16
Sergey G. Kurdyukov a , Yuri B. Lebedev a , Irena I. Artamonova a , Tatyana N. Gorodent seva a , Anastasia V. Batrak a , Ilgar Z. Mamedov a , Tatyana L. Azhikina a , Svetlana P. Legchi lina b , Irina G. Efimenko b , Katheleen Gardiner c and Eugene D. Sverdlov a , b a Shemyakin-Ovchinnikov Inst. of Bioorganic Chemistry, Russian Academy of Scienc e, 16/10 Miklukho-Maklaya, Moscow, 117871, Russia. b Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia c Eleanor Roosevelt Institute, Denver, CO, USA GENE 273 (2001) 51-61 Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21: map locations and evolutionary history 발발발발 : 2002 발 1 발 14 발 발 발 발 : 발 발 발

Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Embed Size (px)

Citation preview

Page 1: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Sergey G. Kurdyukova, Yuri B. Lebedeva, Irena I. Artamonovaa, Tatyana N. Gorodentsevaa, Anastasia V. Batraka, Ilgar Z. Mamedova, Tatyana L. Azhikinaa, Svetlana P. Legchilinab,

Irina G. Efimenkob, Katheleen Gardinerc and Eugene D. Sverdlova, b

a Shemyakin-Ovchinnikov Inst. of Bioorganic Chemistry, Russian Academy of Science, 16/10 Miklukho-Maklaya, Moscow, 117871, Russia.

b Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russiac Eleanor Roosevelt Institute, Denver, CO, USA

GENE 273 (2001) 51-61

Full-sized HERV-K (HML-2) human endogenous retroviral LTR sequences on human chromosome 21:

map locations and evolutionary history

발표일시 : 2002년 1월 14일

발 표 자 : 김 명 숙

Page 2: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

One of the evolutionary mechanisms for acquisition of novel functional sequences can be domestication of exogenous retroviruses that have been integrated into the germ line. The whole genome mapping of such elements in various species could reveal differences in positions of the retroviral integration and suggest possible roles of these differences in speciation. Here, we describe the number, locations and sequence features of the human endogenous retrovirus HERV-K (HML-2) long terminal repeat (LTR) sequences on human chromosome 21. We show that their distribution along the chromosome is not only non-random but also roughly correlated with the gene density. Amplification of orthologous LTR sites from a number of primate genomes produced patterns of presence and absence for each LTR sequence and allowed determination of the phylogenetic ages and evolutionary order of appearance of individual LTRs. The identity level and phylogenetic age of the LTRs did not correlate with their map locations. Thus, despite the non-random distribution of LTRs, they have apparently been inserted randomly into the chromosome relative to each other. As evidenced in previous studies of chromosomes 19 and 22, this is a characteristic of HERV-K integration.

ABSTRACT

Page 3: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Retrovirus

+LTR element

Page 4: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

1. INTRODUCTION

• Transposons have played an important role in the evolution.• LTRs make important features of the genome.• HERV-K LTR sequences contain

putative hormone response elements,

enhancers, promoters, polyadenylation signals

and transcription factor binding sites.• To understand the role of the LTRs in the primate evolution

to perform a whole genome comparison of the LTR

positions in various primates.

Page 5: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

• Three criteria to choose these LTRs

(i) the LTRs should be full-sized

to comprise all regulatory elements

(ii) they should belong to a most

biologically active HERV-K

(iii) they should be located outside

of the clusters of interspersed repeats

Page 6: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Sequenced human chromosome 21

Mapping of some LTRs

Performed phylogenetic analysis

Determined the time of their appearance

in the primate genomes

Identified human-specific LTRs

OBJECT

Page 7: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

2. MATERIALS AND METHODS

2.1. Oligonucleotide primers

2.2. Cosmid and YAC libraries screening

2.3. Amplification of LTR sequences

2.4. Cosmid analysis

Fluorescent in situ hybridization (FISH)

2.5. Isolation of LTR-flanking regions

2.6. Sequence analysis

Blast N

RepeatMasker 2

ClustalW

PHYLIP

Tree View 1.6

Table 1. Primers for genomic PCR

Page 8: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

3. RESULTS

3.1. Isolation and mapping of LTR sequences

3.2. Distribution of the LTRs along Chr21

3.3. LTR sequence diversity

3.4. Non-random LTR distribution along chromosome

versus random alternation of various LTRs

3.5. Individual LTR evolutionary ages and maintenance

in primates

Page 9: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Fig. 1. A HERV-K LTR nearest neighbor dendrogram (A) and an ideogram of human chromosome 21 (B) with LTR locations and (C) genes density.

Page 10: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina
Page 11: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Table 2. Human genes in the vicinity of the LTRs

Page 12: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Table 3. Phylogenetic assessment of the integration times for individual HERV-K LTRs in the primate genomes

Page 13: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Fig. 2. The results of three individual LTR-containing loci PCR amplifications in the human and other primate genomes.

Page 14: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

4. DISCUSSION

4.1. The distribution of the HERV-K LTRs along chr21

is roughly correlates with the gene distribution

4.2. LTR-gene relations

4.3. The intra- and interchromosomal distribution

of the LTRs

4.4. LTRs of different ages are present on chr21,

but relatively young LTRs are more abundant

Page 15: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Fig. 3. Integration times of individual HERV-K elements mapped on Chr21.

Page 16: Sergey G. Kurdyukov a, Yuri B. Lebedev a, Irena I. Artamonova a, Tatyana N. Gorodentseva a, a Anastasia V. Batrak a, Ilgar Z. Mamedov a, Tatyana L. Azhikina

Fig. 6. Phylogenetic tree for the putative integration times of endogenous retrovirus/retroposon in primates branching times of the phylogeny should be considered as approximate.