20
135 SEQUENTIAL INDUCTIVELY COUPLED PLASMA DETERMINATION OF SOME RARE-EARTH ELEMENTS IN FIVEFRENCH GEOSTANDARDS Iwan ROELANDTS Geology, Petrology and Geochemistry, University of Liege, B 4000 Sart-Tilman, Liege 1, Belgium Gilbert MICHEL Laboratory of Analytical Chemistry, University of Liege, B 4000 Sart-Tilman, Liege 1, Belgium Experimental data for eleven rare-earth elements (REE) obtained by inductively coupled plasma spectrometry (ICP) in five French geochemical reference standards (BE-N, BR, DR-N, GS-N and FK-NIlare presented. The method is based on acid digestion of the sample and cation-exchange separation from matrix elements. Together with these new determinations an updated compilation of these reference materials are presented. Good agreement between the present results and previously preferred and published values obtained by various analytical techniques is observed. The values obtained in the present work corroborate the validity of the outlined method. The importance of rare-earth element (REE) concentrations in geochemical studies is well documented (1). Their determination in minerals, rocks and ores has been carried out by various techniques. For many years, elaborate analytical procedures such as neutron activation analysis (NAA) and isotope dilution mass spectrometry (IDMS) were the only methods showing sufficiently high sensitivity, adequate accuracy and precision for determining traces of REE in common silicate rocks (2). Because of its excellent sensitivity, good specificity, precision and accuracy, wide linear dynamic range, rather low sample matrix effects and simple operations, inductively coupled argon plasma spectrometry (ICP) has become an invaluable tool in today's modern analytical laboratory (3). Since the recent introduction of ICP for routine trace element analysis of geological materials, a number of investigations regarding the REE determination have been reported in the literature (e.g. 4- 16). The purpose of this paper is to present our ICP results on eleven REE in five French geochemical reference samples (GRS): basalt BE-N, basalt BR, diorite DR-N, granite GS-N and potash feldspar FK-N, and to compare them with published data. These samples represent important categories of silicate rocks. With the exception of BR, they have been prepared in large amounts and therefore are likely to remain available for the international geochemical community during several decades (13). The method used below for the sequential ICP determination of these elements is based on digestion of the sample in a hydrofluoric acid-nitric acid mixture, dissolution of the sample residue in hydrochloric acid and ion-exchange separation from matrix elements (e.g. Al, Ca, Fe ...) on Dowex 50WX8 cation-exchange resin. The conditions chosen were based on cation-exchange studies made by Strelow (1 7, 18), Roelandts (1 9). Ion-exchange has long been recognised as a convenient and extremely efficient separation method and has been found especially useful for REE separation. The process has been used e.g. by Brenner et al. (6, 15), Walsh et al. (8), Crock et al. (9, 14), Bolton et al. (lo), Govindaraju and Mevelle (13). In respect of the present work, it should be noted that the combination of high performance liquid chromatography (HPLC) with ICP has also been applied (12, 16). GeostandardsNewsletter, Vol. 10, N "2, Octobre 1986,~. 135 d 154

Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

Embed Size (px)

Citation preview

Page 1: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

135

SEQUENTIAL INDUCTIVELY COUPLED PLASMA DETERMINATION O F SOME RARE-EARTH ELEMENTS IN FIVE FRENCH GEOSTANDARDS

Iwan ROELANDTS

Geology, Petrology and Geochemistry, University of Liege, B 4000 Sart-Tilman, Liege 1, Belgium

Gilbert MICHEL

Laboratory of Analytical Chemistry, University of Liege, B 4000 Sart-Tilman, Liege 1, Belgium

Experimental data for eleven rare-earth elements (REE) obtained by inductively coupled plasma spectrometry (ICP) in five French geochemical reference standards (BE-N, BR, DR-N, GS-N and FK-NIlare presented. The method is based on acid digestion of the sample and cation-exchange separation from matrix elements.

Together with these new determinations an updated compilation of these reference materials are presented. Good agreement between the present results and previously preferred and published values obtained by various analytical techniques is observed. The values obtained in the present work corroborate the validity of the outlined method.

The importance of rare-earth element (REE) concentrations in geochemical studies is well documented (1). Their determination in minerals, rocks and ores has been carried out by various techniques. For many years, elaborate analytical procedures such as neutron activation analysis (NAA) and isotope dilution mass spectrometry (IDMS) were the only methods showing sufficiently high sensitivity, adequate accuracy and precision for determining traces of REE in common silicate rocks (2). Because of its excellent sensitivity, good specificity, precision and accuracy, wide linear dynamic range, rather low sample matrix effects and simple operations, inductively coupled argon plasma spectrometry (ICP) has become an invaluable tool in today's modern analytical laboratory (3). Since the recent introduction of ICP for routine trace element analysis of geological materials, a number of investigations regarding the REE

determination have been reported in the literature (e.g. 4- 16).

