339

(Series in Medical Physics and Biomedical Engineering) Francis a. Duck_ a.C Baker_ H.C Starritt-Ultrasound in Medicine-CRC Press (1998)

Embed Size (px)

DESCRIPTION

(Series in Medical Physics and Biomedical Engineering) Francis a. Duck_ a.C Baker_ H.C Starritt-Ultrasound in Medicine-CRC Press (1998)

Citation preview

  • Pagei

    UltrasoundinMedicine

  • Pageii

    UltrasoundinMedicine,TheThirdMayneordPhillipsSummerSchoolStEdmundHall,Oxford,June1997

  • Pageiii

    UltrasoundinDedicine,TheThirdMayneordPhillipsSummerSchoolStEdmundHall,Oxford,June1997

    1VictorHumphrey 8JeffBamber 15DarkoGroev 22JohnTruscott

    2ElizabethMoore 9NadinePay 16SandyMather 23FrancisDuck

    3BarryWard 10JimWilliams 17TimSpencer 24AndrzejJastrzebski

    4MatthewReilly 11AndersOlsson 18MikeHalliwell 25FrankRakebrandt

    5KatDixon 12BenKhoo 19PhilBurford 26PanagiotisTsiganos

    6JimGreenleaf 13MalcolmSperrin 20MegWarner 27GarethPrice

    7OsiyahPapayi 14ElvinNix 21TonyWhittingham 28KitHill

  • Pageiv

    OtherbooksintheMedicalScienceSeries

    ThePhysicsandRadiobiologyofFastNeutronBeamsDKBewley

    MedicalPhysicsandBiomedicalEngineeringBHBrown,RHSmallwood,DRHose,PVLawfordandDCBarber

    RehabilitationEngineeringAppliedtoMobilityandManipulationRACooper

    PhysicsforDiagnosticRadiology,2ndeditionPPDendyandBHHeaton

    LinearAcceleratorsforRadiationTherapy,2ndeditionDGreeneandPCWilliams

    HealthEffectsofExposuretoLowLevelIonizingRadiationWRHendeeandFMEdwards(eds)

    MonteCarloCalculationsinNuclearMedicineMLjungberg,SEStrandandMAKing(eds)

    IntroductoryMedicalStatistics,3rdeditionRFMould

    RadiationProtectioninHospitalsRFMould

    RPLDosimetryRadiophotoluminescenceinHealthPhysicsJAPerry

    ThePhysicsofConformalRadiotherapySWebb

    ThePhysicsofMedicalImagingSWebb(ed)

    ThePhysicsofThreeDimensionalRadiationTherapySWebb

    DesignofPulseOximetersJGWebster

  • Pagev

    MedicalScienceSerice

    UltrasoundinMedicine

    EditedbyFrancisADuck

    RoyalUnitedHospital,BathandUniversityofBath,UK

    AndrewCBakerChristianMichelsenResearchAS,Bergen,Norway

    formerlyUniversityofBath

    HazelCStarrittRoyalUnitedHospital,Bath,UK

    BasedonInvitedLecturespresentedattheThirdMayneordPhillipsSummerSchool1997

    sponsoredbyInstituteofPhysicsandEngineeringinMedicine

    BritishInstituteofRadiologyInstituteofPhysics

    BritishMedicalUltrasoundSociety

    InstituteofPhysicsPublishingBristolandPhiladelphia

  • Pagevi

    IOPPublishingLtd1998

    Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,withoutthepriorpermissionofthepublisher.MultiplecopyingispermittedinaccordancewiththetermsoflicencesissuedbytheCopyrightLicensingAgencyunderthetermsofitsagreementwiththeCommitteeofViceChancellorsandPrincipals.

    TheEditorsandIOPPublishingLtdhaveattemptedtotracethecopyrightholdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersifpermissiontopublishinthisformhasnotbeenobtained.

    BritishLibraryCataloguinginPublicationData

    AcataloguerecordforthisbookisavailablefromtheBritishLibrary.

    ISBN0750305932

    LibraryofCongressCataloginginPublicationDataareavailable

    SeriesEditors:

    RFMould,Croydon,UKCGOrton,KarmanosCancerInstituteandWayneStateUniversity,Detroit,USAJAESpaan,UniversityofAmsterdam,TheNetherlandsJGWebster,UniversityofWisconsinMadison,USA

    CoverillustrationcourtesyofAndrewBakerandMarkCahill

    PublishedbyInstituteofPhysicsPublishing,whollyownedbyTheInstituteofPhysics,London

    InstituteofPhysicsPublishing,DiracHouse,TempleBack,BristolBS16BE,UK

    USOffice:InstituteofPhysicsPublishing,ThePublicLedgerBuilding,Suite1035,150SouthIndependenceMallWest,Philadelphia,PA19106,USA

    TypesetinTEXusingtheIOPBookmakerMacrosPrintedinGreatBritainbyJWArrowsmithLtd,Bristol

  • Pagevii

    TheMedicalScienceSeriesistheofficialbookseriesoftheInternationalFederationforMedicalandBiologicalEngineering(IFMBE)andtheInternationalOrganizationforMedicalPhysics(IOMP).

    IFMBE

    TheIFMBEwasestablishedin1959toprovidemedicalandbiologicalengineeringwithaninternationalpresence.TheFederationhasalonghistoryofencouragingandpromotinginternationalcooperationandcollaborationintheuseoftechnologyforimprovingthehealthandlifequalityofman.

    TheIFMBEisanorganizationthatismostlyanaffiliationofnationalsocieties.Transnationalorganizationscanalsoobtainmembership.Atpresentthereare42nationalmembers,andonetransnationalmemberwithatotalmembershipinexcessof15000.Anobservercategoryisprovidedtogivepersonalstatustogroupsororganizationsconsideringformalaffiliation.

    Objectives

    Toreflecttheinterestsandinitiativesoftheaffiliatedorganizations.

    Togenerateanddisseminateinformationofinteresttothemedicalandbiologicalengineeringcommunityandinternationalorganizations.

    Toprovideaninternationalforumfortheexchangeofideasandconcepts.

    Toencourageandfosterresearchandapplicationofmedicalandbiologicalengineeringknowledgeandtechniquesinsupportoflifequalityandcosteffectivehealthcare.

    Tostimulateinternationalcooperationandcollaborationonmedicalandbiologicalengineeringmatters.

    Toencourageeducationalprogrammeswhichdevelopscientificandtechnicalexpertiseinmedicalandbiologicalengineering.

    Activities

    TheIFMBEhaspublishedthejournalMedicalandBiologicalEngineeringandComputingforover34years.AnewjournalCellularEngineeringwasestablishedin1996inordertostimulatethisemergingfieldinbiomedicalengineering.InIFMBENewsmembersarekeptinformedofthedevelopmentsintheFederation.ClinicalEngineeringUpdateisapublicationofourdivisionofClinicalEngineering.TheFederationalsohasadivisionforTechnologyAssessmentinHealthCare.

    Everythreeyears,theIFMBEholdsaWorldCongressonMedicalPhysicsandBiomedicalEngineering,organizedincooperationwiththeIOMPandtheIUPESM.Inaddition,annual,milestone,regionalconferencesareorganizedindifferentregionsoftheworld,suchastheAsiaPacific,Baltic,Mediterranean,AfricanandSouthAmericanregions.

    TheadministrativecounciloftheIFMBEmeetsonceortwiceayearandisthesteeringbodyfortheIFMBE.ThecouncilissubjecttotherulingsoftheGeneralAssemblywhichmeetseverythreeyears.

  • Pageviii

    ForfurtherinformationontheactivitiesoftheIFMBE,pleasecontactJosAESpaan,ProfessorofMedicalPhysics,AcademicMedicalCentre,UniversityofAmsterdam,POBox22660,Meibergdreef9,1105AZ,Amsterdam,TheNetherlands.Tel:31(0)205665200.Fax:31(0)206917233.Email:[email protected]:http://vub.vub.ac.be/~ifmbe.

    IOMP

    TheIOMPwasfoundedin1963.Themembershipincludes64nationalsocieties,twointernationalorganizationsand12000individuals.MembershipofIOMPconsistsofindividualmembersoftheAdheringNationalOrganizations.Twootherformsofmembershipareavailable,namelyAffiliatedRegionalOrganizationandCorporateMembers.TheIOMPisadministeredbyaCouncil,whichconsistsofdelegatesfromeachoftheAdheringNationalOrganizationregularmeetingsofCouncilareheldeverythreeyearsattheInternationalConferenceonMedicalPhysics(ICMP).TheOfficersoftheCouncilarethePresident,theVicePresidentandtheSecretaryGeneral.IOMPcommitteesinclude:developingcountries,educationandtrainingnominatingandpublications.

    Objectives

    Toorganizeinternationalcooperationinmedicalphysicsinallitsaspects,especiallyindevelopingcountries.

    Toencourageandadviseontheformationofnationalorganizationsofmedicalphysicsinthosecountrieswhichlacksuchorganizations.

    Activities

    OfficialpublicationsoftheIOMParePhysiologicalMeasurement,PhysicsinMedicineandBiologyandtheMedicalScienceSeries,allpublishedbyInstituteofPhysicsPublishing.TheIOMPpublishesabulletinMedicalPhysicsWorldtwiceayear.

    TwoCouncilmeetingsandoneGeneralAssemblyareheldeverythreeyearsattheICMP.ThemostrecentICMPswereheldinKyoto,Japan(1991),RiodeJaneiro,Brazil(1994)andNice,France(1997).ThenextconferenceisscheduledforChicago,USA(2000).TheseconferencesarenormallyheldincollaborationwiththeIFMBEtoformtheWorldCongressonMedicalPhysicsandBiomedicalEngineering.TheIOMPalsosponsorsoccasionalinternationalconferences,workshopsandcourses.

    Forfurtherinformationcontact:HansSvensson,PhD,DSc,Professor,RadiationPhysicsDepartment,UniversityHospital,90185Ume,Sweden.Tel:(46)907853891.Fax:(46)907851588.Email:[email protected].

  • Pageix

    CONTENTS.

