213
8/22/2019 Session 1,2 2 http://slidepdf.com/reader/full/session-12-2 1/213   ﯽ ﯽ:  ﯽ  ﯿ  ﯽ  ﯿ   ﯿ   ﯿ   ﯿ   ﮐ  ﯿ   ﯿ   ﯿ   ﮐ   ﮐ   ﮔ  ﮐ   ﮔ   ﯽ  ﮑ   ﯽ  ﮑ  ﯾ   ﮕ  ﯾ   ﮕ   ﯿﯾ ﭘ  ﯿﯾ ﭘ 90 90

Session 1,2 2

Embed Size (px)

Citation preview

Page 1: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 1/213

 ی ی 

 ی::    ی ی   

 ی 

   ی     ی   

 ی     ی  ک     ی   

 ی     ک 

    ک    ک  گ   گ 

   ی    ی  ک     ک 

  ی    ی  گ 

 گ 

  پ  پ یی 9090یی

Page 2: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 2/213

Automation Area

Page 3: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 3/213

Ø Batch Process Automation

Ø Vehicle Automation

Ø Building AutomationTraffic automation

Heating, air-conditioning

Ø Transportation Automation

Automation Area

Page 4: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 4/213

Page 5: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 5/213

Page 6: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 6/213

ProblemProblemDefinitionDefinition

Business

DomainAutomation

Plant DomainAutomation

EnterpriseResource Planning

Supply ChainManagement

ResultantImprovements

Objectives

Objectives

Control SystemStructure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Page 7: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 7/213

CHALENGESCHALENGES ONON INDUSTRIESINDUSTRIES

Page 8: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 8/213

Page 9: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 9/213

““SMART MANUFACTURING”SMART MANUFACTURING”

Ø Attributes of Smart Manufacturing:

• Wide availability of real time

information on the current status of 

manufacturing and productconditions.

• Comparative model-based

performance analysis.

• Decision based on predictive

scenarios of expected future plantand market behavior and analytical

decision models.

Page 10: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 10/213

Supply & Demand Planning

Schedule/Plan

Reconciliation

Performance

Monitoring & Analysis

Material Balancing

& Data Reconciliation

Data Gathering

DCS (Real-Time Control)

Process

Monthly Planning

Scheduling

Simulation & Target

Strategy Setting

Process Control &

Local Optimization

ProductionDatabase(Data Model)

PRACTICAL IMPLEMENTATIONPRACTICAL IMPLEMENTATION ININ

PRODUCTION CHAINPRODUCTION CHAIN

Page 11: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 11/213

Management objectivesManagement objectives

Product opportunities,sales, pricing, Logistics

Feedstock selection,Pricing,Purchasing, Logistic

Process simulationModel

PerformanceMonitoring

Accruing

Data Reconciliation(DR)

CentralHistorian

On-lineOptimization

Scheduling

Planning

DCS

HistorianInterface

MVC/APC

Physical

Processing Unit

HistorianInterface

MVC/APC

DCS

Physical

Processing Unit

Historian nterface

APC layer 

DCS layer 

Physical Plant

layer 

AUTOMATION AREAAUTOMATION AREA

Page 12: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 12/213

Page 13: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 13/213

Page 14: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 14/213

The process database is at the centre (example: Wonderware)

Page 15: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 15/213

INDUSTRIALINDUSTRIAL PYRAMIDPYRAMID

Page 16: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 16/213

INDUSTRIAL PYRAMIDINDUSTRIAL PYRAMID

Page 17: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 17/213

Page 18: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 18/213

Page 19: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 19/213

Large control system hierarchy (1)

Group control

Unit control

Field

Sensors& actors A V

Supervisory

Primary technology

Workflow, order tracking, resources

SCADA =

Supervisory Control

And Data Acquisition

T

Production planning, orders, purchase

1

2

3

4

0

Planning, Statistics, Finances5

(manufacturing) execution

enterprise

administration

Page 20: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 20/213

Large control system hierarchy (2)

Administration Finances, human resources, documentation, long-term planning

Enterprise Set production goals, plans enterprise and resources, coordinate different sites,manage orders

Manufacturing Manages execution, resources, workflow, quality supervision,production scheduling, maintenance.

Supervision Supervise the production and site, optimize, execute operationsvisualize plants, store process data, log operations, history (open loop)

Group (Area) Controls a well-defined part of the plant

(closed loop, except for intervention of an operator)• Coordinate individual subgroups• Adjust set-points and parameters• Command several units as a whole

Unit (Cell) Control (regulation, monitoring and protection) part of a group(closed loop except for maintenance)

• Measure: Sampling, scaling, processing, calibration.• Control: regulation, set-points and parameters

• Command: sequencing, protection and interlockingField data acquisition (Sensors & Actors*), data transmission

no processing except measurement correction and built-in protection.

Page 21: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 21/213

Field level

the field level is in directinteraction with the plant'shardware

(Primary technology)

Page 22: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 22/213

Group level

the group level coordinates the

activities of several unit controls

the group control is often hierarchical,

can be also be peer-to-peer (from groupcontrol to group control = distributedcontrol system)

Note: "Distributed Control Systems"

(DCS) commonly refers to a hardwareand software infrastructure to performProcess Automation

unit controllers

Group level

Page 23: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 23/213

Local human interface at group level

sometimes,the group level hasits own man-machineinterface for localoperation control(here: cement

packaging)

also for maintenance:console / emergency panel

Page 24: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 24/213

Supervisory level: Man-machine interface

control room(mimic wall)

1970s...

formerly, all instruments were directly wired to the control room

Page 25: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 25/213

Mosaic is still in use – with direct wiring

Page 26: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 26/213

Supervisory level: SCADA

- displays the current state of the process (visualization)- display the alarms and events (alarm log, logbook)- display the trends (historians) and analyse them- display handbooks, data sheets, inventory, expert system(documentation)

- allows communication and data synchronization with other centres

(SCADA = Supervisory Control and Data Acquisition)

Page 27: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 27/213

Today’s control rooms

beamers replaces the mosaics, there is no more direct wiring tothe plant.