The purpose of this paper is to present our ICP results on eleven REE in five French geochemical reference samples (GRS): basalt BE-N, basalt BR, diorite DR-N, granite GS-N and potash feldspar FK-N, and to compare them with published data. These samples represent important categories of silicate rocks. With the exception of BR, they have been prepared in large amounts and therefore are likely to remain available for the international geochemical community during several decades (13).

The method used below for the sequential ICP determination of these elements is based on digestion of the sample in a hydrofluoric acid-nitric acid mixture, dissolution of the sample residue in hydrochloric acid and ion-exchange separation from matrix elements (e.g. Al, Ca, Fe ...) on Dowex 50WX8 cation-exchange resin. The conditions chosen were based on cation-exchange studies made by Strelow (1 7, 18), Roelandts (1 9). Ion-exchange has long been recognised as a convenient and extremely efficient separation method and has been found especially useful for REE separation. The process has been used e.g. by Brenner et al. (6, 15), Walsh et al. (8), Crock et al. (9, 14), Bolton et al. (lo), Govindaraju and Mevelle (13).

In respect of the present work, it should be noted that the combination of high performance liquid chromatography (HPLC) with ICP has also been applied (12, 16).

Geostandards Newsletter, Vol. 10, N "2 , Octobre 1986 ,~ . 135 d 154

Page 2: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

136

EXPERIMENTAL

Reagents

The cation-exchange resin Dowex 50WX8 (100-200 mesh, hydrogen form) was supplied by Fluka, Buchs, Switzerland. Before use, the fine particles were removed by washing.

Single-element REE stock standard solutions (1000 pg/ml) were prepared by dissolving high-purity (99.9%) oxides (Rare-Earth Products Limited, London, England) in a few ml of nitric acid and diluting in deionised water. These oxides have been previously calcinated at 950°C for loss of ignition.

REE standard working solutions were prepared by suitable dilution of the stock solutions.

All these standard solutions contained 5% (V/V) nitric acid and were stored in polypropylene bottles.

Acids of AR grade purity and deionised water were used.

Appara tus

Cation-exchange column

A borosilicate glass tube of internal diameter 10 mm was filled with Dowex 50WX8 resin to 20 cm height of resin bed (in water). Before loading, the resin column was preequilibrated with 1.75 M hydrochloric acid.

ICP equipment

All our ICP measurements were performed on a sequential ICP plasma spectrometer Bausch and Lomb model 35 10 ARL (Applied Research Laboratories).

The experimental ICP parameters used in this study are reported in Table 1.

Sample preparation

Decomposition of samples

In a platinum dish, 1 g of powdered sample (accurately weighed), was treated with a mixture of 38-40% hydrofluoric acid and 5 ml of concentrated nitric acid, with swirling at regular intervals. After complete evaporation to dryness on a water-bath, 5 ml of concentrated nitric acid was added and the mixture was taken to dryness. This acid addition and evaporation was repeated thrice. The remaining salts were then transferred to a 100-ml beaker with water, treated with concentrated hydrochloric acid and again evaporated to dryness. The final residue was taken up in 30 ml of 1.75 M hydrochloric acid.

In case of rock samples with refractory minerals like zircon, the acid decomposition has to be followed by filtration of the acid-insoluble residue, its fusion with appropriate

Table 1. ICP instrumentation and working conditions

ICP equipment

RF generator

Induction coil

Plasma torch

G a s f l o w rates

Observation he ight Nebulizer

Spray chamber Sample uptake r a t e Flush t i m e S ignal Integrat ion t i m e - Integrat ion c y c l e Detector (PMT) Computer

Bausch and Lo& Model 3510 AIU, v a c w vers ion Sequential Czerny-Turner scarning mono- chromator, computer control led 1.00 meter f o c a l length Holographic grat ing 2400 grooves m-' Spectral range 165-800 nm Primary and secondary sl it width 20 p E f f e c t i v e r e s o l u t i o n 0 .008 nm PWHM ( 1 s t s p e c t r a l order) Reciprocal l i n e a r d ispers ion 0.42 nm m- 1

27.12 MHz, c r y s t a l control led air cooled 1 . 2 kW working inc ident power

Three-turn

Quartz, 20 mm outer diameter, pennanent- l y a l igned

Cooling g a s 12 1 mi!;' Plasma gas 0 . 8 min Argon Carrier gas

Constant Meinhard concentr ic g l a s s ; t i p washer system Conical, 90 cc minimum volume 3 m l min-l 30 8

1 s 3 HAHAMATSU R955 PDP 11

1 1 min-' (water saturated argon)

fluxes (peroxides, carbonates, borates), hydrochloric acid dissolution and its recombination with the original filtrate.

Cation-exchange separation

The 1.75 M HC1 attack solution was poured through a filter on top of a preequilibrated 50WX8 resin column. After the complete passage of the solution, the column was washed with 100 ml of 2 M hydrochloric acid. The effluent which contains all the major elements was discarded. The REE retained on the column were then quantitatively eluted with 75 ml of 8M nitric acid and the eluate was saved. A flow rate of approximately 1 ml/min was maintained throughout the cation exchange procedure.