    ContributingAuthors xvii

    Glossary xix

    FrancisADuckIntroduction xxv

    Acknowledgments xxx

    References xxx

    Part1ThePhysicsofMedicalUltrasound

    1

    VictorFHumphreyandFrancisADuck

    1UltrasonicFields:StructureandPrediction

    3

    1.1CircularplaneSources 4

    1.1.1PressureVariationontheAxis 6

    1.1.2PressureVariationOfftheAxis 9

    1.2PulsedFields 10

    1.3FocusedFields 13

    1.4SourceAmplitudeWeighting 15

    1.5RectangularSources 17

    1.6Conclusion 20

    References 21

    AndrewCBaker

    2NonlinearEffectsinUltrasoundPropagation

    23

    2.1NonlinearPropagationinMedicalUltrasound 24

    2.2ConsequencesofNonlinearPropagation 27

    2.2.1ExperimentalMeasurements 27

    2.2.2TheoreticalPredictions 31

    2.2.3ClinicalSystems 34

    References 36

    FrancisADuck

    3RadiationPressureandAcousticStreaming

    39

    3.1Radiationpressure 39

  • Pagex

    3.2LangevinRadiationPressure,PLan 40

    3.3RadiationStressTensor 43

    3.3.1TheExcessPressure 43

    3.4RayleighRadiationPressure,PRay 44

    3.5AcousticStreaming 46

    3.5.1MethodsofMeasuringAcousticStreaming 50

    3.6ObservationsinVivoofRadiationPressureEffects 52

    3.6.1Streaming 52

    3.6.2ObservedBiologicalEffectsApparentlyRelatedtoRadiationPressure

    52

    3.7Discussion 53

    References 54

    JeffreyCBamber

    4UltrasonicPropertiesofTissues

    57

    4.1BasicConcepts 57

    4.1.1Attenuation,Absorption,ScatteringandReflection 57

    4.1.2SpeedofSound 61

    4.1.3Nonlinearity 61

    4.1.4TransducerDiffractionField 61

    4.1.5PulseEchoImaging,SpeckleandEchoTexture 62

    4.1.6ReceiverPhaseSensitivity 64

    4.2MeasurementMethods 64

    4.2.1MeasurementoftheAbsorptionCoefficient 64

    4.2.2MeasurementoftheAttenuationCoefficient 65

    4.2.3MeasurementofSoundSpeed 68

    4.2.4MeasurementofScattering 70

    4.2.5MeasurementofNonlinearity 72

    4.3UltrasonicPropertiesofTissues 73

    4.3.1AbsorptionandAttenuation 73

    4.3.2SoundSpeed 76

    4.3.3Scattering 78

    4.3.4Nonlinearity 83

    References 83

    Part2TechnologyandMeasurementinDiagnosticImaging

    89

    ThomasLSzabo

    5TransducerArraysforMedicalUltrasoundImaging

    91

    5.1PiezoelectricTransducerElements 91

    5.1.1ABasicTransducerModel 91

  • Pagexi

    5.1.2TransducerElementsasAcousticResonators 93

    5.1.3TransducerArrayStructures 95

    5.1.4TransducerModels 96

    5.1.5TransducerDesign 99

    5.2Imaging 102

    5.3BeamForming 103

    5.4OtherImagingModes 108

    5.5Conclusion 109

    References 109

    PeterNTWells

    6CurrentDopplerTechnologyandTechniques

    113

    6.1TheDopplerEffect 113

    6.2TheOriginoftheDopplerSignal 114

    6.3TheNarrowFrequencyBandTechnique 116

    6.3.1TheContinuousWaveDopplerTechnique 116

    6.3.2ThePulsedDopplerTechnique 118

    6.4FrequencySpectrumAnalysis 120

    6.5DuplexScanning 120

    6.6ColourFlowImaging 121

    6.6.1BasicPrinciples 121

    6.6.2AutocorrelationDetection 123

    6.6.3OtherDopplerFrequencyEstimators 123

    6.6.4TimeDomainProcessing 124

    6.6.5ColourCodingSchemes 125

    6.6.6ThreeDimensionalDisplay 126

    6.7ContrastAgentsandSecondHarmonicImaging 126

    References 127

    TAWhittingham

    7ThePurposeandTechniquesofAcousticOutputMeasurement

    129

    7.1WhyMeasureAcousticOutputs? 129

    7.2UltrasoundDamageMechanismsandtheirBiologicalSignificance 129

    7.2.1Heating 130

    7.2.2Cavitation 131

    7.3TrendsinAcousticOutputs 133

    7.4RegulationsandStandards 134

    7.4.1FDA510(k)Regulations 135

    7.4.2AIUM/NEMAOutputDisplayStandard 135

    7.4.3IEC61157 136

    7.5IsThereaNeedforIndependentMeasurements? 137

    7.6WhichOutputParametersshouldbeMeasured? 137

  • Pagexii

    7.7TheNewcastlePortableSystemforAcousticOutputMeasurementsatHospitalSites

    138

    7.7.1TheHydrophoneandPreAmplifier 138

    7.7.2VariableAttenuator,PowerAmplifierandPowerMeter 140

    7.7.3Oscilloscope 141

    7.7.4OscilloscopeCamera,PCandDigitisationTablet 141

    7.7.5TheMeasurementTank 141

    7.7.6TheHydrophonePositioningSystem 142

    7.7.7TheProbeMountingSystem 142

    7.7.8CalibrationandAccuracy 142

    7.8TheNPLUltrasoundBeamCalibrator 142

    7.9MeasurementofAcousticPower 143

    7.10FindingWorstCaseValues 145

    7.10.1WorstCaseIsptaofStationaryBeams,e.g.PulsedDopplerMode

    145

    7.10.2WorstCaseIsptaforScannedBeamModes,e.g.BMode 146

    7.11Conclusions 146

    References 147

    Part3UltrasoundHyperthermiaandSurgery

    149

    JeffreyWHand

    8UltrasoundHyperthermiaandthePredictionofHeating

    151

    8.1UltrasoundHyperthermia 151

    8.1.1Introduction 151

    8.1.2UltrasoundIntensity,AttenuationandAbsorption 152

    8.1.3TransducersforHyperthermia 154

    8.1.4HighIntensityShortDurationHyperthermia 163

    8.2PredictionofHeating 165

    8.2.1ThermalConduction 165

    8.2.2Pennes'BioheatTransferEquation 166

    8.2.3OtherApproachestoThermalModelling 168

    8.3Summary 171

    Acknowledgments 172

    References 172

    GailRterHaar

    9FocusedUltrasoundSurgery

    177

    9.1MechanismsofLesionProduction 178

    9.1.1ThermalEffects 178

    9.1.2Cavitation 179

  • Pagexiii

    9.2LesionShapeandPosition 179

    9.3SourcesofUltrasound 179

    9.4ImagingofFocusedUltrasoundSurgeryTreatments 182

    9.4.1UltrasoundTechniques 182

    9.4.2MagneticResonanceImaging 182

    9.5ClinicalApplications 182

    9.5.1Neurology 182

    9.5.2Ophthalmology 183

    9.5.3Urology 183

    9.5.4Oncology 184

    9.5.5OtherApplications 184

    9.6Conclusion 184

    References 184

    MichaelHalliwell

    10AcousticWaveLithotripsy

    189

    10.1PercutaneousContinuousWaveSystems 189

    10.2ExtracorporeallyInducedLithotripsy 190

    10.2.1TypesofPressureWaveTransducer 190

    10.2.2PositioningSystems 191

    10.2.3FieldMeasurement 192

    References 196

    Part4UltrasoundandBubbles

    197

    TimothyGLeighton

    11AnIntroductiontoAcousticCavitation

    199

    11.1TheAcousticPropertiesoftheBubble 199

    11.1.1StiffnessandInertia 199

    11.1.2Resonance 200

    11.1.3InertialCavitation 201

    11.2TypesofCavitation 206

    11.3TheImplicationsoftheOccurrenceofOneTypeofCavitationfortheOccurrenceofAnother

    210

    11.3.1AlterationoftheBubbleSizebyRectifiedDiffusion 210

    11.3.2AlterationoftheAcousticPressureFieldattheBubblebyRadiationForces

    212

    11.3.3Nucleation 214

    11.3.4PopulationEffects 214

    11.4TheImplicationsoftheOccurrenceofOnetypeofCavitationforCausingChangetotheMedium

    217

    11.5Conclusion 219

    References 219

  • Pagexiv

    DavidOCosgrove

    12EchoEnhancing(UltrasoundContrast)Agents

    225

    12.1NonBubbleApproaches 225

    12.2MicrobubbleAgents 226

    12.2.1History 226

    12.2.2SafetyofContrastAgents 229

    12.2.3BasicPrinciples 230

    12.2.4ClinicalApplications 230

    12.2.5QuantificationandFunctionalStudies 233

    12.2.6NewUses:AgentsandTechniques 234

    12.3Conclusion 236

    References 236

    GarethJPrice

    13SonochemistryandDrugDelivery

    241

    13.1CavitationanditsEffects 243

    13.2WhatCanUltrasounddoforChemists? 245

    13.3BioEffectsandDrugDelivery 252

    References 256

    Part5ResearchTopicsinMedicalUltrasound

    261

    JamesFGreenleaf,RichardLEhman,MostafaFatemiandRajaMuthupillai

    14ImagingElasticPropertiesofTissue

    263

    14.1Introduction 263

    14.1.1ExogenousTransverseWaves:ImagingwithMRE 263

    14.1.2StimulatedAcousticEmission:ImagingwithUSAE 264

    14.2MagneticResonanceElastography(MRE) 264

    14.2.1Theory 264

    14.2.2Methods 265

    14.2.3MREResults 266

    14.3UltrasoundStimulatedAcousticEmission(USAE) 270

    14.3.1TheoryofUSAE 270

    14.3.2USAEResults 272

    14.4Conclusions 275

    14.4.1MRE 275

    14.4.2USAE 276

    Acknowledgments 276

    References 276

    ChristopherRHill

    15TheSignaltoNoiseRelationshipforInvestigativeUltrasound

    279

    References 286

  • Pagexv

    JohnGTruscottandRolandStrelitzki

    16ChallengesintheUltrasonicMeasurementofBone

    287

    16.1Bone 288

    16.2UltrasonicMeasurementsSuitableforBone 289

    16.2.1SpeedofSound(SOS) 291

    16.2.2Attenuation 292

    16.2.3Problems 295

    16.3EffectofStructureonBroadbandUltrasonicAttenuation 295

    16.4ProblemsintheMeasurementofSpeedofSound 297

    16.4.1TimeDomain(ZeroCrossingPointMeasurement) 297

    16.4.2FrequencyDomainMeasurements 300

    16.5Discussion 303

    Acknowledgment 305

    References 305

    Index 307

  • Pagexvii

    CONTRIBUTINGAUTHORS

    DrAndrewCBakerChristianMichelsenResearchASFantoftvegen38,Postboks60315020BergenNorway(FormerlyDepartmentofPhysics,UniversityofBath,UK)[email protected]

    DrJeffreyCBamberJointDepartmentofPhysicsTheRoyalMarsdenNHSTrustDownsRoadSuttonSurreySM25PTUKjeff@icr.ac.uk

    ProfessorDavidOCosgroveDepartmentofRadiologyHammersmithHospitalDuCaneRoadLondonW120NNUKdcosgrov@rpms.ac.uk

    DrFrancisADuckMedicalPhysicsDepartmentRoyalUnitedHospitalCombeParkBathBA13NGUKf.duck@bath.ac.uk

    ProfessorJamesFGreenleafBiodynamicsResearchUnitDepartmentofPhysiologyandBiophysicsMayoFoundationRochesterMN55905USAjfg@mayo.edu

    DrMichaelHalliwellMedicalPhysicsandBioengineeringBristolGeneralHospitalGuineaStreetBristolBS16SYUKmike.halliwell@bris.ac.uk

    DrJeffreyWHandRadiologicalSciencesUnitDepartmentofImagingHammersmithHospitalDuCaneRoadLondonW120NNUKjhand@rpms.ac.uk

    ProfessorChristopherRHillStoneyBridgeHouseCastleHillAxminsterDevonEX135RLUK(FormerlyPhysicsDepartment,RoyalMarsdenHospital,UK)

  • Pagexviii

    DrVictorFHumphreyDepartmentofPhysicsUniversityofBathClavertonDownBathBA27AYUKv.f.humphrey@bath.ac.uk

    DrTimothyGLeightonFluidDynamicsandAcousticsGroupInstituteofSoundandVibrationResearchUniversityofSouthamptonHighfieldSouthamptonSO171BJUKtgl@isvr.soton.ac.uk

    DrGarethJPriceDepartmentofChemistryUniversityofBathClavertonDownBathBA27AYUKg.j.price@bath.ac.uk

    DrHazelCStarrittMedicalPhysicsDepartmentRoyalUnitedHospitalCombeParkBathBA13NGUKh.c.a.starritt@bath.ac.uk

    DrThomasLSzaboHewlettPackardImagingSystemsDivision3000MinutemanRoadAndover,[email protected]

    DrGailterHaarJointDepartmentofPhysicsTheRoyalMarsdenNHSTrustDownsRoadSuttonSurreySM25PTUKgail@icr.ac.uk

    DrJohnGTruscottCentreforBoneandBodyCompositionResearchInstituteofPhysicalScienceDepartmentofClinicalMedicineWellcomeWingLeedsLS13EXUKj.g.truscott@leeds.ac.uk

    ProfessorPeterNTWellsMedicalPhysicsandBioengineeringBristolGeneralHospitalGuineaStreetBristolBS16SYUKpeter.wells@bris.ac.uk

    DrTonyWhittinghamRegionalMedicalPhysicsDepartmentNewcastleGeneralHospitalWestgateRoadNewcastleUponTyneNE46BEUK

  • Pagexix

    GLOSSARY

    Thefollowingsummaryincludessubstantiallyallthedefinedsymbolsandacronymswhichhavebeenusedthroughoutthebook.Whereverpossiblethesamesymbolhasbeenuseduniquelyforaparticularquantity.Onthefewoccasionswhenthishasprovedtobeimpossible,localuseisidentifiedinthetext.Converselywhen,rarely,ithasbeennecessarytousethesamesymbolindifferentchaptersfordifferentquantities,thisisnotedinthelist.Onoccasionssubscriptshavebeenusedinthetexttodefinethematerial(wforwater,tfortissueandsoon).Thislevelofdetailisexcludedfromthelistofsymbols.Thelistalsoincludesseveralsymbolswhichhavebeenusedarbitrarilyasconstantswithinparticularequations.

    A

    a,b constantsinequationforbubblebehaviour

    A backscatteredsignalamplituderadiatingarea

    A(f) amplitudespectrum

    ACF autocorrelationfunction

    AL

    acousticlossfactor

    B

    B/A nonlinearityparameter

    B constantrelatingtemperaturerisetotime

    BUA broadbandultrasonicattenuation

    C

    c acousticwavevelocity

    ccc meanpulsevelocity

    cD elasticstiffnessconstant(clamped)

    cg acousticgroupvelocity

    cp acousticphasevelocity

    C0 capacitance(clamped)

    D

    d beamdiameter

    piezoelectricelementthickness

    d3 3dBfocalzonewidth

    D radiationforce(drag)coefficient

    effectivebeamdiameter

    dielectricdisplacement

    DIFF(z) diffractioncorrectionfactor

    E

    E0 energydensity

    E timeaveragedenergydensity

  • Pagexx

    Ep pulseenergy

    EL electriclossfactor

    F

    f acousticfrequency

    fD

    Dopplershiftedfrequency

    fopt optimalfrequencyforhyperthemia

    fr resonantfrequency(bubble)

    F radiationforce

    FEM finiteelementmodelling

    FUS focusedultrasoundsurgery

    G

    g gravitationalacceleration

    g(x,y) amplitudebeamprofile

    G geometricfactorforacousticstreaming

    amplitudefocusinggain

    G(t) magneticfieldgradient

    H

    h heightofliquidcolumn

    depthofsphericaltransducersurface

    apiezoconstant

    h(x,y,z) pointspreadfunction

    H forwardpropagationoperator

    H*t backwardpropagationoperator

    I

    i

    I electricalcurrent

    acousticintensity

    I(z) axialintensitydistribution

    I,Ita timeaveragedintensity

    Ipa plusaveragedintensity

    Isp spatialpeakintensity

    Isppa spatialpeakpulseaveragedintensity

    Ispta spatialpeaktimeaveragedintensity

    I.3

    'derated'intensity

    I0 sourceintensity

    IR

    intensityatthecentreofcurvatureofasphericalsource

    K

    k wavenumber

    thermalconductivity

    keff effectivethermalconductivity

    kT electromechanicalcouplingcoefficient

    K constantrelatingtothermalequilibrium

    K timeaveragedkineticenergydensity

    L

    ld discontinuitylength

    lv lengthofvessel

    l3 3dBfocalzonelength

    L perfusionlength

    M

    m mass

    MI mechanicalindex

  • Pagexxi

    MR magneticresonance

    MRE magneticresonanceelastography

    O

    ODS OutputDisplayStandard

    P

    p acousticpressure

    p complexpressure

    p0 acousticpressureamplitudeatsourceorforplanewave

    pc acousticpressureatpeakcompression

    pr acousticpressureatpeakrarefaction

    pf acousticpressureatthefocus

    pn acousticpressureamplitudeatharmonicn

    popt leastpeakrarefactionpressurecausinginertialcavitation

    p() probabilitydensity

    prf pulserepetitionfrequency

    P excesspressure

    PE excesspressure(Euleriancoordinates)

