal: smooth renewal of the line to protect against security risks

Appropriate maintenancePRINCIPLES

Page 14: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

14

SCENARIOS

20

20

20

21

20

22

20

23

20

24

20

25

20

26

20

27

20

28

20

29

20

30

20

31

20

32

20

33

20

34

20

35

20

36

20

37

20

38

20

39

20

40

20

41

20

42

20

43

régé globale 11 chantiers

régé allégée43 chantiers

49 interventions

régé sécurité69 chantiers

75 interventions

Cumulative% of renewal units realized

Appropriate maintenanceExample with different maintenance scenarios

Global regeneration (11 sites)

Lightened regeneration (43 yards,

49 maintenance operations)

Safety Regeneration (69 worksites,

75 maintenance operations)

2 – Asset Management / value-based approach

Page 15: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

15

2 – Asset Management / value-based approach

x

Appropriate maintenance / EXAMPLE: SOCIO-ECONOMIC issues –

Relation with global renewal - Focus on key balance statement

VAN actualisées à 4,5% en

2019 (M€)

Capacity

ImpactCAPEX OPEX RU IM TOTAL

Variations De 0,2 à 1,9 +/- 10% De 1 à 3

Reduced Regeneration 1 -16 +17 -19 - -

Reduced Regeneration 2 +18 +16 -19 + +

Reduced Regeneration 3 +2 -13 -19 - -

Reduced Regeneration 4 -12 +24 -19 - +

Safety Regeneration -21 +25 -24 - -

Page 16: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

16

3 – Towards a governance within an axis vision

REALISATION D’UNE

EMERGENCE

REALISATION D’UNE

EMERGENCEPROGRAMMATIC

ORDER

DEVELOPMENT

PV

1

PV

2

PV

3

PV

4

Authorization to

initiate an

emergence

Approval of

completeness and

consistency

Approval of a

programmatic

scenario

Approval of a

strategic order

PLANIFICATION

PV

5

Approval of a

production order

DEVELOPMENT

OBJECTIVES/ AXE

PV

0

Approval

of the axis

strategy

axis strategy

Stratégies d’axes

OPERATION

ASSET MANAGEMENT Work planning by axis

Timetable Planification

strategic order

Objets

travaux

Expression

of needsScénarios

associés à mode

d’exploitation cible

EMERGENCE

production order

Decision-making process in a railway axis vision

Page 17: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

17

Part 2 – Modeling HSL Assets for Asset Management

Page 18: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

18

Three steps (example for track) :

3 – Tools for LCC calculation at the national or route levels, including environmental effects, track

possession and unavailability costs…

2 – Tools for the estimation of maintenance needs of the track

(with different renewal strategies)

1 – Work of the deterioration and failure laws

of each the track components

1 - Modelling for Infrastructure Management after conception engineering

Page 19: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

19

After 30 years of operations and 650MT with V300, more

than ¾ of rails of LN1 are original. The last rails were

replaced in 2018…

• Failure laws of rails :- lifespan of the rails on a ballasted HSL is about 400MT with 3% of cumulative defects, 700MT with 6%- the parameters of these laws are sensitive to track topology and aggressiveness of the rolling stock

MT

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 20: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

20

After 30 years of exploitation and 650MT with V300,

more ¾ of rails of LN1 are of origin. The last rails

must be replaced 2018…

• Failure laws of rails :- lifespan of the rails on a ballasted HSL is about 400MT with 3% of cumulative defects, 700MT with 6%- the parameters of these laws are sensitive to track topology and aggressiveness of the rolling stock

The failure rate can grow more quickly if the rolling

stock has an important rate of “slippage” (20% for some

materials)

MT

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 21: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

21

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

0,05

0 100 200 300 400 500 600

Tau

x c

um

ulé

de d

éfa

illa

nce -

H(t

)

TBC (Mt)

H(t) empirique toutes LN

H(t) estimée toutes LN

Step 1: Lifespan of the components (ballasted HSL)

• Failure laws of

aluminothermy welding:

- lifespan of a weld on

ballasted HSL is about

400MT with 3% of

cumulative defects

[even without preventive

grinding]