Page 28: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 28/213

Plant management

- store the plant and product data for further processing in a

secure way (historian), allowing to track processes and trace

products

-> Plant Information Management System (PIMS)

- make predictions on the future behaviour of the processes

and in particular about the maintenance of the equipment,

track KPI (key performance indicators)

-> Asset Optimisation (AO)

Page 29: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 29/213

Page 30: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 30/213

Page 31: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 31/213

Page 32: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 32/213

Page 33: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 33/213

Page 34: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 34/213

ANSI/ISA 95 standard classification

Source: ANSI/ISA–95.00.01–2000

the ANS/ISA standard 95 defines terminology and good practices

Enterprise Resource Planning

Manufacturing Execution Syste

Control & Command System

Business Planning & Logistics

Plant Production SchedulingOperational Management, etc.

ManufacturingOperations & Control

Dispatching Production, Detailed ProductScheduling, Reliability Assurance,...

Level 4

Level 3

Levels2,1,0

BatchControl

ContinuousControl

DiscreteControl

Page 35: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 35/213

Example: Power plant

Page 36: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 36/213

Example of generic control siemens: Siemens

WinCC (Generic)

Betr iebs- lei tebene 

Product ion 

level 

Unternehmens 

lei tebene 

Enterpr ise 

level 

Prozess- 

lei tebene 

Process level 

Page 37: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 37/213

planning

scheduling

Online opti

APC

Control

Field

Page 38: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 38/213

Response time and hierarchical level

PlanningLevel

ExecutionLevel

ControlLevel

SupervisoryLevel

ms seconds hours days weeks month years

ERP(Enterprise Resource Planning)

DCS

MES(Manufacturing Execution

System)

PLC(Programmable Logic

Controller)

(Distributed ControlSystem)

(Supervisory Control and DataAcquisition)

SCADA

Page 39: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 39/213

Complexity and Hierarchical level

MES

Supervision

Group Control

Individual Control

Field

Site

Command level

,

Complexity Reaction Speed

ERP

days

months

minutes

seconds

0.1s

0.1s

Page 40: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 40/213

Effects of System Automation

• Dependability

• Plant Efficiency

• Extended Equipment Life

• Improved Operation

• Improved Operator Interface

• Accessibility of Plant Data

• etc

Page 41: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 41/213

ProblemDefinition

BusinessBusiness

DomainDomainAutomationAutomation

Plant DomainAutomation

EnterpriseResource Planning

Supply ChainManagement

ResultantImprovements

Objectives

Objectives

Control SystemStructure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Page 42: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 42/213

BUSINESS DOMAIN OBJECTIVESBUSINESS DOMAIN OBJECTIVES

Page 43: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 43/213

SUPPLY CHAINMANAGEMENT

ENTERPRISERESOURCEPLANNING

Page 44: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 44/213

ERP Definition and HistoryERP Definition and History

• 1970’s- Material Requirement Planning (MRP)

• 1980’s- Manufacturing Resource Planning (MRP II)

• early 1990’s- Enterprise Recourse Planning (ERP)

Ø Enterprise resource planning (ERP) is the industry termused to describe a broad set of activities supported by multi-module

application software that helps a manufacturer or other business

manage the important parts of its business. These parts can include

product planning, parts purchasing, maintaining inventories,

interacting with suppliers, providing customer service, and tracking

orders. ERP can also include application modules for the financeand human resources aspects of a business.

Page 45: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 45/213

ERP DevelopmentERP Development

Page 46: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 46/213

ERP BenefitsERP Benefits

Page 47: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 47/213

ERP Software SuppliersERP Software Suppliers

•ABAS Software

•ACCPAC International

•Adonix

•Agilisys

•American Software

•Apps4biz

•Ascomp Technologies

•Bäurer AG

•Caliach

•CeeCom

•Cincom

•command

•Control Group

•Cortis Lentini

•Datasul

•Datatex

•Eastern Software Systems

•Encompix

•Epicor

•Exact Software

•eXegeSys

•Expandable Software

•Friedman

•Fujitsu – Glovia International

•Geac Computer

•Generix

•Gruppo Formula

•IBS

•IFS

•infor business solutions

•Intentia

•Intuitive Manufacturing Systems

•Invensys

•JD Edwards

•K3 Business Technology

•Lilly Software

•Made2Manage

•Manugistics

•MAPICS

•Metasystems

•Microsoft Business Solutions

•OpenMFG

•Oracle

•PeopleSoft

•ProfitKey

•Pronto Software

•PSI

•QAD

•Ramco Systems

•Relevant

•ROI Systems

•Ross Systems

•SAP

•Scala Business Solutions

•Silverprod

•SoftBrands

•SSA GT

•SSI

•Syspro

•Verticent

•Visibility

•XeBusiness

Page 48: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 48/213

SCM DefinitionSCM Definition

Supply Chain Management is the process of improving

the distribution from supplier to the final customer tosatisfy customer requirements.