The REE eluate was then slowly evaporated to dryness on a hot plate and the residue was dissolved in 5% (V/V) nitric acid. The solution was quantitatively transferred into a 25-ml volumetric flask and made up to volume with 5% (V/V) nitric acid. This solution was transferred to a polypropylene bottle for storage until the samples could be analysed for REE.

ICP analysis

Solutions were introduced to the nebulizer 30 s (preflush time) before signal integration to allow the spray chamber to reach equilibrium. Three separate and successive

Page 3: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

137

1 s integrations of photomultiplier currents were performed for each element to be analysed in each solution and the readings were averaged. The nebulizer and the spray chamber were rinsed for 30 s with a 5 % (V/V) nitric acid solution prior the introduction of the next sample.

Calibration was made using single-element solutions of REE (in 5% (VN) nitric acid). Internal standardisation was not used in this work. Background intensities were measured at the analyte wavelength on a 5% (V/V) nitric acid solution. All intensities were corrected for background.

RESULTS AND DISCUSSION

Spectral coincidence profiles and interference correction coefficients

Under favourable circumstances, several authors have determined some REE directly on the attack solution with ICP without any chemical separation (e.g. 4, 5 , 7). Important background and spectral line interference corrections from elements present at significant concentrations in the geological samples (e.g. Mg, Al, Ca, Fe, Ti, Mn..) have to be applied. An atlas of recorded

Table 2. Spectral interference correction coefficients (in %)

spectra with interference lines from major elements has recently been published by Winge et al. (20).

Using the cation-exchange procedure described above, REE can be quantitatively separated from the matrix elements. The total salt concentration of the sample solution was reduced and thus more reproducible nebulisation was achieved. However, preliminary investigations were necessary to predict, identify and control potential inter-REE effects. This problem was studied by obtaining scans of single-element standard solutions prepared in 5% (VW) nitric acid each containing 10 pg/ml of the REE of interest and 100 pg/ml of the other potentially interferent REE.

These recorded spectral coincidence profiles are shown in Figures 1 - 23 (range of scan 0.1 nm). On the basis of these data, spectral interference correction coefficients were determined and listed in Table 2. As can be seen the amount of interference correction to be applied is generally negligible or small.

Rare-earth Wavelength I n t e r f e r e n c e expres sed i n X r e l a t i v e t o t h e a n a l y t e l i n e of i n t e r e s t ( ' ) Element

La

Ce

Pr

Nd

Sm

EU

Gd

I b

DY Ha

Er

Tm

Yb

Lu

nrn

379.478 398.852 413.765 41 8.660 390.844 422.293 401.225 430.358 359.260 442.434

381.967 303.284 335.047 342.247 350.917 367.635 353.170

345.600 337.271 369.265 390.631 313.126 328.937

261.542

La

100 100

0.016

0.016

-

- - -

0.0038 0.018

-

0.0048 - - - - - - - -

- 0.002

Ce Pr Nd Srn Eu Gd Tb Dy Ho Er Tm Yb Lu 0.029 0.13 0.14 0.19 0.097 0.012 0.049 0.0068 0.18 0.079 0.025 0.0034 0.002 0.016 0.16 0.13 0.07 0.098 - 0.0065 0.0053 - - 0.030 0.014 0.0092

100 0.12 0.16 0.081 0.11 0.028 0.025 0.11 0.055 0.008 0.014 0.003 0.0015 100 0.025 0.24 0.10 0.0033 - 0.65 0.080 0.m4 0.055 - 0.0024 - - 20.26 100 0.41 0.28 0.16 0.018 0.079 0.098 0.026 2.69 0.030 0.0006 -

0.19 100 1.31 0.39 0.037 1.05 0.027 0.12 0.034 0.036 - - - 0.73 0.67 100 0.057 0.017 0.010 0.073 0.16 0.048 0.011 - - - - - 0.011 3.49 100 0.026 0.12 0.0039 0.057 0.16 OD0280.0070 0.0045 - - 0.0014 0.10 3.72 100 - 3.13 0.029 0.048 0.084 - - - - 1.19 5.67 0.16 100 0.051 1.04 0.061 0.039 0.018 0.016 0.0035 0.028 - -- - 0.034 0.40 0.065 100 - - - .- a0053 - - 0.035

0.0043 0.028 0.38 0.091 0.043 100 0.37 0.057 7.09 0.050 0.011 0.0039 0.039 0.37 0.014 0.016 0.09 - 100 0.49 0.13 0.30 0.010 0.0070- - - - - 0.24 0.0088 2.00 0.013 9 100 0.088 1.10 0.0007 0.011 0.0050 0.015 - 0.020 0.021 0.12 0.36 0.028 0.016 100 2.39 0.082 0.20 0.013 0.017 - - 0.023 0.12 0.019 0.051 0.0004 0.041 100 0.037 - 0.0013 - - - 0.17 0.12 0.030 0.0042 0.0077 0.18 0.080 100 0.022 0.031 - - - 0.022 0.0091 0.011 0.0011 0.0054 0.95 0.31 0.17 100 0.0009 - - --