    PL excesspressure(Lagrangiancoordinates)

    Pi generalisedpropertyvalueoftissuei

    PLan Langevinradiationpressure

    PRay Rayleighradiationpressure

    PII pulseintensityintegral

    PPSI pulsepressuresquaredintegral

    PSF pointspreadfunction

    PVDF polyvinylidenefluoride

    PZT leadzirconatetitanate

    Q

    Q heatflux

    Qfactoratresonance

    QBF heattermtoaccountforbloodflow

    Qe electricalQ

    R

    r vesselradius

    ra radiusofacircularsource

    rz radialdistanceatdepthz

    r(t) postionvectorofthemovingspin

    R reflectioncoefficient

    radiusofcurvature

    RA radiationresistance

    Ropt criticalbubbleradiusforinertialcavitation

    R0 bubbleradius

    RF radiofrequency

    S

    s specificheatcapacity

    s( t) crosscorrelationfunction

    S area

    specklecellsize

    S,Sij

    radiationstress(tensor)

    Si

    generalisedsignalvalueassociatedwithtissuei

  • Pagexxii

    SAR specificabsorptionrate

    SNR signaltonoiseratio

    T

    t time

    tp pulseperiod

    T temperature

    strain

    T(x,y,z) tissuebackscatterimpulseresponse

    TI thermalindex

    TIB boneatfocusthermalindex

    TIC cranialthermalindex

    TIS softtissuethermalindex

    TOA timeofarrival

    TOF timeofflight

    U

    u particlevelocity

    u0 particlevelocityamplitude(sinewave)

    u complexparticlevelocity

    USAE ultrasoundstimulatedacousticemission

    V

    streamingvelocity

    wavevelocityofpiezoelectricmaterial

    vectorvelocityofsourceorobserver

    V volume

    voltage

    V timeaveragedpotentialenergydensity

    W

    w perfusionvolumeflowrate

    W,WA acousticpower

    WE electricalpower

    W.3 'derated'acousticpower

    W1 acousticpowerfroma1cmlengthofarray

    Wv absorbedpowerperunitvolume

    X

    x,y dimensionsorthogonaltothebeamaxis

    X reactance

    XA radiationreactance

    Xeq vesselthermalequilibriumlength

    X6 6dBbeamwidth

    z dimensionparallelwithacousticaxis

    Z

    zf focaldistance

    Z,ZA acousticimpedance

    Z(f) Fouriertransform

    Z(f)* complexconjugateFouriertransform

    ZT electricalimpedance

    amplitudeattenuationcoefficient

    a amplitudeabsorptioncoefficient

    a0 amplitudeabsorptioncoefficientat1MHz

    s amplitudescatteringcoefficient

  • Pagexxiii

    nonlinearityparameter

    ijKroneckerdelta

    acousticMachnumberS dielectricconstant(clamped)

    gyromagneticratio

    Gol'dbergnumber

    k,k0 adiabaticbulkcompressibility

    wavelength

    constantassociatedwiththermal

    contactbetweenvesselandtissue

    intensityattenuationcoefficient

    a intensityabsorptioncoefficient

    s intensityscatteringcoefficient

    bs backscatteringcoefficient

    ds differentialscatteringcoefficient

    v kinematicviscosity

    angleofrefraction

    phaseoffset

    (f) phasespectrum

    ( ) transversemagnetisationphase

    shearviscosity

    , 0 equilibriumdensity

    standardvariation

    shockparameter

    m nonlinearpropagationparameter

    ( , ) differentialscatteringcrosssection

    timeshift

    0 peakdisplacementofspin

    beamprofilephasefunction

    tissueorientationangle

    angularfrequency

    solidangle

  • Pagexxv

    INTRODUCTION

    FrancisADuck

    Theweatheroftheweekof7June1997wasalmostperfectinOxford.ThevenuefortheThirdMayneordPhillipsSummerSchool'UltrasoundinMedicine'hadbeenchosentobeStEdmundHall,Oxfordonlyonprecedent:thetwoearlierMedicalPhysicsSummerSchoolshadbeensuccessfullyheldthere.Intheevent,theweekturnedouttobeaveryspecialoccasionforthefortyorsolecturersandstudentswhoattendeduniqueandmemorable(frontispiece).ApartfromthelossofBarry'sglassesduringthepuntingexpedition,thememoriesoftheweekremainverypositive,aweekoflearningandcompanionship,andnewandrenewedfriendships.

    ThisbookisoneoutcomeofthatSummerSchool.AllthelecturerswhocontributedtotheSchoolhavepreparedchapters,eachbasedaroundthetopicoftheirownlecture.InanumberofcasesthechapterhasbeenlimitedtothematerialcontainedwithinthelectureinOxford,whileotherauthorshaveextendedtheirmaterialtoincludedetailsmoreeasilypresentedinaprintedform.Moredetailsofthebook'scontentandstructurearedescribedbelow.Initially,however,ashortbackgroundtotheMayneordPhillipsMemorialTrustwillbegiven,sincewithoutitsestablishment,thisSummerSchool,andthisbook,wouldnothavebeencreated.

    TheMayneordPhillipsMemorialTrustwasestablishedin1994,thefirstTrusteesrepresentingthethreefoundingbodies:theBritishInstituteofRadiology,theInstituteofPhysicsandtheInstituteofPhysicalSciencesinMedicine(nowtheInstituteofPhysicsandEngineeringinMedicine).OneoftheoriginalTrustees,ProfessorKitHill,isawelcomecontributortothisbook.TheTrustdeedidentifiedoneobjectiveas'thefurthering,forthebenefitofthepublic,theknowledgeandunderstandingofallaspectsandallapplicationsofmedicalphysicsandkindredsciences...bytheorganisationofeducationalmeetingstobecalledtheMayneordPhillipsSummerSchools'.InadditiontheTrusteesshould'arrangeforthepublicationeitherinfullorinpartofanysuchSchools'.TheTrusteesdecidedthattheThirdSchoolshouldtakethetopic'UltrasoundinMedicine'andtousetheSchoolandsubsequentpublicationtoexploreabroadranging

  • Pagexxvi

    studyofmedicalultrasound,includingultrasoundpropagation,interactionwithtissue,andanexplorationofanumberofcontemporaryinnovationsintheapplicationofultrasoundinmedicine.Giventhisbackground,itisclearthatthecontentofbothSchoolandpublicationwasandisrathernarrowerthanthetitlemightimply.Thefocusisspecificallyonthescienceandtechnology,thephysicsandtheengineering,ratherthanontheclinicalapplications.Thisisnottosaythatclinicalapplicationsareabsent,sinceitisthenatureofapplyingphysicstomedicinethatthelinkbetweenscientificandengineeringdevelopmentandclinicalapplicationmustbefirmlymade.Neverthelesstheemphasisalwaysremainsthus:todrawfromthebasicsciencesthoseaspectswhichrelatemostcloselytothechallengeofapplyingthissciencetoaparticularclinicalneed:andtoreviewagainsttheclinicalneednowsuccessfultechnologicalinnovationhasbeeninusingnaturalsciencetoimprovemedicaldiagnosisandtreatment.

    WVMayneordandCESPhillipsweretwooutstandingpioneersoftheapplicationsofphysicstomedicine.Intheirnatureaspioneerstheybothhadastrongconcerntohelpandencourageyoungercolleaguestodeveloptheirowninterestsandexpertise.Thefollowingparagraphsbrieflysummarisetheirlivesandcontributionstomedicalphysics.Furtherdetailsmaybefoundelsewhere[1,2].

    MajorPhillipshasbeendescribedasthefirstBritishmedicalphysicist.Bornin1871,hisearlyexperimentswithdischargetubesledtohisdescriptionofthe'Phillips'phenomenon',therotationofaluminousringinanelectricaldischargetubewithinastaticmagneticfield.In1897,hepublishedacompletebibliographyofXrayliterature,probablythelastoccasionwhenthiswasapossibility.HisworkonradiationstandardsduringthefirstdecadeofthetwentiethcenturyledhimtobecommissionedtopreparethreeradiumstandardsfortheRoentgenSociety.HebecamethephysicisttotheXRayCommitteeoftheWarOfficeduringthe191418war.HeworkedwiththeradiologistRobertKnoxashonoraryphysicistattheCancerHospital(nowtheRoyalMarsdenHospital)uptohisretirementin1927,duringwhichtimehehelpedtodevelopthescientificbasisofradiotherapy,handlingradioactivematerials,andradiationprotection.

    ValMayneordwas22yearsoldwhenhegainedhisfirstjobasamedicalphysicistatStBartholomew'sHospitalin1924.VerysoonaftermovingtotheCancerHospitalonPhillips'retirement,Mayneordstartedmakingmajorcontributionstoradiationdosimetry.UnlikePhillips,whopublishedlittle,Mayneordwasaprolificwriter.Hisfirstbook[3],publishedbeforehis30thbirthday,remainsoneoftheclearestearlydiscussionsofthescientificrealitiesofmedicalradiationtherapyandprotection.Hisyear'ssecondmenttoCanadabytheUKgovernmentafterthewaronlyfiredhisenthusiasmonhisreturnfortheapplicationofphysicstoawiderangeofmedicalproblems.Perhapsevenmoreimportantthanhisownpersonalscientificachievementswashisbuildingupofadepartmentofphysicsappliedtomedicineatthe

  • Pagexxvii

    RoyalMarsdenHospital,whichearneditselfaninternationalreputationforworknotonlyinradiotherapy,butalsoinnuclearmedicine,diagnosticultrasoundandseveralotherareasofmedicalphysics.Heachievedthisbyunderstandingthatgoodmedicinemustbebasedongoodscience,andthatgoodphysicalscientistsneedastrongandstimulatingenvironmentinwhichtothrive.Thisisastruenowasitwasthen.

    Ultrasoundhasbeenalatestarterinitsapplicationtomedicine.EvenduringtheperiodofvigorousgrowthinapplyingphysicstomedicalproblemswhichValMayneordandhiscontemporariesexperiencedfollowingthewar,ultrasoundstillhadasomewhatsecondaryplacetotheinnovationsinnuclearmedicine,diagnosticradiologyandradiotherapy.Interestingly,acoustics,thestudyofthescienceofsoundwaves,andtheknowledgeofpiezoelectricitybothsubstantiallypredatethediscoveryofXraysandofradioactivityduringthelastdecadeofthenineteenthcentury.PerhapsitwastheastonishingbreadthofLordRayleigh'sbook'TheTheoryofSound'[4],firstpublishedin1877,whichdiscouragedothersfromattemptinganydeeperstudy.Maybethedramaticoverturnofclassicaltheoriesofphysicsattheturnofthecenturycausedacousticstobecomeapoorrelationinphysics.Ormaybeitrequiredanappropriatepracticalobjectivetodrawtogetheracousticscienceandtransducertechnologytowardstheexploitationwhichcharacterisesmedicalultrasoundattheendofthetwentiethcentury.

    TheCuriesrediscoveredpiezoelectricphenomenaincrystalsfollowingBecquerel'sworkearlierinthenineteenthcentury[5],whichwasitselfbasedonworkbyHauyinthelate1700s.TheCuries'workseemstohavegeneratedinterestmostlyamongscientistsratherthanpracticalpeople(bothRoentgenandKelvinshowedactiveinterestinthephenomenon).Nevertheless,theonlypracticaloutcomeoftheirobservationsofthereversepiezoelectriceffectofquartz[6]seemstobethe'Quartzpizolectrique'[7]whichwasusedsoeffectivelybyMarieandPierreCurieintheircarefulexperimentalstudiesoftheradioactivityofradium.ItwaslefttoLangevin,whohadpreviouslybeenastudentoftheCuries,toexploitthestrongpiezoelectricpropertiesofquartzasaresonantelectroacoustictransducerforunderwaterecholocationfordepthsoundingandsubmarinedetection[8].Whileacousticdepthsoundinghadbeensuggestedintheearlypartofthenineteenthcentury,itwasLangevin'sworkduringtheFirstWorldWarwhichestablishedtwokeyelementsforitssuccess.Firstly,herecognisedthecompromiserequiredintheselectionoftheoptimumfrequency,balancingresolutionagainstpenetration.Thisledhimtoidentifythepotentialadvantageofusingfrequenciesabovetheaudiblelimit(about20kHz)forunderwaterecholocation.ShortlyaftertheTitanicdisaster,LewisFryRichardsonhadtakenoutapatentfortheuseof100kHzsoundforthesamepurpose[9],butthedeviceseemsnevertohavebeenimplemented.Richardsonisbetterknownforhisbookonthemathematicalprediction

  • Pagexxviii

    ofweather.Langevinrealisedhoweverthattomakesuchadevicework,greatersensitivitywasrequired.Hissecondinnovationwastoexploittheelectronicmethodsalreadyavailableforradiocommunicationtodevelopresonantmodesoftransmissionandreception,sosubstantiallyenhancingtheoutputpower,andthedetectionsensitivityofhisquartztransducers.(Asafootnote,Langevinalsodescribesclearlythemeasurementofacousticpowerusingaradiationforcemethod.)Itliesoutsidethescopeofthisintroductiontotracefurtherthedevelopmentfromthisearlyuseofultrasonicechodetectiontotheextremesophisticationofmodernmedicaldiagnosticsystems.Muchoftheearlymedicalwork,duringthe1940sand1950s,hasbeenwelldescribedelsewhere[10,11].