MT

1 - Modelling for Infrastructure Management after conception engineering

Page 22: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

22

• Failure laws of manganese or movable frogs:- lifespan of these components is longer on wooden sleepers then on concrete ones - the parameters of these laws are sensitive to the aggressiveness of the rolling stock

MT

Cœur à Pointe Fixe LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Cœur Pointe Fixe Béton

Cœur Pointe Fixe Bois

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 23: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

23

• Failure laws of manganese or movable frogs:- lifespan of these components is longer on wooden sleepers then on concrete ones - the parameters of these laws are sensitive to the aggressiveness of the rolling stock

MT

Cœur à Pointe Fixe LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Cœur Pointe Fixe Béton

Cœur Pointe Fixe Bois

Cœur à Pointe Mobile LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Cœur Pointe Mobile Béton

Cœur Pointe Mobile Bois

Step 1: Lifespan of the components (ballasted HSL)

MT

1 - Modelling for Infrastructure Management after conception engineering

Page 24: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

24

• Failure laws of switch half switch set:- lifespan of these components is longer on wood sleepers then on concrete ones - the parameters of these laws are sensitive to the aggressiveness of the rolling stock and the hardness of the track

Demi Aiguillage LGV

0

0,05

0,1

0,15

0,2

0,25

0,3

0 50 100 150 200 250 300 350

Demi aiguillage Beton

Demi aiguillage Bois

MT

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 25: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

25

−+= 128,0)Im( 5

N

bakN

• Geometry degradation laws:- lifespan of the ballast, without sand-gravel mix bitumen or PAD, is approximately 25 years on HSL (>300)- this lifespan will be much higher with sand-gravel mix bitumen and/or PAD - maintenance needs follow Cochet-Maumy laws

The parameters of these laws depend

on grinding, the type of rolling stock,

etc.

Coûts de maintien de la géométrie (yc surveillance)

sur voie ballastée LGV

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250 300 350

Voie Gr2 Sans Meulage

Voie Gr2 Avec Meulage Préventif

MT

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 26: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

26

The nature of the under layer has a significant influence on track lifespan and HSL geometry specific Cochet-Maumy parameters

Signatures des structures

géotechniques ?

Signatures des structures

géotechniques ?

Influence bitumen mix

at 320km/h with a

distance between

axles of 3m

The test section test with Bituminous

mix makes it possible to obtain a

reduction of a factor 2 of the annual

percentage tamp length

Energy measured

[m/s2/Hz]

Frequencies [Hz] Energy measured

[Log (m/s2/Hz)]

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 27: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

27

Some under sleeper PAD have an influence on track lifespan and HSL geometry specific

Cochet-Maumy parameters

Maintenance interventions

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 28: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

28

Some under sleeper PAD have an influence on track lifespan and HSL geometry specific

Cochet-Maumy parameters

Maintenance interventionsAverage of longitudinal levelling

Step 1: Lifespan of the components (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 29: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

29

Tools for estimation of track maintenance needs (EBM) :

Principe / ballasted track:

1 – Cyclical or programmed operations:

Fixed charges determined by the standards for track surveillance, programmed maintenance,

structure…

2 – Preventive conditioned maintenance:

- Levelling maintenance charges: Interventions conditioned by the information coming from track

surveillance. Probabilistic estimation of the intervention needs for a specific route, for a UIC group

of routes…

- Asset replacement charges: Interventions conditioned by asset defect detection… Probabilistic

estimation of the failure laws of each asset

Step 2: Estimation of maintenance needs (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 30: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

30

10 OCTOBRE 2011EMETTEUR

Example of estimation of maintenance needs for the French network

Switches & Crossing UIC 1 to 6

0 €

50 €

100 €

150 €

200 €

250 €

300 €

2008 2013 2018 2023 2028

Mil

lio

ns

Entr. mode 1

Entr. sc. 1

Entr. sc. 2

Entr. sc. 3

Entr. sc. 4

Entr. sc. 5

Entr. sc. 6

Entr. mode 3

Extrapolation non modélisable

Scénario SsR

Scénario 1

Scénario 2

Scénario 3

Scénario 4

Scénario 5

Scénario 6

Scénario RaD

Step 2: Estimation of maintenance needs (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 31: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