0.016 0.068 0.082 0.094 0.052 0.0066 0.049 0.020 0.056 100 0.0070 0.10 0.0028 - 0.023 0.040 0.61 0.014 0.14 0.0050 0.038 0.013 0.083 100 0.021 0.016 0.0009 - -- - 0.10 - 0.031 - - 0.077 0.023 0.011 0.13 100 0.030 - - - - - - - 0.0020 0.044 OD0580.0068 - 100 - - -

("only t h e c o e f f i c i e n t s u n d e r l i n e d have been cons ide red i n t h i s s t u d y

Page 4: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

138

- z

X nm

c Ce

413.765 I 1 i jGd

Xnm

X nm

> I- v) z W I-

-

z

L

X nm

> I- v) z W !-

-

z

X nm

I X nrn

Figures 1 to 6 La, Ce, Pr. Wavelength scans 10 Fg/ml for the analyte; 100 pg/ml for other REE

Page 5: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

139

X nm X nm

I X nm

I X nm

Figures 7 to 11 Nd, Sm, Eu. Wavelength scans 10 pg/d for the analyte; 100 pg/ml for other REE

Page 6: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

140

X nrn

DY 53.170

Tb i; ' '.S,?

X nrn

I X nm

X nm

Figures 12 to 17 Gd, Tb, Dy, Ho. Wavelength scans 10 pg/d for the analyte; 100 CLg/ml for Other

Page 7: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

141

n

t

rn z w I-

t

z

Tm 313 126

L

t

v) 2 w I-

k

z

Figures 18 to 23 Er, Tm, Yb, Lu. Wavelength scans 10 pglml for the analyte; 100 pglml for other REE

Page 8: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

142

Detection limit

The background equivalent concentration (BEC) and the detection limits under the above working conditions (i.e. 1 g sample diluted to a 25-ml final volume) are given in Table 3. The limits of detection found in this study were consistent with the published values (9), although generally lower. Detection limit i s conventionally defined here as the concentration of an analyte that produces a net signal intensity equal to twice the standard deviation of the background emission measured at the analyte wavelength on the blank solution (here the 5% (V/V) nitric acid solution). Eleven successive measurements at the analyte wavelength were made.

Table 3. Detection limits under our working conditions

Rare-earth Wavelength(b) B E C element m PPm

La

C e

P r

Nd

Sm

EU Gd

Tb

DY no E r

Tm

Yb LU

379.478 398.852 413.765 418.660 390.844 422.293 401.225 430.358 359.260 412.434 381.967 335.047 342.247 350.917 367.635 353.170 345.600 337.271 369.265 390.631 313.126 328.937 261.542

0.118 0.230 0.778 0.686 0.817 1.104 0.335 0.509 0.302 1.441 0.033 0.232 0.158 0.317 0.564 0.085 0.133 0.109 0.155 0.169 0.079 0.014 0.015

0.043 0.105 0.330 0.190 0.240 0.360 0.140 0.255 0.150 0.708 0.018 0.155 0.063 0.138 0.255 0.045 0.045 0.075 0.068 0.053 0.050 0.025 0.033

(a) Calculated f o r 1 g sample d i l u t e d to a 25-ml f i n a l volume

(b) The wavelengths used i n t h i s work are underlined

Choice of wavelengths

The analytical lines chosen in this work are underlined in Table 3. They are not necessarily the most sensitive ones, but they are a compromise between line intensity and possible spectral interferences.

Precision and accuracy

In order to obtain some idea about the overall accuracy and precision of the proposed method, we

analysed sequentially five French geostandards (BE-N, BR, DR-N, GS-N and FK-N), available from the Centre de Recherches PCtrographiques et GCochimiques, Nancy (France). Working values for some REE in these reference samples have been recently presented by Govindaraju (21).

The GRS were analysed under routine conditions. All our measurements were made in mplicate on the same sample solution. For the ranges of concentration encountered here the relative precision was - 1-2%.

Our ICP results are given in Table 4. Corrections for spectral interferences were applied using coefficients from Table 2.

Table 4. Present ICP results for some french geochemical reference samples (in ppm)

Basalt Basalt Diorite Granite Potash BE-N BR DR-N GS-N feldspar

FK-N

L a C e P r Nd Sm Eu Gd DY Er Yb L u

82 82 152 160 18 18 67 65 11.5 11.3 3.75 3.75 9.3 9.4 6.0 6.2 2.3 2.6 1.64 1.69 0.26 0.32

22 48 6

23 4.8 1.48 4.8 4.6 2.6 2.42 0.41

73 1.15 144 1.08 15 50

6.9 1.66 0.37 4.5 3.1 1.4 1.40 0.25

Because of low REE concentration levels in the potash feldspar, FK-N, only three REE (La, Ce and Eu) could be determined in this study. For comparison, the working values quoted by Govindaraju (21) for these 5 GRS are listed in Tables 5-9. Data underlined are recommended values, other values are those proposed.

