33
Session 2, Unit 3 Atmospheric Thermodynamics

Session 2, Unit 3 Atmospheric Thermodynamics

  • Upload
    jadzia

  • View
    68

  • Download
    0

Embed Size (px)

DESCRIPTION

Session 2, Unit 3 Atmospheric Thermodynamics. Ideal Gas Law. Various forms. Hydrostatic Equation. Air density change with atmospheric pressure. First Law of Thermodynamics. For a body of unit mass dq=Differential increment of heat added to the body - PowerPoint PPT Presentation

Citation preview

Page 1: Session 2, Unit 3 Atmospheric Thermodynamics

Session 2, Unit 3Atmospheric Thermodynamics

Page 2: Session 2, Unit 3 Atmospheric Thermodynamics

Ideal Gas LawVarious forms

1

Where

TMRP

RTPM

Vm

RTMmnRTPV

Page 3: Session 2, Unit 3 Atmospheric Thermodynamics

Hydrostatic EquationAir density change with atmospheric pressure

dPdzg

gdzdP

dzgdP

Page 4: Session 2, Unit 3 Atmospheric Thermodynamics

First Law of Thermodynamics

For a body of unit mass

dq=Differential increment of heat added to the body

dw=Differential element of work done by the body

du=Differential increase in internal energy of the body

dudwdq

dPdTcdPdudqdPdw

v

Page 5: Session 2, Unit 3 Atmospheric Thermodynamics

Heat CapacityAt constant volume

At constant pressuredTducgasidealFor

dTdu

dTdqc

v

constconstv

constpp dT

dqc

Page 6: Session 2, Unit 3 Atmospheric Thermodynamics

Heat CapacityRelationships

v

p

vp

pp

vv

CC

RCC

CMcCMc

Page 7: Session 2, Unit 3 Atmospheric Thermodynamics

Concept of an Air ParcelAn air parcel of infinitesimal dimensions that is assumed to be Thermally insulated – adiabatic Same pressure as the environmental

air at the same level – in hydrostatic equilibrium

Moving slowly – kinetic energy is a negligible fraction of its total energy

Page 8: Session 2, Unit 3 Atmospheric Thermodynamics

Adiabatic ProcessReversible adiabatic process of air

TdT

RC

PdP

lawgasidealwithCombine

dPdTcdqprocessAdiabatic

dPdTcdqdPdTRcdqlawgasidealUse

dPPddTcdqdPsubtractandAdddPdTcdq

p

p

p

v

v

v

00

)(:)(:

Page 9: Session 2, Unit 3 Atmospheric Thermodynamics

Lapse RateCombine hydrostatic equation and ideal gas law

For adiabatic processdz

RTgM

PdP

RTPMgg

dzdP

TdT

RC

PdP p

Page 10: Session 2, Unit 3 Atmospheric Thermodynamics

Lapse RateTherefore

dT/dz is Dry Adiabatic Lapse Rate (DALR)

dzCgMdT

p

Page 11: Session 2, Unit 3 Atmospheric Thermodynamics

Dry Adiabatic Lapse Rate Dry adiabatic lapse rate (DALR)

Or on a unit mass basis

Or the expression in the textbook:

kmC

ftF

kmC

mK

kgsmPa

gkg

KmolPammolgsm

CgM

dzdT

ooo

p

101000

37.578.900978.0

1000/314.85.3/29/81.9 2

3

2

kmKKkgJ

smcg

dzdT

p

/8.9/1004/81.9 2

DALRkm

CRgg

dzdT o

c

95.91)/(

Page 12: Session 2, Unit 3 Atmospheric Thermodynamics

Lapse RateEffect of moisture

Because

Wet adiabatic lapse rate < DALR(temperature decreases slower as air parcel rises)

Condensation

VaporWaterAir Ppp CCC )1(

VaporWaterpAirpp wCCwC ,,' )1(

pp

AirpVaporWaterp

CC

CC

'

,,

Page 13: Session 2, Unit 3 Atmospheric Thermodynamics

Lapse RateSuperadiabatic lapse rate (e.g., 12oC/km)Subadiabatic lapse rate (e.g., 8oC/km)Atmospheric lapse rate Factors that change atmospheric

temperature profile Standard atmosphere

(lapse rate ~ 6.49 oC/km or 3.56 oF/1000 ft)