31

10 OCTOBRE 2011EMETTEUR

Example of estimation of maintenance needs for the French network

Switches & Crossing UIC 1 to 6 Normal Track UIC 1 to 6

0 €

50 €

100 €

150 €

200 €

250 €

300 €

2008 2013 2018 2023 2028

Mil

lio

ns

Entr. mode 1

Entr. sc. 1

Entr. sc. 2

Entr. sc. 3

Entr. sc. 4

Entr. sc. 5

Entr. sc. 6

Entr. mode 3

Extrapolation non modélisable

Scénario SsR

Scénario 1

Scénario 2

Scénario 3

Scénario 4

Scénario 5

Scénario 6

Scénario RaD

300 €

320 €

340 €

360 €

380 €

400 €

420 €

440 €

2005 2010 2015 2020 2025 2030M

illio

ns

Entr. Ss Renouv

Scénario de base

Variante 1 (+50%2-4)

Variante 2 (+50%5-6)

Variante 3 (+100%5-6)

Variante 4 (base prolongé)

Entr. Renouv à date (<1000km/an)

Step 2: Estimation of maintenance needs (ballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 32: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

33

HSL ballasted track (UIC group3)

HSL300 - UIC - current track without switches

0 €

20 000 €

40 000 €

60 000 €

80 000 €

100 000 €

120 000 €

140 000 €

160 000 €

180 000 €

200 000 €

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

E/T

I/T

E+I/T

Invest / T

Maintenance / T

Step 3: LCC calculations (ballasted and unballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 33: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

34

HSL ballasted track (UIC group3)

HSL300 - UIC - current track without switches

0 €

20 000 €

40 000 €

60 000 €

80 000 €

100 000 €

120 000 €

140 000 €

160 000 €

180 000 €

200 000 €

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

E/T

I/T

E+I/T

Co

To

Step 3: LCC calculations (ballasted and unballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 34: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

35

Slab track

0 €

20 000 €

40 000 €

60 000 €

80 000 €

100 000 €

120 000 €

140 000 €

160 000 €

180 000 €

200 000 €

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

E/T

I/T

E+I/T

HSL300 - UIC3 - current track without switches

Invest / T

Maintenance / T

Step 3: LCC calculations (ballasted and unballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 35: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

36

Slab track

0 €

20 000 €

40 000 €

60 000 €

80 000 €

100 000 €

120 000 €

140 000 €

160 000 €

180 000 €

200 000 €

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

E/T

I/T

E+I/T

HSL300 - UIC3 - current track without switches

Co

To

Step 3: LCC calculations (ballasted and unballasted HSL)

1 - Modelling for Infrastructure Management after conception engineering

Page 36: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

37

Thanks to its experience of component and sub-system behaviour, IMs can:

→ specify and optimise new components to facilitatemaintenance, taking into account usage, environment,specific quality targets,…

→ optimise the dimension of spare parts and the correspondingmaintenance organisation.

The following examples come from signalling:- choice of failure laws,- architecture choice for critical computerised system.

2 - Modelling for Infrastructure Management before conception engineering

Page 37: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

38

Modeling methods: renewal density for successive replaced components

• The renewal density gives the

replacements due to failure at time t :

=

−−=1

]))'(1[()(n

ntFth

where * denotes the convolution.

• The integral of this function gives the

number of expected replacements

before time t .

Without system ageing

Reduced time trh(t

r)beta = 3,4

0,0000

0,0100

0,0200

0,0300

0,0400

0,0500

0,0600

0,0700

0,0800

0,0900

0,1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Somme

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2 - Modelling for Infrastructure Management before conception engineering

Page 38: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

39

Modeling methods: renewal density for successive replaced components

With system aging

• We can include the ageing of the

system (or effects of repairs) by

using a factor K

• This translates the fact that even a new

component has a reduced lifetime if it is

introduced into an ageing system.

ηn = η0 ∙ K at the nth replacement.