Page 49: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 49/213

SCM ArchitectureSCM Architecture

Page 50: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 50/213

Impacts of SCMImpacts of SCM

Page 51: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 51/213

SCM Software SuppliersSCM Software Suppliers

•ABB

•Adexa

•Applied Materials

•AspenTech

•Brooks Automation

•Descartes

•EXE Technologies

•FWL Technologies

•Honeywell

•i2 Technologies

•Invensys

•Irista

•J.D. Edwards•Kewill Systems

•Logility

•Manhattan Associates

•Manugistics

•MARC Global Systems

•McHugh Software International

•Optum

•OSIsoft

•Provia

•Retek

•SAP

•Siemens

•Swisslog

•Yantra

•Yokogawa

Page 52: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 52/213

Integration of ERP & SCMIntegration of ERP & SCM(Simple View)(Simple View)

Page 53: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 53/213

Resultant Improvements due to AutomationResultant Improvements due to Automation

In Business DomainIn Business Domain

Page 54: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 54/213

ProblemDefinition

Business

DomainAutomation

Plant DomainAutomation

EnterpriseResource Planning

Supply ChainManagement

ResultantImprovements

Objectives

Objectives

Control SystemStructure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Page 55: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 55/213

INDUSTRIAL PYRAMIDINDUSTRIAL PYRAMID

Page 56: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 56/213

PLANT DOMAIN AUTOMATIONPLANT DOMAIN AUTOMATION

OBJECTIVEOBJECTIVE

Page 57: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 57/213

Page 58: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 58/213

CONTROL AND OPTIMIZATIONCONTROL AND OPTIMIZATION

ARCHITECTUREARCHITECTURE

Page 59: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 59/213

CONTROL HIERARCHY TYPICALCONTROL HIERARCHY TYPICAL

TIMINGTIMING

Page 60: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 60/213

Typical Cost/Benefit Relation due to PlantTypical Cost/Benefit Relation due to Plant

Domain Automation based onDomain Automation based on

Automation LevelAutomation Level

Page 61: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 61/213

Plant Automation Requirement

Ø Control System Structure

Ø Data Communication Network 

Ø Devices ( sensor & actuator )

Ø Control Algorithm

Page 62: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 62/213

ProblemDefinition

Business

DomainAutomation

Plant DomainAutomation

EnterpriseResource Planning

Supply ChainManagement

ResultantImprovements

Objectives

Objectives

Control SystemStructure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Page 63: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 63/213

History of Automation in Industries

ØRefining industry has been a pioneer in automating its processing

operation because of:

• Mass production of automobile in early 1900s

• petroleum product requirement in World War I

• increasing of demands for fuel in World War II(30000barrels/day in 1940 to 580000 b/d in 1945)

ØThus increasing:

• plant size

• production quantity MORE AUTOMATION

• quality

Page 64: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 64/213

History of Automation in Industries

Ø (1943) invention of CRT:use of panel board graphic display in a

control room

Ø(1948) miniature pneumatic instrument (birth of PID controller).

Page 65: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 65/213

History of Automation in Industries

Ø(1956 post-war )Birth of DDC by invention of solid-state and

transistor

Ø(1960s)Appearance of low-cost digital mini-computer and data

logging was introduced into the control room

Page 66: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 66/213

History of Automation in Industries

Ø (mid-1960s to mid-1970s)Technical turmoil era(birth of PLC)

Page 67: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 67/213

Ø(1978)microprocessor era began by birth of integrated circuitchip and therefore use of PID algorithm as built-in software

(appearance of DCS)

History of Automation in Industries

Page 68: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 68/213

Ø(1980s & 1990s )birth and development of smart distributed

control system.

History of Automation in Industries

Page 69: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 69/213

1. Analog Controller

• Pneumatic PID controller

• Hydraulic PID controller

2. Digital Controller

• Centralized Control System(DDC)

• Distributed Control System(DCS)

• Smart Distributed Control System(FCS)

Control Systems StructureControl Systems Structure

Why toward digital signal ?• High interference immunity

• Easy data storage

• Flexible processing

• Various transmission option

Page 70: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 70/213

Page 71: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 71/213

Page 72: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 72/213

Digital Controller ProgressDigital Controller Progress

Page 73: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 73/213

Digital ControllerDigital Controller

Ø Centralized Control System(DDC):

Disadvantages:

• In large scale system the total number of I/O signals widelyincrease that is beyond the capacity of computer hardware.

• not flexible

• unable to take best use of on-line technique

• slow to take advantage of improved technology

• high installation cost•  Failing of central control unit stop working of all the system.

Page 74: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 74/213

Digital ControllerDigital Controller

Ø DCS (Distributed Control System):

Advantages :

• lower installation costs due to the interconnection

and grouping of control modules ·• lower maintenance cost

• better system reliability and flexibility

• ease of configuring the process

• concept and ease of expandability

• More real-time capability

Page 75: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 75/213

Digital ControllerDigital Controller

DCS :

Page 76: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 76/213

Page 77: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 77/213

DCS•Convert analog signal to digital

•Run PID algorithm•Convert digital signal to analog

•Send signal to final control element•ALL OTHER DCS DUTIES

Transmitter •Measure ONE parameter 

•Convert digital signal to analog•Transmit to control System

•Using 1 pair of wires

Final Control Element•Receive analog signal

•Position valve•Using 1 pair of wires

Conventional Control

Page 78: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 78/213

78

ANALOG CONTROL LOOPCONTROLLER

4-20 mA

4-20 mA

CONTROLROOM

FIELD

PROCESSVARIABLE

DT=DEAD TIME

PID

D/AuPA/D

D/A

uP

A/D

SIGNALCONDITIONING

FINALCONTROLELEMENT

TRANSMITTER

1

2

3

1

2

3

DT

Page 79: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 79/213

Digital ControllerDigital ControllerØ Smart Distributed Control System (FCS):

Interconnection of low level industrial devices as well as controldevice on a single physical communication link using digitalcommunication.