New REE data have become available since Govindaraju's compilations (22-25). Therefore, we have attempted to collect as far as possible, new data from major analytical and geochemical journals. For the REE considered here, our efforts to compile literature results have yielded a 40% increase in data. An initial mean and standard deviation were calculated including all the updated values for a given REE. All data outside +/- two standard deviations from the initial mean were rejected and a second mean (ii) and standard deviation (s) recalculated. These final means and associated standard

Page 9: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

143

Table 5. Compiled data for basalt BE-N (in ppm)

Literature

Individual Means by Analytical Technique

Element Govindaraju 2 s ( n ) Median Range ICP I D S

82 8429 (31) 83 54-110 85+2(4) - LI

Ce 152 149220(36) 149 110-247 147217 (5) 154 (1) - Pr 1726 (4) 18 10-22

Nd - 70 7029 (22) 66 45-07 65.5(1) 65.7(1)

12 12.2+1.0(21) 12.1 10-18 12.6(1) 12.5(1) 5m

3.6 3.61+0.42(22) 3.66 2.6-6 3.6(2) 3.65(1) EU

Gd 9 9.721.1 (9) 9.8 5.9-11.5 10 (1) 9.84(1)

DY 6;4+0.5(8) 6.4 5.87-13.5 6.6(1) 6.28(1)

Er 2.520.4 (5) 2.5 1.9-2.8 2.7(1) 2.54(1)

Yb 1.8 1.87+0.55(21) 1.88 0.6-5 1.87(2)

Lu 0.24 0.22+0.06(13) 0.24 0.1-0.52 0.3(1)

- -

Table 6. Compiled data for basalt BR (in ppm)

NAA XRP Others

81+4(15) 85+15(7) 84+13(3)0ES

15028 (12) 145522 (10) 144233 (3) SSMS

1526 (3) SSMS

6823 (10) 87 (21 ssns 11.820.4 ( 14 ) 65212 (6

3.63+0.22(14) 13(1) 3.65 (2)MS

9.621.1 ( 4 ) 8(1)AAS

6.220.5 (3) 6.9 (2)AAS

12 * 5 (2) SSm

2.7(2)AAS

1.8 120.32 ( 13 1

0.23+0.05(9) 0.26(1)AAS

1.8751.21(310ES

Literature

Individual Means by Analytical Technique

Element Govindaraju 2 s ( n ) Median Range ICP I D S NAA OES XRP

La - 80 80+_13(18) 81.5 15-150 83(1) 8353 (8) 98 (2) 72215 (6)

140 148214 (21) 147 110-172 168(1) 146(1) 147211(12) 130(1) 145+17(5) Ce

Pr 5 ( 1 )

Nd 60 57+19(13) 60 17-110 70(1) 65(1) 64210 (7) 17 (1) 60(2)

Sm 12 11.622.8 (12) 12.1 4-17 17(1) 12.1(1) 12.0+1.2(8) 7.4(1)

EU 3.7 3.66+0.19(13) 3.60 0.9-4 4(1) 3.45(1) 3.65+0.17(11)

-

Gd 8.4+2.5(8) 7.9 4.5-13 8 . 5 ( 1 ) 9.6(1) 8.3+3.3(5) 7-2(1)

DY 6.6+1.7(4) 6.1 5 .O-9 6.3(1) 5.6(2) 9(1)

Er 1.8 (2) 1.2-2.4 2.4(1) 1.2(1)

Yb 2 1.9420.4 1 ( 16) 1.8 3 1.38-7.2 1.7 ( 1) 1.73 ( 1 ) 1.7520. 20 ( 10) 2.5W-0.42 ( 4 )

LU 0.23+0.03(7) 0.23 0.13-0.27 0.235l.03 (7)

Page 10: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

144

Table 7. Compiled data for diorite DR-N (in ppm)

Element

La

C e

P r

Nd

Sm

Eu

G d

DY

E r

Yb

Lu

Govindaraju

2 1

46 -

22

5.3

1.5

3.5

2 .8

G 2 s ( n )

22.553 .O (10 )

4658 (16)

23.423.4 (10)

5.450.4 (7 )

1.4420.23 ( 1 0 )

4.321.2 ( 5 )

3 .O+O. 8 ( 3)

2 .86+0.4 4 ( 1 1

0.3450.12 ( 6 )

Median Range

21.8 12-32

46 34-59

~ ~~

Literature

Individual Means by Analytical Technique

24 18-28

5.4 3.4-6

1 . 5 1 1 -1.66

4.7 3-6

3.4 2.1-3.6

2.8 2.3-8

0 .38 0.1-0.9

ICP

27 (21

5059 (3)

27 (1 )

6 ( 1 )

1 . 6 ( 1 )