0,0000

0,0100

0,0200

0,0300

0,0400

0,0500

0,0600

0,0700

0,0800

0,0900

0,1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

Somme

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Reduced time trh(t

r)beta = 3,4

K = 0,75

2 - Modelling for Infrastructure Management before conception engineering

Page 39: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

40

Modeling methods: renewal density for successive replaced components

• Maintenance expenses: Y(t) = ci(t) + cu ∙ n ∙ h(t)

– ci: current costs

– cu: replacement costs for one component

– n: number of components

– h(t): renewal density

• Expected global maintenance expenses (including

renewal) per year:

=

+

+=1

0

1

/)]([/)(T

t

t

t

TtYXTTC

With X: renewal costs )(TE

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Som(X)/T

Som(1,7;Y)/T

Som(3,4;Y)/T

Som(5,1;Y)/T

Som(X)/T +Som(1,7;Y)/TSom(X)/T +Som(3,4;Y)/TSom(X)/T +Som(5,1;Y)/T

Co

To with K=1

2 - Modelling for Infrastructure Management before conception engineering

Page 40: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

41

Modeling methods: renewal density for successive replaced components

• Maintenance expenses: Y(t) = ci(t) + cu ∙ n ∙ h(t)

– ci: current costs

– cu: replacement costs for one component

– n: number of components

– h(t): renewal density

• Expected global maintenance expenses (including

renewal) per year:

=

+

+=1

0

1

/)]([/)(T

t

t

t

TtYXTTC

With X: renewal costs )(TE

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Som(X)/T

Som(1,7;Y)/T

Som(3,4;Y)/T

Som(5,1;Y)/T

Som(X)/T + Som(1,7;Y)/T

Co

To with K=0,8

2 - Modelling for Infrastructure Management before conception engineering

Page 41: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

42

Modeling methods: renewal density for successive replaced components

Design choices could have a huge impact on a maintenance strategy and on the chances of reaching the right quality level (availability, security, safety…) with the economic target value

The terms of the requirements have to be chosen taking into consideration the context of use and the economic and organizational targets… which are not known by suppliers

2 - Modelling for Infrastructure Management before conception engineering

Page 42: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

43

Architecture choice for a critical computerized system

Classical architecture

• Without independence between System

and Functional SW

Proposed architecture

• With distinction between HW & System SW

and the functional SW

Input (TOR or

communications in

the railway context)

Output (TOR or

communications in

the railway

context)

Software supporting the execution of the

functionalities

Hardware

N of P architecture of the real time

computerised system – SIL4

development

I1

Interface

Functionalities (interpretable and deterministic

model as Petri nets with fixed writing and

interpretation rules)

Mixed functional and

basis Softwares

Probabilistic safety

Hardware

2 - Modelling for Infrastructure Management before conception engineering

Page 43: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

44

Architecture choice for a critical computerized system

Classical architecture

• Without independence between System

and Functional SW

Proposed architecture

• With distinction between HW & System SW

and the functional SW

Input (TOR or

communications in

the railway context)

Output (TOR or

communications in

the railway

context)

Software supporting the execution of the

functionalities

Hardware

N of P architecture of the real time

computerised system – SIL4

development

I1

Interface

Functionalities (interpretable and deterministic

model as Petri nets with fixed writing and

interpretation rules)

Mixed functional and

basis Softwares

Probabilistic safety

Hardware

Application of formal methods impossible

2 - Modelling for Infrastructure Management before conception engineering

Page 44: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

45

Architecture choice for a critical computerized system

Classical architecture

• Without independence between System

and Functional SW

Proposed architecture

• With distinction between HW&System SW

and the functional SW

Functionalities (interpretable and

deterministic model as Petri nets with

fixed writing and interpretation rules)

Input (TOR or

communications in

the railway

context)

Output (TOR or

communications in

the railway

context)

Software supporting the execution of the

functionalities

Hardware

N of P architecture(s) of the real time

computerised system – SIL4

development

I1 Interface

I2 Interface

with interpretation

rules…

Know-how

Know-what

Application of formal validation methods

Know-why

2 - Modelling for Infrastructure Management before conception engineering

Page 45: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

47

• Case 1 : without formal interface between HW and functional SW

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CAPEX/T

OPEX/T

Cumul/T

Functional

Software

Renewal

Hardware

Renewal

(obsolescence)

Step 3: LCC calculations (Critical IT system with and without formal interface between HW and functional SW)

2 - Modelling for Infrastructure Management before conception engineering

Page 46: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

48

• Case 1 : without formal interface between HW and functional SW

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CAPEX/T

OPEX/T

Cumul/T

Step 3: LCC calculations (Critical IT system with and without formal interface between HW and functional SW)