Advantages :

• Increasing process safety through Abnormal Situation

Management(ASM)($20 billion/year is losses in petrochemical

industry in US)

• Increasing product quality

• Increasing occupational health• Decreasing environmental hazards

Page 80: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 80/213

Digital ControllerDigital ControllerØ Smart Distributed Control System(FCS) :

Page 81: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 81/213

Digital ControllerDigital Controller

ØMoving from DCS toward FCS :

FCS Has a Leaner Hierarchy

Page 82: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 82/213

FCS Has a Leaner Hierarchy• DCS • FCS

Power SuppliesControl Cards

Input CardsOutput Cards

Fusing

Marshaling

Termination

Cards

4-20 mA

PID

FieldbusPID

• Hybrid

PID

Fieldbus

PID

Hybrid Control

Page 83: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 83/213

Hybrid Control

Control Using Fieldbus

Page 84: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 84/213

DCS• Run PID algorithm (now optional)• Send signal to final control element• ALL OTHER DCS DUTIES

Control Using Fieldbus

DevicesTransmitter 

• Measure MULTIPLE parameters• Pure digital signal transmitted• PID algorithms on board• Network style communication

Final Control Element• Receive digital signal• Position valve• PID algorithms on board• Network style communication

Up to 1900 

Meters in length 

Page 85: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 85/213

EXPANDED VIEW

DCS

TRADITIONAL 4-20 MAVIEW STOPS AT I/O SUBSYSTEM

FCS

FIELDBUS

FIELDBUS VIEWEXTENDS INTO INSTRUMENTS

INPUT/OUTPUTSUBSYSTEM

CONTROLLER

Page 86: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 86/213

LOCAL AREA NETWORKSUPERVISORY

SYSTEM

FIELDBUS

FIELDDPT101 PT101 FCV101 DPT102 PT102 FCV102

Page 87: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 87/213

Field Instrument Interfacing

Page 88: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 88/213

Field Instrument Interfacing• DCS

 – Input/output cards 8-16 channels

• Rarely redundant

 – One fault = 8 loops lost

• Redundant mainly in

 petrochemical industry (which

coincidentially uses galvanic

isolators)

 – One fault = no problem

 – One device per wire

 – One fault = 1 loop lost

 – No master 

 – = no problem

• FCS

 – No I/O cards

 – = no problem

 – Many devices per wire

• 12-16 devices per wire

 – One fault = 8 loops lost

• 2-4 devices per barrier/repeater  – One fault = 1 loop lost

 – Requires communication master 

• Backup master 

 – Fault = no problem

N d F I f i F D i i M ki

Page 89: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 89/213

 Need For Information For Decision Making

• 4-20 mA is an information bottle-neck 

• With Fieldbus system:

 –  Access to all device information:

• instrument identification, location• status of PVs and MVs etc.

• ambient conditions

• diagnostics

• configuration

• instrument characteristics• calibration information

 –  date

 –  who

 –  method

 –  location

Page 90: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 90/213

Conventional x Fieldbus

15,3 mA

DCS

TAG =LIC-012VALUE =70.34UNIT =M3

STATUS=GOODALARM = Y/N

FCS

TRANSMITTERTRANSMITTER

Page 91: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 91/213

Increased Process and Instrument

Page 92: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 92/213

Increased Process and Instrument

Information

• DCS:

Sufficient control

information. Insufficient

management

information.

• FCS:

Slight increase in control

information. Vast

increase in management

information

MANAGEMENTINFORMATION

CONTROLINFORMATION

Page 93: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 93/213

Need reduced process variability & down-time

• Though DCS perform a good job of process control, they do

not cater for management of the field instruments.

• With Fieldbus system:

 –  Being able to see the field instruments bring important benefits:

• On-line status and diagnostics information enables predictive

maintenance.

• Access to identification and calibration data in the device enables better

calibration management.

• I.e. Instrument Management may be used to ensure that

devices are in good condition increasing availability and that

the process is at its optimum values, resulting in higher

quality and long term savings.

Page 94: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 94/213

Predictive Maintenance

• Schedule maintenance based on device diagnostics

• Schedule calibration based on device calibration

data storage

• Perform maintenance and calibration of severaldevices at the same time with fewer shut-downs

• Perform maintenance and calibration at scheduled

shut-downs, not at emergency shut-downs.

• Increase plant availability

• Don’t waste time on maintenance of equipment

which does not need it (preventive maintenance).

Page 95: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 95/213

95

TWO WAYCOMMUNICATION

DPT + PID FCV TT PT

OPERATIONSTATION MAINTENANCETOOL

Page 96: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 96/213

96

Status• The engineering software may be used for detail

investigation of non-good status.

 – Good Normal

 – Bad E.g. sensor failure

 – Uncertain E.g. out of calibrated range

• Provides automatic failsafe action in outputdevices when failures in sensors or communication etc. occurr.

• Assures cascade initialization (bumplesstransfer) and anti-reset-windup and many other functions.

Page 97: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 97/213

Page 98: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 98/213

Page 99: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 99/213

Page 100: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 100/213

Page 101: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 101/213

Page 102: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 102/213

Page 103: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 103/213

Need For Lower Maintenance Costs

Page 104: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 104/213

 Need For Lower Maintenance Costs

• Cost of maintenance, upgrade and expansion of  proprietary DCS is skyrocketing.