4 . 7 ( 1 )

2 .912)

NAA XRP OES

23 .3 (2 ) 20.7+0.9(6)

4424 (8) 47512 (3 )

6 (1)

23.223.5 (8) 21 .5 (1 )

5.350.3 ( 6 )

1 .4250.2 3 ( 9 )

4.3+1.4(4)

3 .050.8 ( 3)

1 . 8 ( 1 )

2 .7150.23(8) 4 (1)

0.39+0.04 (5 )

Table 8. Compiled data for granite GS-N (in ppm)

Element

La

Ce

Pr

Nd

Sm

Eu

Gd

DY

Er

Yb

Lu

Govindaraju 5 s(n) Median

- 1 5 73+-7(21) 73

- 1 4 0 132512 (22) 133

50 51+3(17) 5 0

- 8.2 7.920.7 ( 15) 8.0

- 1.7 1.59+0.15 (20 ) 1.60

1.550.5 (5 ) 1.3

- 1.7 1.57t0.36 (20 ) 1.49

0.2 0.2 320.05 ( 1 3) 0.2 3

Literature

Individual Means by Analytical Technique

NAA OES XRF Others Range ICP

56.5-100 7322 (3) 73+5(13) 8cH_8(3) 5 9 ( 1 ) 6 3 ( 1 ) S S M

110-360 137516 (3) 133511 (14) 126 (2 ) 102 (2 )

1.8-19

50+-3 (13) 56 (1 ) 46(1)AAS 46-57 5 1 (2 )

6.7-9.3 7.8(2) 7.720.6 (1 1) 9 t l ) M S

1.3-2 1.7ec-3. 2 0 (3) 1.5720.14 (16) 1.6 (1) AAS

3.4-28 5 .65 (2 )

3.1-26 3.4(1) 3 . 1 ( 1 ) M S

1.3 (1) AAS 1.0-2.07 2 .0 (2 ) 1 .0(2)

1.3 (1) AAS 0.96-3.7 1.3950.15 (3 ) 1.6920.36 ( 1 4 ) 1.2 (2)

0.1-0.33 0.26(1) 0.2 3 5 - 0 5 ( 12)

Page 11: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

145

Table 9. Compiled data for potash feldspar FK-N (in ppm)

Literature

Individual Means by Analytical Tebhnique

Element Govindaraju 2 s ( n ) Median Range ICP IDMS NAA SSMS

La 1 1.1220.61(5) 1.16 0.3-2 1.16(1) 1.3820.56 ( 3 ) 0.3 (1)

0.8-1.4 1.28(1) 1.12 ( 1) 1.2520 17 (4 ) 0.8 ( 1) Ce - 1.3 1.17+0.21(7) 1.28

Eu 0.42 0.44fp.06 ( 8 ) 0.42 0.35-0.55 0.35(1) 0.458 ( 1) 0.45+0.06 (6)

deviations are reported in Tables 5-9. The number (n) in parentheses indicates the number of values used for the calculation. This approach is similar to that reported earlier by Gladney et a1 (2).

The values thus calculated show fairly good agreement with those previously given (21) and confirm them in most cases.

Where sufficient data exist, the median was determined. Concentration ranges are also included in Tables 5-9. It is worthnoting that the range of values is large.

Means and standard deviations were calculated (using f 2s for elimination) according to the analytical methods used which had three or more results. The following abbreviations for analytical methods have been used.

AAS atomic absorption spectrometry CAN candoluminescence emission ICP inductively coupled plasma IDMS isotope dilution mass spectrometry NAA neutron activation analysis OES optical emission spectroscopy SSMS spark source mass spectrometry XFW X-ray fluorescence spectrometry

As it has been often pointed out, NAA is the main source of data for REE. From examination of Tables 5-9, it can be seen that our ICP results stand a favourable comparison with the values obtained previously by ICP and other analytical techniques, e.8. NAA and IDMS.

In Tables A-E we have assembled individual REE data previously compiled by Govindaraju and de la Roche (22), Govindaraju (23-25) for each of the five GRS and available data surveyed from the literature. Data were listed in ascending order of their concentration. The reference coding system adopted in these tables is similar

to that previously used (2). A complete list of individual references is given in Table F.

The ICP equipment used for this study was purchased with funds from the Belgian "Fonds de la Recherche Fondamentale Collective", under Contract No 9.4569.83.

We are grateful to V. Miocque and G. Delhaze for their assistance.

RESUME

Les rdsultats sur onze terres rares obtenus par spectrometric d'dmission par plasma B couplage inductif (ICP) dans cinq 4 c h a n t i 1 1 o n s geochimiques de ref4rence francais, i(BE-N, BR, DR-N, GS-N et FK-N) sont present&. La mdthode est basde sur m e attaque nitro-fluorhydrique et une separation B l'aide d'dchangeur d'ions.