    Intheremainingparagraphsabriefoverviewwillbegivenofthechapterscontainedinthebook,andofthewayinwhichtheyrelatetooneanother.

    Ultrasoundisrapidlybecomingtheimagingmethodofchoiceformuchofdiagnosticmedicine,andinsomespecialistareasithasallbutreplacedotherdiagnosticmethods.Ithasbeenestimatedthataquarterofallmedicalimagingstudiesworldwideisnowanultrasoundstudy[12].ThisissupportedbyUKDepartmentofHealthdatawhichsuggestthatinNHSTrustsinEnglandalone,over4millionultrasoundimagingstudieswerecarriedoutinoneyear,ofwhichabout1.7millionwereobstetricscans(1996/97figures).Eventhishugenumberexcludesthestudiescarriedoutinprimarycare(GPpractices)andintheprivatesector.Itrepresentsthreescansforeachlivebirth.Thisastonishinggrowthhasbeenencouragedinpartbecauseultrasoundisperceived,itmustbesaidwithgoodreason,tobeadiagnosticmethodwithnoriskoverhead.Theassertionthatmedicalultrasoundissafehasbecomeatruism,andmanyofthedevelopmentsindiagnosticultrasound,especiallythoseusingDopplermethodsanddescribedbyPeterWellsinChapter6,weremadepossiblebecauseofthisview.Thiswastrueinspiteoftheconsiderableincreasesinintensityandacousticpowerrequiredforsomeapplications,andthesearereviewedbyTonyWhittingham(Chapter7).UndoubtedlymanyoftheadvanceshavecomeaboutbecauseofthedevelopmentoftechniquesinarraytechnologywhicharedescribedbyTomSzaboinChapter5.ThesehaveallowedparalleloperationinDopplerandpulseechomodessoastofullyexploittheabilityofultrasoundtoimagebothstructure(throughpulseechoscanning)andbloodperfusion(throughDoppler).Miniaturisationofarraysnowgivesaccesstodeepstructuresbyarrayinsertionintotherectum,oesophagusandvagina,andeventhroughthevasculartreeasfarasthecardiacarteries.Thedevelopmentofveryhighfrequencyminiatureprobesisanexcitingdevelopmentareawhich,sadly,isoneactivitynotcoveredhere.Vascularultrasoundisbecomingfurtherenhancedbydevelopmentsinechoenhancingcontrastmaterials.DavidCosgroveintroducesthisrapidlygrowingclinicalareainChapter12.

    Bycomparison,therapeuticandsurgicalusesofultrasound,someofwhichpredatedthediagnosticmethods[13],havedevelopedinparallelbuthave

  • Pagexxix

    failedthusfartoexerttheimpactonmedicinethatwaspromisedfromtheearlywork.Perhapsthishasbeeninpartbecauseinsufficientemphasishasbeenplacedontheproperscientificdevelopmentofthesemethods,includingafullrecognitionofthecareneededinacousticdesign,andinestablishingamorecompleteunderstandingoftheinteractionbetweenultrasonicwavesandtissue.Fromrecentsuccessesinhyperthermiaandfocusedsurgery,discussedfullybyJeffHandinChapter8,andGailterHaarinChapter9,andalsotheuseofavarietyofultrasonicapproachestolithotripsydescribedbyMichaelHalliwellinChapter10,itmaybeconfidentlypredictedthatultrasoundwillindeedfindavaluableplaceinthesurgicalandtherapeuticarmouryofthefuture,perhapscomparablewiththatachievedalreadybydiagnosticultrasound.

    However,strongandsuccessfulapplicationsonlydevelopfromastrongunderstandingofthebasicscience.Itissurprisinghowofteninsufficientattentionisplacedinstandardmedicalultrasoundtextsonthedifficultiesindescribingfullythepropagationofdiagnosticultrasoundpulsesthroughtissue.Eventhedescriptionofpulsepropagationinafocusednearfieldunderlinearconditionsinalosslessfluidposessomedifficulties,andthesearedescribedcarefullyinChapter1byVictorHumphrey.Therealityoffiniteamplitudeeffectsandnonlinearacousticpropagationisnowknowntobenotanesotericsideissuebutcentraltoallmeaningfuldiscussionsofmedicalultrasound.AndyBakerintroducessomeaspectsofthisdifficulttopicinChapter2,whileFrancisDuck'ssubsequentchapterdescribestwopracticalnonlinearphenomena,acousticpressureandacousticstreaming.Chapter4byJeffBambergivesacompleteoverviewofasubjectwhichiscentraltoalldiscussionsofultrasoundinmedicine,theacousticpropertiesoftissue.Attenuation,absorption,scattering,soundspeed,nonlinearparameter,andtheirfrequencydependenciesarealldescribed.

    Anunderstandingofbiophysicalprocessesisimportantintheinterpretationoftissue/ultrasoundinteractions,bothforanunderstandingofultrasounddosimetryintherapyandsurgery,andinsafetydiscussions.Thermalprocesseshavealreadybeennoted(Chapter8)ashasstreaming(Chapter3).Thethirdprocessisacousticcavitation,whichisdescribedbyTimLeightoninChapter11.Oftenacousticcavitationseemstobeatopicontheboundariesofinterestinmedicalapplications,buttheuseofcontrastmaterials(Chapter12)hasbroughtanewinterestinthetopic,inadditiontoitsimportanceinultrasoundsurgeryandinsafety.Cavitationishowevercentraltotheuseofultrasoundinchemicalprocessing,andGarethPricedescribeshowthisscientificcousinmayinstructandilluminateapplicationsinmedicine,forexampleindrugdelivery(Chapter13).

    ThepurposeoftheSummerSchoolwasnotonlytoreviewtopicswhicharepartofpresentclinicalpractice,butalsotoallowanexplorationofsomeresearchtopicswherenewdevelopmentsareactive.Itisrarelypossibletoseparatefullystateoftheartapplicationsfromnewdevelopments,but

  • Pagexxx

    thelastthreechaptersinthebookeachrepresentinonewayoranothernewstepsforward.Linkingtheexcitingcapabilitiesforimagingpresentedbymagneticresonanceimaging,JimGreenleafandhiscolleaguesdescribemethodsofgreatoriginalityforstudyingthemechanicalpropertiesoftissue,whichhavefascinatingpotentialindiagnosticmedicine.KitHillreturnstoafundamentalissueindiagnosticultrasoundimaging,signaltonoiseratio.JohnTruscottreviewscriticallysomeofthemethodscurrentlybeingusedtoinvestigateboneusingultrasound,andsuggestsalternativemethodswhichmayhavethepotentialofimprovedprecision.

    Allthechaptersinthisbookhavebeenpreparedwithaviewtobridgingthegapbetweenthetutorialtextswidelyavailableforsonographerandmedicaltraining,andbooksofacousticswhichcontainfewlinksbetweentheoreticalacousticsandtheapplicationsofultrasoundtomedicine.Somematerialwhichisverywelladdressedinstandardmedicalultrasoundtextshasbeendeliberatelyomittedforexamplethedescriptionofbasicpulseechoandimagingmethods,qualityassurancetestsusingphantoms,artefactgenerationandavoidanceandsoon.Readersaredirectedtowardsoneofmanytextswhichnowincludethismaterial.Thepresentbookisofferedasauniquecollectionofchapterscontainingwellreferencedmaterialofdirectrelevancetoanystudentwishingtoexploremedicalultrasoundatdepth.Wherespacelimitedthescopeofanychapter,amplereferencingwillallowtheseriousstudenttodiscoveramuchwiderbaseofknowledge.Itishopedthatthesepages,whichhavebeenpreparedwiththespiritofMayneordandPhillipsinmind,willservetoilluminateandinstructanywhowishtolearnatgreaterdepthofthescienceandtechnologyintheapplicationofultrasoundtomedicine.

    Acknowledgments

    Iwouldliketoaddmyheartfeltthankstoallthelecturersandauthorswhowerecajoledintotakingpartinthisenterprise,moreorlesswillingly.IalsoacknowledgetheenormoussupportgivenbyAndyBakerandHazelStarritt,coorganisersoftheSummerSchool,andcoeditorsofthisbook,whosewarmandsteadysupportwasessentialinthesuccessofbothprojects.AndfinallywewouldliketodedicatethebooktoallthosewhoattendedtheSummerSchoolwho,notknowingwhattheywerelettingthemselvesinfor,enjoyeditanyway.

    References

    [1]HillCRandWebbS1993TheMayneordPhillipsSummerSchools:BackgroundtotheSchoolsandShortProfilesoftheTwoPioneeringPhysicists(SuttonandLondon:InstituteofCancerResearchandRoyalMarsdenHospital)

  • Pagexxxi

    [2]SpiersFW1991WilliamValentineMayneordBiographicalMemoirsoftheRoyalSociety3734164

    [3]MayneordWV1929ThePhysicsofXRayTherapy(London:Churchill)

    [4]Rayleigh,Baron:StruttJW1877TheTheoryofSound(London:Macmillan)

    [5]BecquerelAC1823Expriencessurledveloppementdel'lectricitparlapressionloisdecedveloppementAnnalesdeChimieetdePhysique22534

    [6]CurieJandCurieP1881ContractionsetdilatationsproduitespardestensionslectriquesdanslescristauxhmiedresafacesinclinesCompteRenduAcad.Sci.Paris93113740

    [7]CurieJandCurieP1893QuartzpizolectriquePhil.Mag.(5thSer.)363402

    [8]LangevinP1924TheemploymentofultrasonicwavesforechosoundingHydrographicRev.IINo1,Nov1924,5791

    [9]RichardsonLF1912ApparatusforwarningashipatseaofitsnearnesstolargeobjectswhollyorpartlyunderwaterUKpatent11125

    [10]WhiteDN1976HistoricalsurveyUltrasoundinMedicalDiagnosisedDWhite(Kingston:Ultramedison)pp136

    [11]LeviS1997Thehistoryofultrasoundingynaecology19501980UltrasoundMed.Biol.23481552

    [12]WFUMB1997WFUMBNews4(2)UltrasoundMed.Biol.23followingp974

    [13]BergmannL1938UltrasonicsandTheirScientificandTechnicalApplications(NewYork:Wiley)

  • Page1

    PART1THEPHYSICSOFMEDICALULTRASOUND

  • Page3

    Chapter1UltrasonicFields:StructureandPrediction.

    VictorFHumphreyandFrancisADuck

    Introduction

    Pulsedultrasoundbeamssuchasthoseuseddailyduringmedicalexaminationshaveacousticstructuresofconsiderablecomplexity.Thisistrueevenwhenconsideringtheirpropagationsimplythroughanidealisedacousticallyuniformmediumwithnoloss.Propagationthroughtheacousticinhomogeneitiesofbodytissuesresultsinfurtheralterationsintheacousticfield,bothfromscatteringatsmallscaleandfromlargescaleinterfaceeffects.Thepurposeofthischapteristodiscussthefactorswhichcontroltheacousticbeamsusedformedicalapplications,andtodescribethesebeamsandthemethodsfortheirprediction.Thepropagationmodelsusedwillbelimitedtothosewherethebeamisassumedtobeofsufficientlysmallamplitudethatlinearassumptionsmaybemadeabouttheacousticwavepropagation.Whilethisisaninvalidassumptionforverymanymedicalultrasoundbeamsinpractice,itallowsinstructiveanalysestobedeveloped.SomeofthebeamcharacteristicswhichariseduetofiniteamplitudeeffectsaredescribedinChapter2.Thesecondbroadlimitationinthischapteristhatconsiderationislimitedtoalosslessliquidmediumwhichisacousticallyhomogeneous.Aswillbeseen,theuseofthesetwoassumptionsallowsthepropagationoftheultrasoundwavetobedescribedintermsofonlytwoacousticquantities,thewavenumberandtheacousticimpedance,togetherwithinformationaboutthesourcegeometry.Considerationofthesourceoftheultrasoundwave,thetransducer,isgiveninChapter5.

    Forthemajorityofdiagnosticapplicationsofultrasoundtherangeoffrequenciesusedisquitenarrow,210MHz,wheretheparticularfrequencyisselectedinordertoachievethebestcompromisebetweenspatialresolutionanddepthofpenetration.Higherfrequenciesareonly

  • Page4

    usedinspecialisedapplicationssuchasophthalmology,skinimagingandintravascularinvestigations,reachingexperimentallyashighas100MHzormore.Frequenciesbelow2MHzareusedinDopplersystemsforfetalheartmonitoring,andthelowerpartoftheultrasonicspectrumisalsousedfortherapeuticandsurgicalapplicationssuchaslithotripsy(Chapter10)orhyperthermiaandfocusedultrasoundsurgery(Chapters8and9).Sonochemistry(Chapter13)andsomebioeffectsstudiesuseultrasonicfrequenciesbelow100kHzthischapterwillnotconsidertheparticularissuesassociatedwithbeamsusingsuchlongwavelengths.