• With a Fieldbus system: – Interoperability ensures:

• Buy spares from third parties to keep price down.

• Buy spares from those that stock, i.e. user need not keep stock.

• The best of its kind device may be used independent of manufacturer.

 – Open technology means:

• Knowledge to maintain, expand and modify the system

yourself.

Page 105: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 105/213

Page 106: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 106/213

106

Need for easier documentation

• DCS and PLC card system and point-to-point wiring

requires a lot of documentation.

• With a Fieldbus system: – Drawings are simplified as wiring is drastically reduced and devices

are connected in parallel.

 – Panel and cabinet drawings reduced.

 – Automatic generation of configuration documentation as

configuration is done. Export/import of files to spreadsheets. – Comments and notes may be included in the configuration.

 – Complete field device data in Fieldbus devices.

Page 107: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 107/213

Page 108: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 108/213

Page 109: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 109/213

WIRING & HARDWARE SAVINGS

DCS

4-20 MA

I.S I.S. I.S.

I/OSUBSYSTEM

CONTROLLER

FCS

I.S.

FIELDBUS

Page 110: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 110/213

Page 111: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 111/213

Page 112: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 112/213

Page 113: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 113/213

Need For Scalable Systems

Page 114: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 114/213

 Need For Scalable Systems

• The cost of expanding a DCS with one or a few loops istoo high.

• With a Fieldbus system:

 –  A few devices can be added without adding interfaces or even

wires.

 –  Even major expansion requires a minimum of hardware since

input, output and control cards are virtually eliminated.

 –  Systems with a number of loops ranging from 1 to more than

1000 (32,000 points) are possible.

• I.e. you need not buy a system which is larger than you

need or can afford, being assured it can be expanded as

the plant grows and changed as your requirements

change.

Page 115: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 115/213

Fieldbus Makes FCS Extremely

Scalable

Page 116: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 116/213

- Safety Without Redundancy?

• FCS also has redundant operator consoles

• FCS also has redundant power supplies

• FCS has no controller card, hence

redundancy not applicable, no problem.

• The Difference between DCS and FCS liesin the interfacing of the field devices...

From DCS to FCS fault tolerance

Page 117: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 117/213

• DCS (Redundancy)

 –  An input or output card fault affects

8 loops

 –  1 loop with redundant I/O cards

• FCS (Fault isolation)

 –  A wire fault affects 8 loops

 –  1 loop with barrier/repeater

1... 81... 8

1...8 1...8

Control

OI II O O

1...4 1...2

OI II O O

Control

OI II O O

FAULT TOLERANT

Page 118: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 118/213

118

FAULT TOLERANT

• Redundant Fieldbus power supplies

• Redundant operator stations

• Additional backup LAS(Link Active Scheduler ) in the fielddevices

• Independent interface CPU for LAS, bridge and blocks.

• Devices distributed over several buses with few loops.

• Critical loops may have individual buses

• Operator station power is backed up by UPS

• Output devices handle failsafe conditions on their own.Last value or predetermained safety position.

• Sensor, device or communication failure invokes failsafeaction in output devices.

• Number of modules and components (CPU, input or outputcards) is minimized reducing failure probability.

FAILURE EFFECTS

Page 119: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 119/213

119

FAILURE EFFECTS• Failure of one operator station does not affect

another. In case of station failure system may beoperated from another.

• Failure, connection or removal of a field devicedoes not affect another.

• Control may continue in the absence of any host.• Power supply switchover is automatic and does

not affect the system.

• Failure in any Fieldbus does not result in loss of 

control or the operators view except with respectto the loops or I/O on a single Fieldbus.

• LAS switchover is automatic and does not affectthe system.

Page 120: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 120/213

120

DRIVERA / B

DRIVERA / C ?

STANDARDFIELDBUS

INTERFACE

MANUFACTURERB

MANUFACTURERC

MANUFACTURERD

MANUFACTURERD

MANUFACTURERB

MANUFACTURERC

FIELDBUS = OPEN SYSTEM

Evolutions in Smart Transmitters

Page 121: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 121/213

TransmittersTransmitters Benefits

•Multiple measurements fromsingle transmitter 

•Lower total installed &maintenance costs

•Pure digital signal output •No D/A errors, greater accuracy-repeatability

•PID algorithms on board • Less burden on the DCS truedistributed control

•Network communication•Communication can occur directlyfrom transmitter to valve

Evolutions in Smart Transmitters

Features

Evolutions in Smart DCS

Page 122: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 122/213

Features Benefits

•More data available•More variables for better control andhistory of process events & changes

•Pure digital signal input•No A/D errors, greater accuracy-repeatability less I/O hardware

••PID algorithmsPID algorithms in field devicesin field devices ••Less burdenLess burden on the DCS trueon the DCS truedistributed controldistributed control

D C SD C S

Evolutions in Smart DCS

Evolutions in Smart Valve

Page 123: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 123/213

Features Benefits

•Multiple mission device •Lower total installed &maintenance costs

•Pure digital signal input •No A/D errors, greater accuracy-repeatability

•PID algorithms on board •Less burden on the DCS truedistributed control

•Network communication•Communication can occur directlyfrom transmitter to valve

ValveValve

Evolutions in Smart Valve

Digital Control System Elements

( i f i )

Page 124: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 124/213

DCS• Run PID algorithm (now optional)• Send signal to final control element• ALL OTHER DCS DUTIES

Transmitter • Measure MULTIPLE parameters• Pure digital signal transmitted• PID algorithms on board• Network style communication