En pius des rdsultats nouveaux, les donnCes disponibles pour ces dchantillons de reference ont dtd mises ir jour. Les rdsultats obtenus dans ce travail montrent une bonne concordance avec les valeurs prdfdrdes et prkedemment publibes. Ils confirment la validitd de la mdthode utilisee.

REFERENCES

(1) P. Henderson, Editor (1984) Rare earth element geochemistry, Developments in Geochemistry 2,5 10 pp, Elsevier, Amsterdam,

(2) E.S. Gladney, C.E. Burns and I. Roelandts (1983) 1982 compilation of elemental concentrations in eleven United States Geological Survey rock standards, Geostandards Newsletter, 7: 3-226.

Page 12: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

146

(3) M. Thompson and J. N. Walsh (1983) A handbook of inductively coupled plasma spectrometry, 273 pp, Blackie and Son, Ltd, Glasgow.

(4) J.A.C. Broekaert, F. Leis and K. Laqua (1978) Determination of rare earths in mineralogical samples by means of inductively coupled plasma optical emission spectroscopy (ICP-OES), ICP Information Newsletter, 3: 38 1-387.

( 5 ) J.A.C. Broekaert, F. Leis and K. Laqua (1979) Application of an inductively coupled plasma to the emission spectroscopic determination of rare earths in mineralogical samples, Spectrochimica Acta, 34B: 73-84.

(6) I.B., Brenner, A.E. Watson, T.W. Steele, E.A. Jones and M. Goncalves (198 1) Application of an argon-nitrogen inductively-coupled radiofrequency plasma (ICP) to the analysis of geological and related materials for their rare earth contents, Spectrochimica Acta, 36B: 785-797.

(7) S.E. Church (1981) Multi-element analysis of fifty-four geochemical reference samples using inductively coupled plasma- atomic emission spectrometry, Geostandards Newsletter, 5: 133-160.

(8) J.N. Walsh, F. Buckley and J. Barker (1981) The simultaneous determination of the rare-earth elements in rocks using inductively coupled plasma source spectrometry, Chemical Geology, 33: 141-153.

(9) J.G. Crock and F.E. Lichte (1982) Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry, Analytical Chemistry, 54: 1329- 1332.

(10) A. Bolton, J. Hwang and A. Vander Voet (1983) The determination of scandium, yttrium and selected rare earth elements in geological materials by inductively coupled plasma optical emission spectrometry, Spectrochimica Acta, 38B: 165-174.

(1 1) M. Borsier and M. Garcia (1983) Analyse automatique d2chantillons gCologiques par plasma ICP, Spectrochimica Acta, 38B: 123-127.

(12) K. Yoshida, K. Fuwa and H. Haraguchi (1983) Determination of 15 rare earth elements by liquid chromatography with inductively coupled plasma atomic emission spectrometric detection, Chemistry Letters, 1879-1 882.

(1 3) K. Govindaraju and G. Mevelle (1983) Geostandards and geochemical analysis, Spectrochimica Acta, 38B: 1447-1456.

(14) J.G. Crock, F.E. Lichte and T.R. Wildeman (1984) The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography, Chemical Geology, 45: 149-163.

(15) I.B. Brenner, E.A. Jones, A.E. Watson and T.W. Steele ( 1984) The application of a N;!-Ar medium-power ICP and cation-exchange chromatography for the spectrometric determination of the rare-earth elements in geological materials, Chemical Geology, 45: 135-148.

(16) R. Aulis, A. Bolton, W. Doherty, A. Vander Voet and P. Wong (1985) Determination of yttrium and selected rare-earth elements in geological materials using high performance liquid chromatography separation and ICP spectrometric detection, Spectrochimica Acta, 40B: 377-387.

(17) F.W. Strelow (1961) Some equilibrium distribution coefficient values for cations in nitric, sulphuric and hydrochloric acids using AG sulphonated polystyrene resins, Journal of the South African Chemical Institute, 14: 51-57.

(18) F.W.E. Strelow (1963) Separation of trivalent rare-earths plus Sc (In) from Al, Ga, T1, Fe, Ti, U and other elements by cation-exchange chromatography, Analytica Chimica Acta, 34: 387-393.

(19) I. Roelandts (1975) Contribution au dosage par activation neutronique des terres rares et d'autres ClCments en trace dans les roches magmatiques, Unpublished Dr Sc. Thesis, University of Libge.

(20) R.K. Winge, V.A. Fassel, V.J. Peterson and M.A. Floyd (1 985) Inductively coupled plasma-atomic emission spectroscopy. An atlas of spectral information, Physical Sciences data 20,584 pp, Elsevier, Amsterdam.

(2 1) K. Govindaraju (1985) 1984 compilation of working values and sample description for 170 international reference samples of mainly silicate rocks and minerals, Geostandards Newsletter, 8, Special issue, 87 pp.

(22) K. Govindaraju and H. de la Roche (1977) Rapport (1966-1976) sur les tlCments en traces dam trois roches standards gCochimiques du CRPG: basalte BR and granites GA et GH, Geostandards Newsletter, 1: 67-100.