    Havingestablishedthesimplifyingassumptions,severalcomplicatingfactorsofparticularrelevanceinmedicalapplicationsofultrasoundareintroduced.Itisrecognisedthatitispulsedratherthancontinuouswaveultrasoundbeamswhichareofmostinterest.Inordertoachievegoodspatialresolution,theultrasoundpulsesarelessthan1mminlength.Thevelocityofsoundthroughsofttissues,ct,liesintherangeapproximately14501600ms1(seeChapter4),sotherangeofacousticwavelengths, (=ct/f),isabout0.15to0.75mm.Thepulsesthemselvesarethuscommonlylessthan1slongandconsistofveryfewacousticcycles:theyareallendandnomiddle.Thisfactresultsinsignificantdifferencesbetweenthebeamprofilesinsuchpulsedbeamsandthoseatasinglefrequencyfromthesamesource.Asecondimportantpracticalconsiderationisthatmedicalultrasoundpracticeusuallycouplesthetransducerdirectlytothetissuetobeinvestigated.Thismeansthatsignalsarereturnedfromthe'nearfield'ofthetransducer,inaregionwhichmaybestronglyinfluencedbythesizeandshapeofthetransduceritself.Theanalysisofthenearfieldisthereforeofsignificance.

    Symmetryisofconsiderableimportanceinthestructureofacousticfields.Theanalysisofbeamswithcircularsymmetryhasbeenwelldevelopedintheliterature,andthiswillbedescribedbelow.Howeverthemajorityofmodernscannersdonotusecircularsourcesofultrasound,linear,curvilinearand'phased'arraysbeingalmostuniversallyused.Forthisreason,theanalysisofrectangularsourcesisveryimportant.Thefinalsignificantfactoristhatallpracticalmedicalultrasoundtransducersvaryinbothamplitudeandphaseovertheiraperture:thatistheyareapodisedandtheyarefocused.

    Recognisingthesecomplexities,thischapterwillcommencewithasimpledescriptionofthebeamfromacircularplanepistonsourceofultrasound,andproceedtodescribethewayinwhicheachofthemorecomplexfeatureswhicharerelevanttothedescriptionofthestructureofmedicalultrasoundbeamshavebeenaddressed.

    1.1CircularPlaneSources

    Itiscommonfirsttoconsidertheacousticfieldgeneratedbyaplanecircular'piston'sourcewhichisvibratingwithasinusoidalmotiononlyinadirection

  • Page5

    Figure1.1.Asimplifiedaxialsectionoftheacousticfield

    fromaplanecircularsinglefrequencysourcewhosediameterissignificantlygreater

    thantheacousticwavelengthinthepropagatingmedium.

    perpendiculartoitssurface.Theanalysisofthisfieldisincludedinmanytexts(Wells1977,Kinsleretal1982).Thisfieldhasparticularcharacteristicswhicharisefromtheveryspecifictemporalandspatialsymmetriesofthesource.Inpractice,thebeamsfrommanyphysiotherapytransducersapproximateinstructuretothefollowingdescription.

    Thesimplestviewofthefieldofacirculartransducerwouldconsiderthefieldtobeaplanewaveofthesamediameterasthetransducerinthenearfield(theFresnelregion)andthentobeanexpandingsphericalwaveinthefarfield(Fraunhoferregion).Thisisshowninfigure1.1.

    ThetransitionoccursattheRayleighdistancezR,where

    whereaisthetransducerradius, isthewavelengthandk(=2 / )isthewavenumber.

    Thismodelisconceptuallysimple,anduseful.Itispossible,forexample,tocalculatetheapproximateRayleighdistanceforatypical1MHzphysiotherapytransducerwitha=12.5mminwatertobeabout33cm,demonstratingthatforsuchatransducer,alltreatmentoccursinthenearfield.Neverthelessthissimplemodeldoesnotallowfordiffractionandinterferenceandfurtherdevelopmentisrequired.

    Consideraplanar,circular,transducermountedinarigidbaffle(surface)andradiatingintoafluid.InordertocalculatethefieldduetothetransducerassumethateachsmallelementdSofthetransducersurfacevibratescontinuouslywiththesamevelocityunormaltothesurface(thex,yplane)where

    TheneachelementdSgivesrisetoasphericalwavecontributinganelementalpressurecontributiondpataranger'of

  • Page6

    Figure1.2.Thegeometryforthecalculationofthepressurefieldp(r, ,t)atan

    observerpointO,duetoaplanecircularpistonsource.

    where 0isthedensityofthefluid.Theresultantfieldofthetransducercanbeevaluatedbyaddingupallofthecontributionsduetothesmallelements.Inthelimitthissummationbecomesanintegralandtheresultantpressurefieldp(r, ,t)isgivenby

    Thesurfaceintegralisboundedbythecondition a,where istheradialpositionofthesurfaceelementdS(seefigure1.2).Theexpressioninequation(1.4)isoftenknownastheRayleighintegral.

    Ingeneralitisonlypossibletofindsimpleclosedformsolutionstothisintegralforspecialsituations,thatisalongthesymmetryaxisofthetransducerandinthefarfield.Otherwisealternativenumericalstrategiesareneeded.Forexample,StepanishenandBenjamin(1982)andWilliamsandMaynard(1982)havedevelopedmethodsforthepredictionofacousticfieldsusingaspatialFouriertransformapproach,recognisingthatthefarfieldbeampatternistheFouriertransformoftheaperturefunction.Thisapproachcanbeofconsiderablevalueininvestigatingthefarfieldofnoncircularsources,suchastherectangularsourcesdiscussedinsection1.5.Inprinciplesuchmethodscanbefastandaccurate,providedthatthespatialgridisfineenoughtopreventspatialaliasing.ForthenearfieldthetimedomainnumericmethodsusedbyZemenek(1971)havebeenveryeffectiveinevaluatingthediffractionintegral.

    1.1.1PressureVariationontheAxis

    Theaxialpressurevariationmaybederivedfromequation(1.4).Geometricalconsiderationsgive:

  • Page7

    whered istheincrementalwidthofasurfaceannulusofradius .Substitutioninequation(1.4)gives

    thatis,theintegrandisaperfectdifferential.Substitutingandevaluatingat =aand =0givestheaxialcomplexpressurep(r,0,t):

    Thepressureamplitudeisthemagnitude(i.e.therealcomponent)ofp(r,0,t).Expressedinrectangularcoordinates,replacingrbyz,thedistancealongthebeamaxisperpendiculartothesource,theaxialvariationofthepressureamplitudep(z)is

    Thisvariationisshowninfigure1.3,fromwhichitmaybeseenthattheaxialpressurevariationinthenearfieldischaracterisedbyaseriesofunequallyspacedpressuremaxima,withvalue2

    r0cu0,separatedbylocalisedfieldnullswherethepressureiszero.Sincethepressureamplitudeatthesource,p0,is

    r0cu0,thenearfield

    pressuremaximahaveanamplitude2p0.Inthoseregionswherethesineisnegativethephaseofthepressurewaveisreversed.

    Thepositionsofthemaximaandminimamaybecalculatedfromtheconditionsgivingthesinefunctioninequation(1.10)valuesof1(maxima)and0(minima).Thatis,

    wherethepositionsofthemaximaarisewhenmisodd(m=1,3,5,...)andthepositionsofthenullsarewhenmiseven(m=2,4,6,...).Themost

  • Page8

    Figure1.3.Thecalculatedvariationofacousticpressureontheaxis

    ofaplanecirculartransducerof38mmdiameterat2.25MHz.Thepressureisnormalisedtop0,thepressureatthesource.

    distantmaximumfromthesourceiscommonlyreferredtoasthe'lastaxialmaximum'itsposition,zlam,maybecalculatedapproximatelybysettingm=1inequation(1.11),andassumingthataka,whenequation(1.10)reducesto

    whereSistheareaofthesource.Equation(1.12)showsthattheaxialpressureinthefarfieldreduceswith1/(distance).

  • Page9

    Figure1.4.Contourplotofthenormalisedacousticpressure(p/p0)foracirculartransducerofradiusa=5 .

    Theaxialdistanceisnormalisedtoa2/ .

    1.1.2PressureVariationOfftheAxis

    Atpositionsofftheaxisofsymmetrytheultrasoundpressurefieldhasconsiderablecomplexity.Acalculatedexampleofthenormalisedpressurefieldamplitudep/p0foracircularapertureofradiusa=5 isshowninfigure1.4,usinganumericalapproach(seeZemanek1971).Thecompletepressurefieldmaybethoughtofasbeingformedbyrotatingthisradialsectionaroundthezaxis,andconsistsofringsofhigheracousticpressurewhosenumberandradialfrequencyincreaseasthesourceisapproached.Itmayalsobeseenthatthe6dBbeamwidthatzlam(a2/ )isonlyabout0.4thatattheaperture,demonstratingthesocalled'selffocusing'ofaplanesource.

    Thealternativerepresentationofthenearfieldpatternshowninfigure1.5emphasisesanalternativeapproachtotheanalysisoftheultrasonicnearfield,originallyusedbySchoch(1941).Heshowedthatthefieldcouldbeconsideredasaconvolutionbetweentwoparts,oneaplanewavepropagatingnormallyfromthesource,andtheotherawavefromitsboundary.Theinterferencebetweenthesetwowavesmaybeclearlyseeninthefieldpatternshowninfigure1.5.Thisviewofthefieldasbeingcomposedofaplanewaveandan'edgewave'isparticularlyusefulwhenconsideringthecharacteristicsofpulsedultrasonicbeams(seebelow).

    InthefarfieldtheoffaxisacousticpressurepqmaybeexpressedintermsofitsdirectivityfunctionD

    q:

  • Page10

    Figure1.5.Spatialdistributionofthenormalisedacoustic

    pressure(p/p0)foracirculartransducerofradiusa=5 .

    Theaxialdistanceisnormalisedtoa2/ .

    andJ1isBessel'sfunctionofthefirstkind.J1(kasin )=0whenkasin =3.83,7.02,10.17,13.32etc.Thatisthefieldisformedofacentrallobe,andsidelobes.Theboundaryofthecentrallobeoccurswhere =sin1(0.61 /a).

    1.2PulsedFields

    Theimportanceofthedifferencesbetweenthesinglefrequencyandbroadbandpulsedbeamscannotbeoveremphasised.Severalauthorshavereviewedthestructureofpulsedfields(Friedlander1958,Harris1981a,Wells1977,Duck1980,KrautkramerandKrautkramer1990).Whilethefarfieldmainlobeisnotmuchaffected,thespatialvariationsinthepressurenearfieldbecomesmaller,andsidelobesmaydiminishinamplitudeandmerge.Inadditionthepressurepulsewaveform,anditsspectrum,varywithposition,includingthepotentialforpulsesplitting.Thesealterationsbecomeimportantoncethepulselengthreducestolessthansixcyclesofoscillation(KrautkramerandKrautkramer1990).Theyarethusimportantforallmedicalpulseechoultrasoundbeams,andalsoformanypulsedDopplerapplicationswhenshorterpulselengthsareused(DuckandMartin1992).

    Oneapproachtotheanalysisofapulsedfieldistoconsideritasasummationofthecomponentfieldsofallthespectralcomponentscomprising

  • Page11

    thepulsespectrum(PapadakisandFowler1971).Foranysourceradius,thepositionsofnearfieldmaximaandminimadependonthewavenumberk(seeequation(1.11)),andhenceonthefrequency.Summationofallthespectralcomponentswillthusresultinasmearingofthelocalspatialvariationsinacousticpressure.Thisapproachhasbeenvaluableinitsabilitytointroduceattenuativelossintothecalculationofthepulsedacousticfield,withitsassociatedfrequencydependence.However,itisnecessarytogenerateasufficientsamplingofthefrequencydependentfieldstoavoiderrors,andgenerallythismethodmayonlybeexpectedtogivegoodapproximationsratherthanexactsolutionstothepredictionofthepulsedacousticfield.

    Awidelyusedalternativemethodhasdevelopedfromtheanalysisofthetemporalimpulseresponseofasource.Thisallowsthepressurep(r,t)tobecalculatedfromtheconvolutionbetweenasourcefunctionandthepressureimpulseresponsefunctionh(r,t):

    where*indicatesatemporalconvolution.Sinceh(r,t)isafunctiononlyofthesourceshape,andu0(t)isafunctionofthesourcevibrationonly,equation(1.15)givesapowerfulgeneralapproachtotheanalysisofavarietyofsourcegeometries,inadditiontothecircularpistonsourcewhichhasbeenconsideredsofar.FollowingStepanishen'soriginalpublicationsforthecircularpiston(Stepanishen1971,1974,Beaver1974),expressionsforh(r,t)foranumberofothersourcegeometrieshavebeenpublished:includingthoseforrectangularsources(LockwoodandWillette1973),shallowbowl(focused)sources(PenttinenandLuukkala1976a),andsourceswithavarietyofapodisingfunctions(Harris1981b).

    Anexampleofacalculationofthepressurewavefrontinthenearfieldofaplanepistonsource,excitedusingasinglesinusoidalcycle,isshowninfigure1.6(a=8mm,f=4MHz,z=40mm).Thetimescaleisexaggeratedinordertoemphasisethepulsestructureacrossthebeam.Thepulsewaveformontheaxisconsistsoftwocomponentsseparatedintime.Thefirstisthatfromtheplanewavepropagatedfromthesource.Thesecondoccursfromtheconstructiveinterferenceoftheedgewave,andhasbeentermeda'replicapulse'.Itarrivesontheaxisatatimedelay

    Itsphaseisinverted,anditsamplitudeisthesameasthatoftheplanewave.Offtheaxistherearetworeplicapulseswithloweramplitudes,becauseofincompleteconstructiveinterferencebetweentheedgewavecomponents.