Final Control Element• Receive digital signal• Position valve• PID algorithms on board• Network style communication

Up to 1900 

Meters in length 

(more details after Evolution)

FIELDBUS CONTROL LOOP

Page 125: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 125/213

125

FIELDBUS CONTROL LOOP

DT=DEAD TIMETR=PROCESS TIME RESPONSE

uP

D/A

SIGNALCONDITIONING

+PID

FINALCONTROLELEMENT

1

23

1

2

3

DT

uP

A/D

CONTROLLABILITY = DT /TR

BETTER = SMALLER

FIELD

Page 126: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 126/213

Page 127: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 127/213

Smart DCS(Fieldbus) Applications

Page 128: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 128/213

( ) pp

Ø Manufacturing AutomationCar manufacturing

Bottling systems

Storage systems

Ø Building Automation

Traffic automation

Heating, air-conditioning

Ø Process AutomationPurification plants

Chemical and petrochemical industry

Paper and textile industry

Ø Power industry and power distributionPower plants

Switching gears

e.g. BMW manufacturing,Regensburg, Germany

e.g. Bibliothèque Nationalede France, Paris, France

e.g. Darboven Coffee,Hamburg, Germany

e.g.. Warsaw Subway,Warsaw, Poland

e.g. Oil refinery, Esmeralda,Ecuador 

e.g. Polymer storage tank,Scarborough, Canada

e.g. bottling plantTaunton, UK

Page 129: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 129/213

Theimagepart with relationship ID rId3wasnot found in thefile.

Page 130: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 130/213

Basic System Configuration

Page 131: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 131/213

y g

Controller 

Operation / Engineering

Control Bus

4 - 20mA Digital

Fieldbus Fieldbus

Scalable System Architecture

Page 132: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 132/213

ODS

< Exaquantum >

y

Ethernet

Small TypeController 

HMIEngineering

Large TypeController 

Control Bus

4 - 20mA Digital

Safety Control System< Pro-Safe >

ERP

Fieldbus

OPC Server 

Fieldbus

Router 

Wide Area Communication Gateway

Console Type HMI DeviceManagement

Process Automation System< CENTUM >

Remote i/o

ProblemDefinition

Enterprise

Objectives

Page 133: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 133/213

BusinessDomain

Automation

Plant Domain

Automation

EnterpriseResource Planning

Supply Chain

Management

ResultantImprovements

Objectives

Control System

Structure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Evolution in Industrial Data CommunicationEvolution in Industrial Data Communication

N t k(B )N t k(B )

Page 134: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 134/213

Network(Bus)Network(Bus)

Protocol

Features& Benefits

Pneumatic

3-15 PSI

50’s

Intrinsic Safety

4-20 mA

70’s

Remote-Re-ranging

Protocol Dependence

SMART

HART

DE

FOXCOMBRAIN

80’s

FIELDBUS

Protocol Unification

Interoperability

90’s

Electro-Mechanical

10-50 mA

60’s

Local Adjustments

Pneumatic ElectronicAnalog Hybrid Digital

Page 135: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 135/213

•  جن  

Instrument Society of America (ISA),

International Electrotechnical Commission (IEC),

IEC/ISA SP50 Fieldbus committee 

Profibus(German national standard) and

FIP (French national standard)

• 

ين 

گ 

Page 136: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 136/213

• 1992

گ 

گ 

گ 

Interoperable Systems Project (ISP)

Factory Instrumentation Protocol (WorldFIP)

•   جت  من  جتISA SP50من .

 رب•  پ  1994WorldFIPISP Fieldbus Foundation

 من  من  گ .پ

 مب• – BPمن  حت  يت . ني

 گ –  جيEssoپ    پ  ني ژ   

.جنWorldFIPISP پ

Page 137: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 137/213

Theimagepart with relationship ID rId3wasnot found in thefile.

Page 138: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 138/213

Theimagepart with relationship ID rId2wasnot found in thefile.

Page 139: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 139/213

Theimagepart with relationship ID rId3wasnot found in thefile.

Page 140: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 140/213

Theimagepart with relationship ID rId2wasnot found in thefile.

Page 141: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 141/213

Page 142: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 142/213

Page 143: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 143/213

Desirable Network(Fieldbus)Desirable Network(Fieldbus)

CharacteristicsCharacteristicsØO

Page 144: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 144/213

CharacteristicsCharacteristicsØOpen

ØStandardØAdvanced Functionality, Services

ØReliable, High Performance

ØInteroperableØPlug & Play

ØVendors’ Support

ØEconomicalØSimple, Easy

FieldbusesFieldbuses

Page 145: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 145/213

FieldbusesFieldbuses

Ø Field device protocol that process use

mostly:

• Foundation Fieldbus

• HART

• Profibus

What is Foundation Fieldbus?What is Foundation Fieldbus?

Page 146: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 146/213

ØFOUNDA T I ON f i e l d b u s ( F F)  i s a n  a l l - d i g i t a l  ,

s e r i a l  , t w o - w a y  c om m u n i ca t i o n s s y s t e m t h a t  s e r v e s a s a Lo c a l A r e a N e t w o r k ( L A N ) f o r  

f a c t o r y / p l a n t i n s t r u m e n t a t i o n a n d co n t r o l  

d e v i c e s  

Control &monitoring

DCS

Fieldbus

Process

F

T

P

• I ntell igent f ield devices and systems 

• Digital, two way, mul ti-drop 

• Communication system for i nstruments and other automation equipment 

• Self-Diagnostics 

• Local controllabil ity 

Benefits of Foundation FieldbusBenefits of Foundation Fieldbus

Page 147: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 147/213

• Device Interoperability

• Enhanced Process Data

Expanded View of the Process

• Improved Plant Safety

• Easier Predictive Maintenance

• Reduced Wiring and Maintenance Costs

What is HART?What is HART?