Co

To

2 - Modelling for Infrastructure Management before conception engineering

Page 47: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

49

• Case 2 : with a formal interface between HW and functional SW

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CAPEX/T

OPEX/T

Cumul/T

Functional

Software

Renewal

Hardware

Renewal

(obsolescence)

Step 3: LCC calculations (Critical IT system with and without formal interface between HW and functional SW)

2 - Modelling for Infrastructure Management before conception engineering

Page 48: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

50

• Case 2 : with a formal interface between HW and functional SW

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

CAPEX/T

OPEX/T

Cumul/T

Step 3: LCC calculations (Critical IT system with and without formal interface between HW and functional SW)

Co

To

2 - Modelling for Infrastructure Management before conception engineering

Page 49: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

51

Part 3 – Safety & Security : Cyber issues

?

Page 50: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

521 - Safety and cybersecurity issues

52

Safety and cybersecurity issues have become a concern for UIC in

recent years (in the different functional “layers” of the rail system)

Different levels of fragility in rail services have been identified:

▪ Information systems in relation to the customer

▪ Traffic management information systems, contracts, customs

information, rolling stock and infrastructure maintenance information

▪ Critical operating systems

= Business AND Systems

Page 51: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

53

53

Following a pathfinder project called ARGUS, implemented in cooperation with

the COLPOFER group (OSJD) and well-known industrial players such as

Cyclus, Splunk, Airbus, APSYS and others, UIC has created its first Guidelines

for Cyber-Security in Railways.

1 - Safety and cybersecurity issues

Page 52: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

542 – Cyber risk: myth or reality?

54

We are currently in:

- A world engaged in digital warfare at

economic and/or military level- An interconnected and open digital world

This world represents a paradigm shift for the railways

o Railways are one of the priority targets of certainactors

o Today, railways use digital technologies and architectures that are particularly vulnerable to potential attack (internal or external)

Page 53: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

55

55

Railways have become stuck in a position of denial about the emergence andgrowth of risks related to cyber attacks, for many reasons:1. Consequences of attacks vs. determinism of preventive costs2. “Service provider” vs. “technical mastery of systems”3. Transition from white box systems, or functional white box to black box

vision4. Not taking safety or cyber risks into account in security studies (application

of CSM, obtaining AMEC...)

2 – Cyber risk: myth or reality?

Page 54: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

56

56

2 – Cyber risk: myth or reality?

From the Internet: possible takeover of station

information systems, automatic vending machines

(ransom requests to regain control)

Immobilisation of rolling stock in operation by

unauthorised radio connection (links intended

for remote maintenance, etc.)

A "man in the network" can cause a fire, field elements

in unsafe conditions, change the functionality of certain

signal boxes, etc.

Intrusion tests performed by IMs or RUs demonstrate

the weaknesses in certain systems, existence of

plausible attack scenarios, etc.

The list is not exhaustive, especially since some actors

"map" the networks of friendly/hostile countries...

Page 55: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

57

57

2 – Cyber risk: myth or reality?

Cyber risk is therefore a reality that can have a direct impact on rail traffic availability and safety.

We have experienced and will continue to experience a decline in thesecurity levels of our critical infrastructure with the transition to digital.There are dangers that threaten us:

Three major dangers

China: peaceful attacks

on industrial knowledge

and illegal information

gathering

Russia and former

USSR: Hostile cyber

attack/attack on behalf of

industries or lobbies

Terrorist and/or extremist

organisations

Page 56: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

58

58

3 - Technological developments that threaten our systems

The evolution of technologies and modernism (technical and managerial) expose our systems to attack. Such developments include:

1. The emergence and uncontrolled spread of "railway

clouds", cloud computing, IoTs, including for critical

signalling systems

2. IoTs generally have only one common password to a

series of products, registered in Hard internally, without

the user being able to dynamically and frequently

change it

3. Digital systems and networks (existing or future) that

are poorly designed in terms of safety and security

cannot subsequently be secured in practice

Page 57: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

59

59

4. Modern systems are highly centralised, which makes

them vulnerable to an attack

5. Modern systems are not developed with the use of

functional modelling or formal methods and use cost,

hardware, OS and "general public" protocols

6. The consequences of a targeted attack

are far greater than those that could possibly

be expected for attacks on older systems

3 - Technological developments that threaten our systems

Page 58: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

604 - Taking cyber threats into account in

system design rules and related

security studies

60

1

• Identification of security strategy levels

2

• Real independence of networks with different levels of cybersecurity and business consequences