  • Page12

    Figure1.6.Calculatedpulsepressureprofileforacircularpistonsource,radius

    8mm,vibratingwithonecycleat4MHz.c=1500ms1z=40mmanda2/

    =170mm.

    Intheregionoutsidetheprojectionofthesourcearea,theplanewavecomponentisabsent,andonlythetwoedgewavecomponentsexist.Inthisexampleitisonlyatthelateralboundariesofthebeamthatthereisoverlapbetweentheedgewaveandtheplanewave.Asthewavepropagates,sothedelaybecomessmallerbetweentheplanewavecomponentanditsreplicapulse(seeequation(1.16)).Interferencebetweenthetwocomponentscanonlyoccuratdistanceswherethetimedelay thasbecomelessthanthepulselength,andonlybeyondthisdistancedoesonaxisvariationinpulsepressureamplitudeappear.Experimentalobservationsofedgewavesandreplicapulseshavebeendemonstratedby,forexample,WeightandHayman(1978).

    Othermethodsappropriatetothecalculationofbothpulsedandsinglefrequencybeamsarefiniteelement/boundaryelementmethods,andfinitedifferencemethods.Finitedifferencemethodshavefoundmosteffectiveapplicationinthepredictionofbeamswithinwhichfiniteamplitudeeffectsareimportant,givingrisetononlinearacousticbehaviour.Becauseoftheimportanceoftheseeffectsinmedicalultrasound,theyaredealtwithseparatelyinChapter2.

  • Page13

    Figure1.7.Geometryofasphericalfocusingsource.

    1.3FocusedFields

    Formanymedicalapplicationsofultrasoundtheneedarisestoreducethebeamwidth,ortoincreasethelocalpressureamplitude,orboth,fromthevalueswhichareeasilyachievedusingplanetransducers.Thisrequiresthebeamstobefocused,soachievingimprovedspatialresolutionforimaging,orintensitiesofsufficientmagnitudetodestroytissue(seeChapter9).UsefulanalyseshavebeenpublishedbyO'Neil(1949),Kossoff(1979)andLucasandMuir(1982).

    Thesimplestmeansforfocusingabeamisbytheuseofasphericalcap,orbowltransducer(seefigure1.7).

    TheamplitudegainGforabeamfromasourcewithradiusofcurvatureRcanbecalculatedapproximatelyby

    Itiscommontoconsiderthreetypesoffocusedbeam,categorisedbytheirdegreeoffocusing.Theseare:

    weakfocus:0

  • Page14

    Figure1.8.Axialvariationofnormalisedacoustic

    pressure(p/p0)insphericallyfocusedfields

    withdifferentfocalgains(a)G=2and4(b)G=6,8,and10.Thedistanceisnormalised

    tothegeometricfocallength,R.

    onaxisminimamayoccurbeyondthefocus.Examplesofaxialprofileswithamplitudefocalgainsof2,4,6,8,and10areshowninfigure1.8(a)and(b).Theaxesarenormalisedtothesourcepressurep0andtotheradiusofcurvatureR.Theaxialvariationisgivenapproximatelyby

  • Page15

    Atthegeometricfocus(infigure1.8wherez/R=1),thepressurepR0=G

    p0.However,themaximumaxialpressurealwaysexceedsthisvalue,andthemaximum(i.e.

    theacousticfocus)isalwaysreachedatapositionclosertothesourcethanthegeometricfocus.Furthermore,thisseparationbetweenthegeometricandacousticfocidecreasesasthefocusinggainincreases.Whileagainof10isassociatedwithanapproximate10%shiftinposition,foragainof4(usedinsomediagnosticsystems)theacousticfocusmayoccuronlyatabout0.7R.Ithasbecomeconventionalinpulseddiagnosticbeamstogivethefocallengthintermsoftheacousticfocus,wherethebeamintensityreachesamaximum(seeChapter7).Inspectionoffigure1.8a,balsodemonstratesthatthelengthofthefocalzonedecreasesasthegainandpR0/p0increases.TheradialpressurevariationinthefocalplanepR(y)isgivenapproximatelyby

    whereyistheoffaxisdistance.pR(y)reducesto3dBofitsaxialvaluewheny=1.62R/ka.Inotherwordsthe3dBbeamwidthatthefocus,d3,is

    Pulsedfocusedbeamsdifferfromsinglefrequencybeamsinamannercomparablewiththedifferencesforplanesources.Impulseresponsefunctionshavebeendevelopedforsphericalbowlsources(PenttinenandLuukkala1976a),forfocusinglenses(PenttinenandLuukkala1976b)andforconicalradiators(PattersonandFoster1982).Figure1.9demonstratesacomputedpulseprofileforacircularbowlsource,radiusofcurvature80mm,underconditionsotherwisesimilartothoseusedforfigure1.6.Theedgewavecomponentisstillvisible,buttheplanewaveisnowasphericalwaveconvergingtowardsthegeometricfocus.

    1.4SourceAmplitudeWeighting

    ThetheoreticaldevelopmentinalltheprecedingsectionshasassumedthatmovementofallelementsdSoverthesourcehasbeenofequalamplitude.Focusingcanbeconsideredsimplyasthealterationoftherelativephaseofthemovementoftheelements.Howevermostrealtransducersarenottrue'piston'sources,thatis,thereissomevariationinthesourceamplitudeoverthesourcearea.Thismaycomeaboutdeliberately,ashappenswithsomearraysforwhichweighting,orapodisation,isappliedacrossthearray.Itmayoccurbecauseofthephysicalmountingofthetransducer,forexampleiftheedgesarelessfreetomovethanthecentreofapiezoelectricelement,

  • Page16

    Figure1.9.Calculatedpulsepressureprofileforacircularsphericalbowlsource,

    radius8mm,vibratingwithonecycleat4MHz.c=1500ms1z=40mm.

    Comparewithfigure1.6.

    or,whenusingalens,fromthetransmissionlosswhichvariesfromthelensaxistoitsedge.Smallerscalevariationsacrossthesourceareamayalsooccur.Theseoccurbecauseoftheconstructionofanarrayandmayalsocharacterisethebehaviourofaphysiotherapytransducerdrivenatitsthirdharmonic.

    Eachoftheseexamplesindicatesthatfieldsfromrealtransducersmaywelldifferfromthedescriptionderivedfromtheformaltheorysetoutinthischapter.Inpracticeitisquitecommontoapodiseanarrayusedinadiagnosticscanner,forexampleusingaGaussianamplitudeweightingfunction(DuandBreazeale1985).Figure1.10showstheoutcomeofGaussianapodisationforaplanesinglefrequencycircularsourcewitha=5 .Theeffectofapodisationistoreducethepressurevariationsinthenearfield,andtoreducethesidelobelevelinthefarfield.AmorecompletedescriptionoftheeffectsofradialweightingonpulsedfieldshasbeengivenbyHarris(1981b).

    Foraplanecircularsourcetheeffectofapodisationcausedbyedgetetheringistoalterslightlythepositionofthelastaxialmaximum.Forthisreasonitiscommontoconsiderthesourceashavinganeffectiveradiusaeffsuchthatthemeasuredlastaxialmaximumliesat(aeff)2/ .

  • Page17

    Figure1.10.Calculatedsinglefrequencyvariation

    inpeakpressureamplitude,foraGaussiansourceapodisation

    witha=5 :(a)axialpressurevariation(b)offaxispressure

    variation.

    1.5RectangularSources.

    Theradialsymmetryassociatedwithbothplaneandsphericallyfocusedcircularsourceshasaparticulareffectonthebeamsproduced,particularlyalongthebeamaxis.Thisistruewhethersinglefrequencyorimpulsebehaviourisconsidered,andalsoforpracticalapplicationsusingbroadbandpulses.Anyalterationfromthecircularsymmetryofthesourceservestoalterthegeometricconditionsandhencethebeam.Ofparticularpracticalinterestformedicalapplicationsisthebehaviourofrectangularsourcesofultrasound,becauseoftheircommonuseinthearraysusedfordiagnosticimagingandassociatedDopplerapplications.ThedesignandfabricationofsucharraysisdescribedingreaterdetailinChapter5.Herewewillbeconcernedonlywiththetheoreticalconsiderationsoftheacousticbeamsgeneratedbysuchrectangularsourcesofultrasound.

    Whilecircularlysymmetricbeamsmaybeanalysedintermsofonlytwo(rectangular)coordinates(y,z),anyothershapeofsource,includingrectangular,requiresthree(x,y,z)(figure1.11).Insimpletermsthebeamformation,bothintermsofthelengthofthenearfieldandthedivergenceinthefarfield,iscontrolledseparatelybythetwoorthogonaldimensionsofthesource,2aand2b.Ifa

  • Page18

    Figure1.11.Coordinatesystemforarectangularsource.

    whichthereisoffaxisamplitudemodulationintheydirectionthaninthexdirection,andthebeamwilldivergemorestronglybeyondthisregion.Ifa=b,thesourcewillbehavesomewhatlikeacircularsourcewithradiusa,andtherewillbeamaximumontheaxisatz a2/ ,althoughthenearfieldamplitudemodulationwillnotbesopronounced.

    Figure1.11showsanobservationpointOat(x,y,z)andasourceelementdS=dx0dy0at(x0,y0).Geometricconsiderationsgive

    (r')2=z2+(xx0)2+(yy0)2

    andusingabinomialexpansionr'canbeapproximatedby

    Further,substitutingintheequationfortheRayleighintegral(equation(1.4))andreplacingthe1/r'termwith1/rwehave

    Substitutingg=x0 (2/z )g0=b (2/z )h=y0 (2/z )h0=a (2/z )anddefiningtheaspectratiooftherectangleN=a/bsoh0=b/N (2/z )wehaveonaxis

  • Page19

    Figure1.12.Axialvariationinnormalisedacousticpressureamplitude(p/p0)forasquare

    transducer.Comparewithfigure1.3foracircularsource.

    Figure1.13.Axialvariationinnormalisedacousticpressure(p/p0)forarectangularsource

    withaspectratio1:2.

    Thetwointegralsontherighthandsideofequation(1.23)giveanamplitudedependencyonb2/z anda2/z .TherelativelocationsoftheacousticfeaturesinthebeamwilldependontheaspectratioN.

    Thecalculatedaxialpressurevariationisshownforasquaretransducerinfigure1.12andforarectangularaperturewithaspectratioN=1:2infigure1.13.Pressuremaximaandminimavariationsarereducedforthesquaretransducer,andlargelyabsentfortherectangulartransducer.Inadditionthemaximumpressureamplitudeonaxisislessthan2p0,whichisreachedtheoreticallyontheaxisinthenearfieldofaplanecircularsource.

    Figure1.14showsthepulsepressureprofileat40mmfromasquare

  • Page20

    Figure1.14.Calculatedpulsepressureprofilefor

    asquarepistonsource,side2a=16mm,vibratingwithonecycleat4MHz.c=

    1500ms1z=40mm.Compare

    withfigure1.6.

    source,a=8mm,operatingforasinglecycleat4MHz,calculatedusingtheimpulseresponsefunctionderivedbyLockwoodandWillette(1973).Theconditionsarethesameasthoseusedtocalculatetheprofileshowninfigure1.6foracircularsource,withwhichcomparisonmaybemade.Thisshowsthepresenceoffurtherreplicapulsesbeingcausedbytheedgewavesfromeachofthefouredgesofthesource.

    Medicalultrasonicscannersnotonlyuserectangulartransducers,butapplyastigmatic(cylindrical)focusing.Theanalysisofthesefocusedpulsedfieldsmustbecarriedoutusingnumericalmethodssuchasthefinitedifferencemethodswhichwerementionedabove.

    1.6Conclusion

    Thischapterhasshownthatitispossibletodescribetheacousticpressurefieldstructurefromavarietyofsourcegeometries,usingappropriateapproximations.Theadventofpowerfulcomputershasenablednumericalmethodstobeappliedtopreviouslyintractableanalyses.Theparticularsymmetryassociatedwiththeacousticfieldfromanidealcircularpistonsourcevibratingwithasinglefrequencyisnotsharedbyothermorepractical

  • Page21

    ultrasoundbeamsusedformedicalapplications.Apodisation,pulsingandtheuseofrectangularsourcesallservetosmoothoutthepressurevariations,resultinginbeamswithlowamplitudemodulationinthenearfield,andlowacousticsidelobeamplitudes.Thefullanalysisandpredictionofthefieldgeneratedbyapulsedrectangularsourcewithastigmaticfocusingandapodisation,propagatingnonlinearlythroughaninhomogeneousabsorbingandscatteringmedium,remainsachallenge.