Page 148: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 148/213

Ø HART  ®  Field Communications Protocol is digitallyenhanced 4-20 mA smart instrument communication.

Digital master/slave communicationsimultaneous with the 4-20 mA analogsignal

The HART protocol has the capabilityto connect multiple field devices on the

same pair of wires

HART SpecificationHART Specification

ØDi it l C bilit

Page 149: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 149/213

• Access to all instrument parameters & diagnostics

• Supports multivariable instruments

• On-line device status

ØDigital Capability

ØAnalog Compatibility

ØInteroperability

ØAvailability

• Simultaneous analog & digital communication

• Compatible with existing 4-20 mA equipment & wiring

• Fully open de facto standard

• Common Command and data structure

• Field proven technology with more than 1,400,000 installations

• Large and growing selection of products

• Used by more smart instruments than any other in the industry

BENEFITS OF HART COMMUNICATIONBENEFITS OF HART COMMUNICATION

Page 150: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 150/213

BENEFITS OF HART COMMUNICATIONBENEFITS OF HART COMMUNICATION

Ø Improved Plant Operations

- Cost Savings in Commissioning

- Cost Savings in Installation

Ø Improve Measurement Quality

Ø Cost Saving in Maintenance

Ø Operational Flexibility

Ø Instrumentation Investment Protection

Ø Using benefits of digital instrument

What is Profibus?What is Profibus?

Page 151: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 151/213

Theimagepart with relationship ID rId3wasnot found in thefile.

• Profibus is a substitute for the analog

4 to 20 mA technology.• Profibus connects automation systems

and process control systems with field

devices

• Profibus achieves cost savings of over 

40% in planning, cabling, commissioning

and maintenance

ØPROFIBUS is a vendor-independent, open field busstandard for a wide range of applications in manufacturingand process automation

 يت  

 خم

Page 152: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 152/213

Theimagepart with relationship ID rId2wasnot found in thefile.

F:

 B:

 V:

 D:

 S:

 P:

 F:

 B:

 V:

 D:

 S:

 P:

Theimagepart with relationship ID rId2wasnot found in thefile.

Page 153: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 153/213

Page 154: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 154/213

Theimagepart with relationship ID rId2wasnot found in thefile.

Page 155: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 155/213

Theimagepart with relationship ID rId2wasnot found in thefile.

Page 156: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 156/213

Theimagepart with relationship ID rId2wasnot found in thefile.

Page 157: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 157/213

ProblemDefinition

EnterpriseResource Planning

Objectives

Page 158: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 158/213

BusinessDomain

Automation

Plant Domain

Automation

Resource Planning

Supply Chain

Management

ResultantImprovements

Objectives

Control System

Structure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Advanced Process ControlAdvanced Process Control

(APC)(APC)

Page 159: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 159/213

(APC)(APC)

• Long time delay

• Frequent and severe disturbance

• Multivariable interaction

• Physical and environmental constraints

• Dynamic market supply and demand factor effect on product(higher product quality & narrowing economic margins)

• Highly interactive and variable dynamics of the process andsystem parameters

ØProcess industry Properties:

This makes the control of anThis makes the control of an plantplant form a very challenging andform a very challenging anddaunting task for even the best tuned PID controller .daunting task for even the best tuned PID controller .

Page 160: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 160/213

Page 161: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 161/213

Page 162: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 162/213

APC ControllerAPC Controller

( l i )( l i )

Page 163: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 163/213

(general view)(general view)

ØTh b kb f ll APC t ll M lti i bl M d l B d

APC Controller DutiesAPC Controller Duties

Page 164: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 164/213

ØThe backbone of all APC controllers are Multivariable Model-BasedPredictive Controller(MMBPC).

ØDifferent formulations of MPC differ in :• robustness

• fault-tolerance

Ø R i t

APC Controller ElenentsAPC Controller Elenents

Page 165: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 165/213

• Process Model: provide reliable estimate for important processquantities which are either immeasurable or difficult to measure thatused for controller adaptation.

• Real-Time Model-Based Multivariable Optimization algorithm

• Real-Time Model-Based Multivariable Prediction algorithm

• Supervisory control for fault tolerant

• Intelligent performance monitoring of process equipment

• Process Simulator(Dynamic Simulation): understand the underlyingprocess and how it can be operate at

Ø Requirement:

APC ControllerAPC ControllerTheimagepart with relationship ID rId3wasnot found in thefile.

Page 166: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 166/213

Application area of Dynamic SimulationApplication area of Dynamic SimulationApplication area of Dynamic SimulationApplication area of Dynamic Simulation

Ø Benefits:

APC Controller BenefitsAPC Controller Benefits

Page 167: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 167/213

Ø Benefits:

• Provide robust control

• Disturbance rejection

• Better constrain handling

• fault detection and monitoring capability that reduce the

number of plant shutdown• provide valuable data for scheduling

• increase production rate and quality

• safety

• reliability• reduction raw material

• reduction energy consumption

• environmental pollution control

APC PerformanceAPC Performance

Page 168: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 168/213

Ø APC Performance: APC push process set point close to its limits or 

constrains .