Page 14: Session 2, Unit 3 Atmospheric Thermodynamics

Potential TemperatureCurrent state: T, PAdiabatically change to: To, Po

Set Po = 1000 mb, To is potential temperature If an air parcel is subject to only adiabatic transformation, remains constantPotential temperature gradient

1

PP

TT oo

DALRdzdT

z actual

Page 15: Session 2, Unit 3 Atmospheric Thermodynamics

Session 2, Unit 4Turbulence and MixingAir Pollution Climatology

Page 16: Session 2, Unit 3 Atmospheric Thermodynamics

Atmospheric TurbulenceTurbulent flows – irregular, random, and cannot be accurately predicted Eddies (or swirls) – Macroscopic random fluctuations from the “average” flow Thermal eddies

Convection Mechanical eddies

Shear forces produced when air moves across a rough surface

Page 17: Session 2, Unit 3 Atmospheric Thermodynamics

Lapse Rate and StabilityNeutralStableUnstable

Page 18: Session 2, Unit 3 Atmospheric Thermodynamics

Richardson Number and Stability

Stability parameter

Richardson number Stable Neutral Unstable

zT

gs

2_

dzd

T

zg

Ri

u

Page 19: Session 2, Unit 3 Atmospheric Thermodynamics

Stability Classification Schemes

Pasquill-Gifford Stability Classification Determined based on

Surface wind Insolation

Six classes: A through FTurner’s Stability Classification Determined based on

Wind speed Net radiation index

Seven classes Feasible to computerize

Page 20: Session 2, Unit 3 Atmospheric Thermodynamics

InversionsDefinitionTypes Radiation inversion Evaporation inversion Advection inversion Frontal inversion Subsidence inversionFumigation

Page 21: Session 2, Unit 3 Atmospheric Thermodynamics

Planetary Boundary LayerTurbulent layer created by a drag on atmosphere by the earth’s surfaceAlso referred to as mixing heightInversion may determine mixing height

Page 22: Session 2, Unit 3 Atmospheric Thermodynamics

Planetary Boundary LayerNeutral conditions Mixing height

Increased wind speed and surface roughness cause higher h.

fu

h *

Page 23: Session 2, Unit 3 Atmospheric Thermodynamics

Planetary Boundary LayerUnstable conditions Mixing height

21

02

dzdTDALRC

dtHh

p

t

t

Page 24: Session 2, Unit 3 Atmospheric Thermodynamics

Planetary Boundary LayerStable conditions Mixing height

Lfu

h *4.0

Page 25: Session 2, Unit 3 Atmospheric Thermodynamics

Surface LayerFluxes of momentum, heat, and moisture remain constantAbout lower 10% of mixing layer

Page 26: Session 2, Unit 3 Atmospheric Thermodynamics

Surface LayerMonin-Obukhov length

Monin-Obukhov length and stability classes

kgHTuC

L p3*

Page 27: Session 2, Unit 3 Atmospheric Thermodynamics

Surface Layer Wind Structure

Neutral air

0

* lnzz

ku

ua

Page 28: Session 2, Unit 3 Atmospheric Thermodynamics

Surface Layer Wind Structure

Unstable and stable air

Lz

airstableForLzx

xarcxx

airunstableFor

Lz

zz

ku

u

m

m

ma

5

161

2)tan(2

21ln

21ln2

ln

41

2

0

*

Page 29: Session 2, Unit 3 Atmospheric Thermodynamics

Friction Velocity

Measurements of wind speed at multiple levels can be used to determine both u* and z0

Lz

zz

uku

m

a

0

*

ln

Lz

zz

uku

m

a

0

*

ln

Page 30: Session 2, Unit 3 Atmospheric Thermodynamics

Power Law for Wind ProfileWind profile power law

Value of p

p

mm zz

uu

Page 31: Session 2, Unit 3 Atmospheric Thermodynamics

Estimation of Monin-Obukhov Length

For unstable air

For stable air

Bulk Richardson Number

LzRi

RiRi

Lz

51

2

2

2

pRbRi

u

DALRdzdT

TgzRb

Page 32: Session 2, Unit 3 Atmospheric Thermodynamics

Air Pollution ClimatologyMeteorology vs. climatologyMeteorological measurements and surveysPollution potential-low level inversion frequency in US

Page 33: Session 2, Unit 3 Atmospheric Thermodynamics

Air Pollution ClimatologyMean maximum mixing heightdetermined by Morning temperature sounding Maximum daytime temperature DALRStability wind rose