    References

    BeaverWL1974SonicnearfieldsofapulsedpistonradiatorJ.Acoust.Soc.Am.5610438

    DuGandBreazealeMA1985TheultrasonicfieldofaGaussiantransducerJ.Acoust.Soc.Am.7820836

    DuckFA1980ThepulsedultrasonicfieldPhysicalAspectsofMedicalImagingedBMMooresetal(London:Wiley)

    DuckFAandMartinK1992Exposurevaluesformedicaldevices,inUltrasonicExposimetryedsMZiskinandPLewin(BocaRaton:CRC)

    FriedlanderF1958SoundPulses(Cambridge:CambridgeUniversityPress)

    HarrisGR1981aReviewoftransientfieldtheoryforabaffledplanarpistonJ.Acoust.Soc.Am.701020

    1981bTransientfieldofabaffledplanarpistonhavinganarbitraryvibrationamplitudedistributionJ.Acoust.Soc.Am.70186204

    KinslerLE,FreyP,CoppensABandSandersJV1982FundamentalsofAcoustics3rdedition(NewYork:Wiley)

    KossoffG1979AnalysisoffocusingactionofsphericallycurvedtransducersUltrasoundMed.Biol.535965

    KrautkramerJandKrautkramerH1990UltrasonicTestingofMaterials4thedition(Berlin:Springer)pp8792

    LockwoodJCandWilletteJG1973HighspeedmethodforcomputingtheexactsolutionforthepressurevariationsinthenearfieldofabaffledpistonJ.Acoust.Soc.Am.5373541

    LucasBGandMuirTG1982ThefieldofafocusingsourceJ.Acoust.Soc.Am.72128996

    O'NeilHT1949TheoryoffocusingradiatorsJ.Acoust.Soc.Am.2151626

    PapadakisEPandFowlerKA1971Broadbandtransducers:radiationfieldandselectedapplicationsJ.Acoust.Soc.Am.5072945

    PattersonMSandFosterSF1982AcousticfieldsofconicalradiatorsIEEETrans.SonicsUltrasonicsFreq.Contr.SU298392

    PenttinenAandLuukkalaM1976aTheimpulseresponseandpressurenearfieldofacurvedultrasonicradiatorJ.Phys.D:Appl.Phys.9154757

    1976bSoundpressurenearthefocalareaofanultrasoniclensJ.Phys.D:Appl.Phys.9192736

    SchochA1941BetrachtungenuberdasSchallfeldeinerKolbenmembranAkust.Z.631826

    StepanishenPR1971TransientradiationfrompistonsinaninfiniteplanarbaffleJ.Acoust.Soc.Am.49162938

    1974AcoustictransientsinthefarfieldofabaffledcircularpistonusingtheimpulseresponseapproachJ.SoundVibr.32295310

  • Page22

    StepanishenPRandBenjaminKC1982ForwardandbackwardprojectionofacousticfieldsusingFFTmethodsJ.Acoust.Soc.Am.7180312

    WeightJPandHaymanAJ1978ObservationsofthepropagationofveryshortultrasonicpulsesandtheirreflectionbysmalltargetsJ.Acoust.Soc.Am.63396404

    WellsPNT1977BiomedicalUltrasonics(London:Academic)

    WilliamsEGandMaynardJD1982NumericalevaluationoftheRayleighintegralforplanarradiatorsusingtheFFTJ.Acoust.Soc.Am.72202030

    ZemanekJ1971BeambehaviourwithinthenearfieldofavibratingpistonJ.Acoust.Soc.Am.4918191

  • Page23

    Chapter2NonlinearEffectsinUltrasoundPropagation

    AndrewCBaker

    Introduction

    Inafluid,ultrasoundpropagatesaslongitudinalwavesofalternatecompressionsandrarefactions.Toafirstapproximationthewavetravelsataconstantspeed(c)andsoitsshaperemainsunchangedasitpropagates.Thislevelofapproximationcorrespondstothesimplestpossibleformofwaveequationandiswidelyapplicabletomanyacousticsystems(e.g.normalsoundlevelsinairandmostsonarsystemsinwater).Themethodsoflinearsystemstheoryareappropriatetothesolutionsofproblemsinthesefieldsandgreatuseismadeofmethodssuchassuperpositionandlinearscalingofsolutions.Theintroductionofafrequencydependentabsorptioncausesnogreatdifficultieseithersincethesystemislinear.Thelinearwaveequationdependsontwomainassumptions:firstlythattheparticlevelocity(u)ofthewaveisinfinitesimal(oratleastsmallcomparedtoc)andsecondlythatthepressuredensityrelationshipofthefluidislinear.

    Iftheacousticamplitudeissufficientlyhighthenassumptionsoflinearityarenolongervalidandwillintroducesignificanterrors.Theresultingwavehascompressionalphasesthattravelataspeed(c+ u0),whichisfasterthanthespeedoftherarefactions(c u0) isaparametercharacterisingthenonlinearityofthemedium(thenonlinearityparameterisoftenexpressedasB/A=2( 1):measurementmethodsandtypicalvaluesaregiveninChapter4).Notethatthefiniteparticlevelocityandthenonlinearityofmediumbothproducethesameeffect.Thuswegetdistortionthatwillcauseawaveformthatisinitiallysinusoidaltobecomemorelikeasawtooth(figure2.1).Theamountofdistortionwillincreasewithdistancepropagatedandshocklikewaveformsarecommonlyencountered,withanabruptincreasefrompeaknegativepressuretopeakpositivepressureasthewavepassesanypoint.Intermsoffrequencycontent,thewaveform

  • Page24

    Figure2.1.Initialwaveform(top, =0)

    anddistortedwaveform(bottom,= /2).

    distortionisequivalenttoharmonicgenerationatintegermultiplesoftheoriginalfrequency.Thusenergyispumpedtohigherfrequencieswheretheabsorptionlosseswillbehighercausing,amongotherthings,increasedintensitylosswhichcanleadtoenhancedheatingandstreamingeffects.Inarealbeamofultrasoundtherewillalsobediffractioneffectswhichinteractwithnonlinearityandabsorptiontofurthercomplicatematters.AgeneralhistoryofnonlinearityinfluidscanbefoundinthebookbyBeyer(1984).

    2.1NonlinearPropagationinMedicalUltrasound

    Theuseofultrasoundinmedicineonlybecomeprevalentduringthe1960sandalthoughnonlinearacousticeffectshavebeenknownaboutsincetheeighteenthcentury,itwas1980whenthefirstpapershighlightedtheimportanceofnonlineareffectsinmedicalultrasound.MuirandCarstensen(1980)andCarstensenetal(1980)discussedthepotentialforshockformation,enhancedabsorptionduetoharmonicgenerationandbeambroadening,causedbythetransferofenergyfromthemainlobeofthefundamentalbeamtohigherharmonics.Oneofthemeasuresofthestrengthofnonlinearitytheyusedwastheplanewaveshockparameter = kz,(=u0/c)istheacousticMachnumberwhereu0istheparticlevelocityamplitudeatthesource,k(=2 f/c)isthewavenumberandzisthedistance

  • Page25

    thatthewavehastravelled.Avalueof =1indicatesthatashockisjuststartingtoform(i.e.averticaldiscontinuityisjustappearinginthepressurewaveform).Atthispointthedistancetravelled(z)isoftendenotedbytheplanewaveshockdistanceld=1/ k.Inthecaseofaplanewave,u0canbedeterminedfromtheacousticpressureamplitude,p0,usingtheplanewaveimpedancerelationu0=p0/p0cwherep0isthedensityofthemedium.When = /2thewaveisfullyshocked,withadiscontinuityfromthepeakpositivepressuretothepeaknegativepressure(figure2.1).Furtherdistortionleadstoreductionsofthepeakpositiveandnegativepressuresasmoreofthewavemovesintotheshockedregion.Notethat isproportionaltoboththeacousticpressure(p0)andthedistancetravelled(z)henceitispossibletodetermineexperimentallywhethernonlinearpropagationisoccurringinasystembynotingwhetherwaveformdistortiondecreasesaseitherdrivepressureand/orobservationdistanceisdecreased.Inwaterat20C, =3.5,henceifwetakeultrasonicparametersthataretypicalofcurrentimagingsystems(e.g.f=3.5MHz,p0=1MPaseeChapter7)wewillhaveaplanewaveshockdistanceld=43mm(assumingp=1000kgm3andc=1486ms1).Wewouldthereforeexpecttoobservenonlinearwaveformdistortionrelativelyeasilyatdistancesgreaterthanthis.Itshouldbenotedthatinclinicalsystemsfocusinganddiffractionwillalsoaffecttheshockformationdistancesoldshouldonlybeusedasaroughestimateofnonlineareffectsinclinicalbeams.

    Thesituationissimilarinhumantissueswhere valuesaretypicallyintherange4to6(Duck1990)withthehighervaluesduetofattytissues.However,attenuationlossesarehigherintissuewhichtendstocounteractnonlineardistortion.ThisisindicatedbytheGol'dbergnumber =1/ld = k/ where isthelinearattenuationcoefficient(inneperm1).TheGol'dbergnumberaccountsforthefactthatabsorptioncounteractsnonlineargenerationsoitistheratioofthetwowhichisimportant.MethodsofmeasuringthenonlinearityparameterandthepossibilityofmappingittoforminvivoimageshavebeenreviewedbyBjrn(1986).

    Figure2.2representsthenonlinearpropagationofa3.5MHz,500kPaplanewaveinwater(i.e.theGol'dbergnumber =38).Wecanseethatatzerorangeonlythefundamentalispresent.Theharmonicsbuildupwithdistanceandeventuallysettleinalmostconstantratiotothefundamental.Energyislostfromthefundamentalandispumpedintotheharmonics.Inthecaseofalinearwavewewouldexpectnoharmonicsandthefundamentaltoremainalmostconstantlinearabsorptionwouldonlyaccountforalossofafewpercentoverthissortofdistanceinwater.Arangeof85mmcorrespondsto =1forthiswaveanditcanbeseenthatthereisappreciablesecondandthirdharmoniccontent.Onlythefirstfiveharmonicsareplottedherealthoughmanymorewillbepresentespeciallyatlongerranges.Atarangeof133mmwehave = /2andappreciableenergyhasbeenlostfromthefundamentaltothehigherharmonics.

  • Page26

    Figure2.2.Fundamentalandsecondtofifthharmonicsforanonlinearplanewaveinwater(f0=3.5MHz,

    P0=500kPa, =38).

    isausefulquantitywhentryingtoestimatethesignificanceofnonlinearityinagivensituationbutaplanewaverepresentsaratheridealisedcase.Inanattempttoincludetheeffectsoffocusing,Bacon(1984)proposedanonlinearpropogationparameter( m)whichtakesaccountofamplitudefocalgainG:

    wherethefocalpressurepfisdefinedas(pc+pr)/2(pcandprarecompressionandrarefactionpressuremagnitudesatthefocaldistancezf),andfistheacousticfrequency.Thisequationcanbeusedalsotocalculate atthefocusupto = /2.Abovethisvalue mnolongerdependslinearlyonsourceamplitude,andultimatelyreachesasaturationvalueof2 .

    Theinclusionofdiffractionandfocusinginthenonlinearproblemcausesphaseshiftsinwaveformsothatinsteadofresemblingasawtooth,anonlinearlydistortedultrasonicpulselooksmorelikethemeasurementsshowninfigure2.3.Thewaveformshownisarelativelylowamplitude2.25MHzpulsegeneratedbyaheavilydamped,shockexcitedtransducer.Thediffractivephaseshiftscausethetopbottomasymmetryofthedistortedpulse.

    Diagnosticultrasoundtendstooperateovershorterdistancesthan600mmbutwithcorrespondinglyhigherdrivelevelsandfocusinggain,hencethedistortedwaveformshapeistypicalofthedistortedpulsesobservedfromclinicalsystems(DuckandStarritt1984).Eventhehighabsorptionoftissueisnotsufficienttosuppressnonlinearityhencesimilarwaveformdistortionandharmonicgenerationhavebeenobservedinbiologicaltissues(Starrittetal1985,1986).Anextensivesurveyoftheoutputofdiagnosticsystems(Ducketal1985)showedthatalmostallthesystemssurveyedwerelikelytobesubjecttononlinearpropagation.Amorerecentsurvey(Henderson

  • Page27

    Figure2.3.Initialpulse(top)andnonlineardistortionofpulse(bottom)afterpropagating600mm

    inwater.

    etal1995)indicatedthattheacousticoutputlevelsofnewdiagnosticsystemshadincreasedconsiderablyandthusnonlineareffectsarenowevenmoresignificant.Othermedicalultrasoundsystemssuchaslithotriptersandhyperthermiasystemswillalsobesubjecttononlinearpropagationsincealthoughtheyusuallyhavelowerfundamentalfrequenciestheyalsohavehighacousticdrivelevels.

    2.2ConsequencesofNonlinearPropagation

    2.2.1ExperimentalMeasurements

    Themostobviouspracticalconsequenceofnonlinearpropagationisthatanincreasedmeasurementbandwidthisnecessary.Thisistruebothforacousticfieldmeasurementswithhydrophones(seeChapter7)andforpulseechoimagingofharmonicbackscatterasisusedclinically,forexampleinharmonicimagingofcontrastmaterials(seeChapter12).Figure2.4showsthefrequencycontentofthepulsesinfigure2.3.Theinitialpulsehasitsenergyconcentratedaroundthecentrefrequencyofthetransducer(2.25MHz

  • Page28

    Figure2.4.Initialspectrum(top)andspectrum

    ofdistortedpulse(bottom).

    inthiscase).Thegrowthofdistortionleadstopeaksatmultiplesofthecentrefrequencyuptoabout25MHzwherethehydrophonebandwidthstartstolimitthewidthofthespectrum.ThehydrophoneusedinthiscasewasaGECMarconibilaminarPVDF(polyvinylidenefluoride)membranedevicewhichhasasmoothresponseuptoitsmainresonanceatabout20MHz.Othervariantsofthisdevicehaveahigherresonantfrequencyprovidingevengreaterbandwidth(Bacon1982).Untilthemembranehydrophonewasdevelopeditwasdifficulttoobservethedistortedwaveformsproducedbymedicalultrasoundsystems.In1980itwasnotedthat'Althoughmicroprobeswithaflatresponseto10MHzhavebeenreported,theyaredifficulttoconstructandarenotcommerciallyavailable'(Carstensenetal1980).ThechoiceofhydrophoneisanimportantonewhendealingwithsuchdistortedwaveformsandfewdevicescancurrentlyapproachtheGECMarconimembraneintermsofthewidthandsmoothnessoftheiroperationalfrequencyrange.Inrecentyearsthoughtherehavebeensomeimprovementsinneedleprobehydrophonedesign,andthesedevicesusuallyhaveasignificantpriceadvantageovertheGECMarconimembranehydrophone.Neverthelessitisrecognisedthatthefrequencyresponsemaybequitevariable,particularlyatlowerfrequencies,andneedlehydrophonesneedto

  • Page29

    beusedcriticallyifhighfidelitymeasurementsarerequired(Preston1991).