APC Application AreaAPC Application Area

Ø APC benefit example:

Page 169: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 169/213

Ø APC benefit example:

• Ethylene plant: production increase by 2 to 3 percent

• polymer plant: production 2% & throughput 3%

• refinery with two atmospheric crude units: increase totalproduction value through quality control to gain 1.7 year’spayback time

•Generally accurate control means less safety margin and thistogether with the feed-pushing control gives 1 to 5 percentincrease in throughput.

APC RealAPC Real--Time ApplicationTime Application

Ø APC benefit example:(Universal Adaptive Control)

Page 170: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 170/213

Ø APC benefit example:(Universal Adaptive Control)

Management Objectives

Process Improvement (general view)

Page 171: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 171/213

ProblemDefinition

Business

EnterpriseResource Planning

Objectives

Page 172: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 172/213

BusinessDomain

Automation

Plant Domain

Automation

Supply Chain

Management

ResultantImprovements

Objectives

Control System

Structure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Case Study 1Case Study 1

Page 173: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 173/213

Background. ARCO Alaska, Inc. is responsible for exploring, developingand producing ARCO’s oil and gas interests in Alaska and surroundingoffshore waters.

I. Design criteria

v Reduced wiring and terminations

v Modular system design

v Reduced maintenance costs

v Useful diagnostic tools

Case StudyCase Study 11

Page 174: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 174/213

II. Fieldbus solution

ü Simplified wiring

ü Easier installation

ü Reduced operator time

ü Reduced engineering time

Benefits

Case StudyCase Study 11

Case Study 1Case Study 1

Page 175: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 175/213

• 69% reduction in comparable wiring costs

• 98% reduction in home run wiring

• 90% reduction in configuration time to add an expansion well

• 92% reduction in engineering drawings to add or expand a well

• 83% reduction in instrument QA / QC

III. Results: The company have a total cost savings of $621k per drill site.

This includes savings of approximately $206k in materials, $324k in labor, and$91k in engineering

Specific savings attributed to the following

yy

Page 176: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 176/213

Page 177: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 177/213

Page 178: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 178/213

Page 179: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 179/213

Page 180: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 180/213

Page 181: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 181/213

Page 182: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 182/213

Page 183: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 183/213

Page 184: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 184/213

Case StudyCase Study 22

Page 185: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 185/213

Case StudyCase Study 22

Case StudyCase Study 22

Page 186: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 186/213

Case StudyCase Study 22

Page 187: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 187/213

Case Study 2Case Study 2

Page 188: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 188/213

Case StudyCase Study 22

Page 189: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 189/213

Case StudyCase Study 22

Page 190: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 190/213

Page 191: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 191/213

Page 192: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 192/213

Page 193: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 193/213

Case StudyCase Study 33

Page 194: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 194/213

Background. DETEN Chemical S.A. Located in petrochemical zone of camacari , bahia Brazil ,produces linear alkyl benzene , basic raw materialused in detergents by 146000 tpy production capacity.

I. Challenge

v More reliability

v Flexibility

v long/short term economic benefits

Case StudyCase Study 33

Page 195: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 195/213

II. APC & Fieldbus solution

ü Process optimization

ü Report generation

ü Improve Manufacturing throughput

ü Trend Analysis

Benefits

Case StudyCase Study 33

Page 196: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 196/213

• 97% reduction in wiring costs

• Reduce installation time up to 23 day

III. Results: The company have a total Project savings approximately %32

to %45

Specific savings attributed to the following

Case StudyCase Study 44

Page 197: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 197/213

Case StudyCase Study 44

Page 198: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 198/213

Case Study 4Case Study 4

Page 199: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 199/213

ProblemDefinition

BusinessDomain

EnterpriseResource Planning

Supply Chain

Objectives

Page 200: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 200/213

Automation

Plant Domain

Automation

Supply ChainManagement

ResultantImprovements

Objectives

Control SystemStructure

Industrial NetworkDevelopment

Control Algorithm(APC)

Case StudiesFuture Trends

Conclusion

Page 201: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 201/213

Theimagepart with relationship ID rId2wasnot found in thefile.

Page 202: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 202/213

Page 203: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 203/213

Page 204: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 204/213

Page 205: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 205/213

Page 206: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 206/213

Hybrid Digital Network Hybrid Digital Network 

New 

Page 207: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 207/213

Generat ion 

Overall Business System LandscapeOverall Business System Landscape

in Process Manufacturingin Process Manufacturing

Page 208: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 208/213

Enterprise

Plant

e-business e-businessSCM

Supply Chain Management

ERPEnterprise Resource Planning

CRM

Customer 

Relationship

Management

SRM

Supplier 

Relationship

Management

DCS

Distributed Control System

Design Engineering

Plant Simulators

MESManufacturing Execution

System

 APS Advanced Planning

& Scheduling

FCSFinite Capacity

Scheduling

EE--Commerce based on ITCommerce based on IT

Page 209: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 209/213

Typical Improvement due to Automation,Typical Improvement due to Automation,

Control and Integrated OperationControl and Integrated Operation

ProjectsProjects

Page 210: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 210/213

ProjectsProjects

Typical Performance due to Automation,Typical Performance due to Automation,

Control and Integrated OperationControl and Integrated Operation

Page 211: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 211/213

ProjectsProjects

Typical Incremental Payback Intervals dueTypical Incremental Payback Intervals due

to Applying Automation and Advancedto Applying Automation and Advanced

Page 212: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 212/213

ControlControl

Eight Practices Necessary to make an IntegratedEight Practices Necessary to make an Integrated

Operation or an AutomationOperation or an Automation

Page 213: Session 1,2 2

8/22/2019 Session 1,2 2

http://slidepdf.com/reader/full/session-12-2 213/213

Project a SuccessProject a Success