3• Gateways between networks with protocol breach

4• Functional white box modelling of systems and their means of communication

5 • Systems development with the use of formal methods

6• Useful resilience through independent and non-digital technological means

7• Deployment of all radio communications in the railway sector > FRMCS

Page 59: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

61

61

For safety demonstrations (application of Common Safety Methods):

• Formalise choices in security files in terms of acceptability of cyber consequences, types of network subset where certain systems can be deployed, etc.

• Identify the physical protective measures that must be associated with them (demonstration assumptions)

• Identify the rules of design, implementation, system integration that must be implemented (demonstration assumptions)

• Consider, in addition to ER related to human and organisational factors or aspects of technical failure, ER possibly related to external attacks by malicious third parties

• >Requires implementation of three types of measures (depending on the identified need):- Peripheral defence, - Defence in depth, - Endogenous defence (for SIL4 systems) and identify means of continuous verification of proper implementation and operation

• Identify (the nature of) the intrusion tests that will have to be performed regularly and on which railway subassembly (assumption of the demonstration)

4 - Taking cyber threats into account in

system design rules and related security

studies

Page 60: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

62

62

5 - Taking cyber risks into account in IMs’

and RUs’ asset management processes

The railways (RUs and IMs) are responsible for traffic safety; they must define

and are responsible for the SMS (Safety Management System - more

appropriately called “SSMS” (Safety and Security Management System))

Including Security and « Cyber security »

Page 61: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

63

Network

strategy

Axes

Strategies

Work

planning by

axes Project

Realisation

Operation

Circulations

Constats performancesTimetable

planification

Asset

Managemen

t Strategies

by axes

Operation

strategies by

axes

Operation

strategies

Asset

Managemen

t strategies

Ressource

strategies

PROSPECTIVE PRESCRIPTION OPERATIONAL

A perfect coherent system vision → including Security and Cyber security:

5 - Taking cyber risks into account in IMs’

and RUs’ asset management processes

Page 62: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

Status of patrimony of the

axis/corridors

Emergence asset performances

Commands - strategic

axis in terms of:

- Traffic capacity

- Works to be achieved

- Performance schedule to

be achieved

- Resource plans

ASSET

MANAGEMENT

STRATEGIES

OPERATION

STRATEGIES

Estimation of maintenance

needs

Network objectives

Objectives by axis

Measured network

performances/

subsystem

“Customer vision”

Differentiated investment and

maintenance policies

Product policies, technology

policies

Design/maintenance/operating

requirements

5 - Taking cyber risks into account in IMs’

and RUs’ asset management processes

64

Page 63: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

65

65

6 - UIC's work in this area will intensify in 2019

Sustainable development

Development of the

FRMCS system (in

collaboration with 3GPP,

ETSI, suppliers...)

Projects: APRA

and OSJD

UIC Railway

Application Guide -

Asset Management

through ISO 55001

Specialised cyber

exchange platform: -

telecoms and/or

specialist

manufacturers -

standardisation bodies

- railways

Publication of

new IRSs

Page 64: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

66

• 2018 exploratory group conclusion: need for a practical approach

• Development of three axes:

‒ Definition of priorities: critical systems/safety

‒ Participation in existing ad hoc telecoms work groups (ETSI, 3GPP, GSMA, etc.)

‒ Cooperation with a group of specialised industrial companies already active inproviding sound solutions to other industries (airborne, energy, etc.)

• Registration in ad hoc telecoms work groups (H1)

• Identification/enrollment of 1st group of industrial companies (H1)

• Initial vision for possible technical solutions (end 2019)

Complementary to other initiatives (processes, normative

rules, etc.)

6 - UIC's work in this area will intensify in 2019

Page 65: SETTING THE STAGE FOR FUTURE MOBILITY - Home | UIC

Stay in touch with UIC!

Thank you for your kind attention!

Prof. Dr. Marc AntoniRail System Director

UIC Rail System Department

[email protected]