    Severalfactorsareimportantwhenhandlingdistortedwaveformsofthistypeincluding:

    2.2.1.1SystemBandwidth.

    Thelossofhighfrequencycomponentsduetolimitedhydrophonebandwidth(orlimitedbandwidthinanypartofthesignalprocessingsystem)isparticularlynoticeableintheobservedpeakpositivepressurewhichcanappeartobesignificantlyreduced.Thechoiceofdigitisingfrequencymustalsobeappropriatetothesystembandwidth.Itiscommontousedigitisingfrequenciesof100MHzorhigherforthecaptureoftypicalmedicalimagingpulseswhichhavetheircentrefrequenciesinthelowMHzrange.Caremustalsobetakentoavoidaliasingindigitisers.

    2.2.1.2HydrophoneCalibrationandFrequencyResponse

    Thepresenceofnonlinearitymeansthatmeasurementscannotbescaledfromonedriveleveltoanother.Inalinearsystem,forexample,thedirectivityplotofanacousticbeamdoesnotchangewithdrivelevelundernonlinearconditionsitwillchangewithdrivelevel.Itisthereforeusefultoknowtheacousticpressureatwhichmeasurementsweremade.Thehydrophonecalibrationisalsoimportantinremovingwaveformartefactsduetohydrophoneresonances.Thefrequencyresponseofahydrophoneisusuallydeterminedbyoneormoreofitselectromechanicalresonanceswhichmaynotbeapparentinundistortedwaveforms.Adistortedwaveformhowevercanhavesufficientenergyathigherfrequenciestoexcitethehydrophoneresonanceshencetheobservedelectricalsignalisnotatruerepresentationofthepressurewaveformbeingmeasured.Itishardlyeverjustifiabletouseasinglefrequencycalibrationoverthebandwidthsrequired.

    2.2.1.3HydrophoneSize

    Theharmonicbeampatternsarenarrowerthanthefundamentalbeam(figure2.5).Thusahydrophonechosentobesmallenoughtoavoidspatialaveragingproblemsatthefundamentalfrequencymaywellberatherlargeincomparisonwiththehigherharmonicbeams.Thiswillleadtounderestimatesofthepeakvalues(Smith1989,ZeqiriandBond1992,Bakeretal1996).

    2.2.1.4HydrophoneAlignment

    Thenarrowerbeamwidthsoftheharmonicsmakehydrophonealignmentmorecritical.Theharmonicamplitudebeamwidthsvaryas wherenistheharmonicnumber(ReillyandParker1989).Thehigherharmonics,however,canprovideausefulguidetoalignmentsincethepeakpositivepressureissensitivetotheirpresence.

    2.2.1.5HydrophoneLinearity

    Theacousticpressuresaresufficientlyhighthatthehydrophoneitselfcangenerateharmoniccomponents.Themagnitudeofthesecomponentswillonlydependontheamplitudeof

  • Page30

    Figure2.5.Calculatedharmonicbeampatternsinfocalplaneoffocusedtransducer(f0=2.25MHz).

    acousticfieldbeingmeasuredwhereasnonlinearityduetopropagationalsoaccumulateswithdistance.Itisthuspossibletodistinguishbetweenthesetwosourcesofnonlinearitybymovingthehydrophoneclosetotheultrasonicsourcewherethepropagationnonlinearityshouldbenegligible.Careisstillneededastheultrasonicsourcewilloftentransmitlowlevelsofharmonicdirectly.Theeffectofhydrophonenonlinearityanddirecttransmissionofharmonicsisnotusuallyserioussincethelevelsaresmallincomparisonwiththeharmoniclevelsgeneratedbynonlinearpropagation(Prestonetal1983).

    2.2.1.6ChoiceofPropagatingMedium

    Laboratorymeasurementsareinvariablymadeinwater,butthiscancreatedifficulties.Theabsorptionofultrasoundinwaterislow(relativetotissue)whichallowsagreaterdegreeofnonlineardistortiontooccurandhenceincreasedsignalbandwidth.Itisnotasimplemattertotranslatewaterbasedmeasurementstoinvivovalues.The'derating'procedurewhichiscommonlyusedinstandards(AIUM/NEMA1992)isbasedonassumptionsoflinearpropagation.ChristopherandCarstensen(1996)concludethatapplyingthelinearderatingfactortostronglyshockedmeasurementsinwatercanleadtosignificantunderestimatesofthepressurefieldintissue.

    Theeffectofnonlinearpropagationcanalsobeobservedinmeasurementsofultrasonicpropertiessuchasabsorptioncoefficientwhichbecomedependentonthedrivelevelandmeasurementgeometry(Zeqiri1992,Wu1996).Bothofthesestudiesconcludedthatitisadvisabletominimisethetransmitterreceiverseparationandtokeeptheplanewaveshockparameter 0.1inordertoavoidsignificantnonlinearerrors.

    Characteristicsforhydrophonesandguidanceformakingmeasurementsinthisfrequencyrangecanalsobefoundintherelevantinternationalstandards

  • Page31

    (IEC1987,1991,1993)andPreston(1991).OtherpracticalaspectsoftheuseofhydrophonesforexposuremeasurementaregiveninChapter7,section7.7.

    2.2.2TheoreticalPredictions

    Theoreticalmodelsforultrasoundpropagationareusefulinthedesignandanalysisofultrasoundsystems,especiallysinceinvivomeasurementsarenoteasytocarryout.Themaindifficultyinmodellingisthepresenceofnonlinearitywhichrulesoutmostofthemethodsthatareapplicabletolinearsystems.Thecumulativenatureofthedistortionwithdistanceanditsinteractionwithdiffractionandabsorptionmeanthatitisnotnormallypossibletocalculatetheamplitudeofasinglefieldpointatadistancefromthesourcewithoutcalculatingthefullfieldintheregionbetweenthefieldpointandthesource.Thusstraightforwardanalyticalsolutionscanonlybefoundforrelativelysimplegeometriesandingeneralitisnecessarytousecomputationallyintensivenumericalmethods.Inadditiontocalculatingtheacousticfield,thereisalsoarequirementtobeabletopredicteffectssuchasheating,streamingandcavitationsincethesearepotentialsourcesofbioeffectsandwilldependontheacousticfield.

    Anumberofapproachestopredictingtheultrasonicfieldsofmedicalultrasoundsystemshavebeentriedbutthemethodthathasprobablyreceivedmostattentiontodateisafinitedifferencesolutiontoanapproximatenonlinearwaveequation.ThewaveequationisknownastheKhokhlovZabolotskayaKuznetsov(orKZK)equationanditaccountsfornonlinearity,absorptionanddiffraction(Kuznetsov1971).ThemostimportantassumptionintheKZKequation,inthiscontext,isthattheacousticenergypropagatesinafairlynarrowbeamthisisknownastheparabolicapproximationortheparaxialapproximation.Theparabolicapproximationisvalidforacousticsourceswhicharemanywavelengthsacrossandforfieldpointsthatarenottooclosetothesourceortoofaroffaxis.Forcircularsourcesofultrasoundweneed(kra)2>>1whereraisthesourceradiusandtheminimumaxialdistanceisra(kra/2)1/3(NazeTjttaandTjtta1980).Inpractice,formostweaklyfocuseddiagnosticbeams,theseconditionsdonotusuallyposeseriousdifficulties.AfinitedifferencesolutionfortheKZKequationwasdescribedbyAanonsen,Barkve,NazeTjttaandTjttaoftheUniversityofBergen,Norway(Aanonsenetal1984).NazeTjttaandTjttahavebeenresponsiblefordevelopingmuchofthemathematicalbackgroundinthefieldofnonlinearsoundbeamstheresultingnumericalsolutionsandcomputerprogramsarenowwidelyknownastheBergencode.TheapproachusedintheBergencodeistosubstituteaFourierseriesforthetimewaveformintotheKZKequationandsolvetheresultingsetofcoupleddifferentialequationsusingfinitedifferencemethods.

    TheBergencodehasbeenappliedtoultrasonicsourcessimilartothosefoundinmedicalsystemsandhasprovedtobeareliablemodelofthebeam

  • Page32

    Figure2.6.ComparisonoftheKZKequation()withmeasurementsoffundamentalandsecond,thirdandfourthharmonics(+,x,*,)forafocusedultrasoundsourceinwater

    (f0=2.25MHz,p0=68kPa,a=19mm).Theverticaldashed

    lineindicatesthepositionofthefocalplane.

    behaviourinwater.Planecircularsourcesofcontinuouswaveultrasoundhavebeenstudied(Bakeretal1988,TenCate1993,Nachefetal1995)aswellasfocusedsourcesasshowninfigure2.6(Baker1992,AverkiouandHamilton1995).

    Figure2.6showsthatclosetothesourcetherearenoharmoniccomponents,onlythefundamental.Theharmonicsbuildupwithaxialrangewithvariousmaximaandminimamirroringthoseinthefundamentaluntilthefinalaxialmaximasettleatroughlyconstantlevels(approximately1/n)relativetothefundamental.TheKZKsolutiondoesnotshowtheexpectednearfieldoscillationsatveryshortranges,thisisaconsequenceofthestepsizeused.Smallerstepswouldhaveshownmoredetailatshortrangesinsteadweseetheaveragevalueofthesolutioninthatregion.

    TheBergencodemayalsobeinitialisedwithapulsespectrumhencepulsedfieldssimilartodiagnosticsystemshavebeenexamined(BakerandHumphrey1992,Baker1991).Rectangulargeometrieshavealsobeenmodelled(Berntsen1990,Bakeretal1995).TheBergencodehasrecentlybeenappliedtoultrasoundsystemswithrectangulararrays(CahillandBaker1997a,b)anditwasfoundthatnonlinearitycaninteractwithdiffractiontocausetheregionofpeakintensitylosstomovefromtheacousticaxis(atlowdrivelevels)tooffaxislocationsathighdrivelevels(figure2.7).Thisshiftiscontrarytothepredictionsoflineartheories.Thefirstpartoffigure2.7showsthelinear(lowdrivelevel)pressurefieldofasquareapertureaswouldbe

  • Page33

    Figure2.7.Nonlineargenerationalongthediagonalofaplanesquareaperture(sidelength=20mm).Thebeampropagatesdownthepagefora

    distanceof200mm(f0=2.25MHz).

    measuredacrossitsdiagonaldiffractioneffectsarestrongestonthediagonalduetotheinteractionofedgediffractionfromthetwosides.Itcanbeseenthatinthelinearcasethepeakamplitudeoccursontheacousticaxisatthebottomoftheplot.Thesecondplotcorrespondstothefundamentalwhenthesourcepressureisincreasedto1MPa.Theregionofpeakfundamentalamplitudenowoccursoffaxisandmuchclosertothesource.Thesecondharmonicisstrongestwherethefundamentalisstrongestsoittoohasitspeakvaluesoffaxisnearerthesource.Thesecondharmonicalsoshowstwiceasmanyfringesacrossthebeamwhencomparedtothefundamentalthiseffectcanbeseeninfigure2.5.Thetenthharmonic(i.e.22.5MHz)hasasharplydefinededgetotheoffaxisregionandagainexhibitsamaximumamplitudeoffaxis.Thishasconsequencesforthepredictionofpotentialbioeffectssincetheintensitylossfromthebeamdeterminestheheatsourcedistributionforthermaleffectsandthedrivingforceforstreaming.

    Computationalrequirementscanbecomeanissuefornonlinearmodelling.Thecontinuouswavecircularcaseatmoderatedrivelevelscanberunonapersonalcomputer(e.g.aPentiumbasedPC)inamatterofminutes.TheBergencode,however,worksinthefrequencydomainandifthedrivelevelisincreased,moreharmonicsareneededinthesolutionwhichrequiresmore

  • Page34

    memoryandmoreCPUtime.TheinclusionofpulsedwaveformsrequiresmorefrequencycomponentsintheinitialspectrumwhichagainrequiresmorememoryandmoreCPUtime.TherectangularcodeisanotherorderofmagnitudebiggerinitsrequirementsformemoryandCPUtime.TheresultsofCahillandBaker(1997b)requiredabout500MBphysicalmemoryandtookoftheorderof40hoursCPUperrunonaDECAlpha8400computer.Somesavingsincomputereffortweremadebyintroducinganartificiallyhighabsorptionfactorforthehighestharmonicswhichcanreducethetotalnumberofharmonicsrequiredinthesolution.FouriertransformmethodsalsoenabledconsiderableCPUtimesavingsbycalculatingthenonlinearinteractionsinthetimedomain.Spatialresolutionsometimeshastobetradedforsavingsinruntime:themorecloselyspacedthegridpointsinthefinitedifferencescheme,themorememoryandCPUtimethatisrequired.

    ApartfromtheBergencodeanumberofothermethodsofsolutionarealsofeasible.ChristopherandParker(1991)havedemonstratedanonlinearmodelwhi