Report (1980) on three GIT-IWG rock reference samples: anorthosite from Greenland, AN-G; basalte d'Essey-la-Cijte, BE-N; granite de Beauvoir, MA-N, Geostandards Newsletter, 4: 49-138.

(23) K. Govindaraju (1980)

(24) K. Govindaraju (1982) Report (1967-1981) on four ANRT rock reference samples: diorite DR-N, serpentine UB-N, bauxite BX-N and disthbne DT-N, Geostandards Newsletter, 6: 91-159.

Report (1973-1984) on two ANRT geochemical reference samples: granite GS-N and potash feldspar FK- N, Geostandards Newsletter, 8: 173-206.

(25) K. Govindaraju (1984)

Page 13: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

147

Table A. Rare-earth elements in basalt BE-N (in ppm)

Conc . Anal. R e f . Method

54 * 58 * 61 70 70 75 77.5 78 79 79 80 00 00.8 81 81 02.4

82.8 83 84 85 85 85 86 86.7 87 88 88 91 93 96 98 102 102 110

L a - XRF

SSMS

XRF

OES XRF

NAA NAA

NAA NAA

NAA NAA

NAA NAA NAA XRF I C P

NAA NAA

NAA

I CP

I C P OES

NAA NAA NAA

I CP

XRF XRF

SSMS

OES

AAS XRF

XRF SSMS

80GAG 01

8OSCO 01

8 0 D I E 01

8 0 G R I 01

80HEN 01

80VAN 01

80APO 01

82CRO 01 80HER 01

82CRO 01

82CRO 01

82KUB 01 8 1 P O T 01

8 0 P O T 01

8 0 F I T 01

84GOV 01

84BAR 01

8OSPE 01

8 0 S T O 01

80MOR 01

85SAM 01

80PAL 01

8ODEL 01

82KRA 01

80ERZ 01

8 l C H U 01

8OPOW 01

80HAR 01

8 0 R I C 01 82SEN 01

82SEN 01

80BEN 01

80 HUG 01

80 J U E 01

C e - 110 SSMS 8 0 S C O 01 110 XRF 80GAG 01

114 117 124 124 126 127 138 142

NAA OES

I C P X R F

XRF XRF

NAA I C P

BODEL 01

80DOR 01

8OWAT 01

80HEN 01

8 0 D I E 01

8 2 0 L S 01

82CRO 01

81CHU 01

C o n c . Anal. R e f . Meth.

1 4 2

1 4 2

1 4 4 1 4 5

1 4 5 1 4 8

1 4 8 1 4 8

150

152 153 1 5 4 1 5 4 157 160

1 6 0

161

162 163 165 168 170 172 176

1 9 0 190

210 * 2 4 7

NAA

NAA

NAA

I CP SSMS

NAA

NAA XRF NAA

NAA

I C P

NAA I DMS

NAA XRF

XRF XRF

NAA

NAA XRF

OES

I C P

X R F

SSMS

CAN NAA OES

XRF

82CRO 0 1 82KRA 01

80ERZ 01

85SAM 01

8 0 R I C 01

8 0 P O T 0 1 82CRO 01

80CAS 01

82KUB 01

8OHER 01

84GOV 01

8 1 P O T 01 81 MIC 01

8 4 S P E 01

80 HUG 01

80 R I D 01

8 0 F I T 01

84BAR 01

8OAPO 01

80POW 01

8 2 S E N 01

80MOR 01

80BEN 01

8 0 J U E 01

81MAZ 01

80VAN 0 1 80CHA 01

8OHAR 01

1 5 * 4 9

57 63 63

65 65

65.5 65.7 66

N d

SSMS

XRF

XRF XRF

XRF

NAA NAA I C P

I DMS NAA

- 80SCO 01

8 O D I E 01

80HEN 01

80HUG 01

80FIT 01

82CRO 01

82KRA 01

84GoV 01

8 4 M I C 01

80ERZ 01

C o n c . A n a l . R e f . Method

6 6 . 4 NAA

67 NAA

68 NAA

69 NAA 69 NAA 71 NAA

75 AAS

7 6 NAA 76 XRF

82 NAA 83 SSMS

83 XRF 9 1 SSMS

97 x NAA - - -------- ------- Sm

10 SSMS

11.09 NAA

11.12 NAA 11.2 NAA

11.7 NAA 1 1 . 9 NAA

11.9 NAA

11.9 NAA 1 2 NAA

12 NAA 12.08 NAA

1 2 . 1 NAA

12 .2 NAA

1 2 . 2 NAA 12 .2 NAA 12.5 I DMS

12.6 I C P 12 .9 NAA 13 XRF

1 4 hAS 15 SSMS 18 L SSMS -------------------

EU 2.6 SSMS

2.96 NAA 3.12 NAA 3.3 AAS

3.38 NAA

-

81POT 01

84BAR 0 1 82CRO 0 1 80HER 01

80POT 0 1 8 0 S P E 01

82SEN 01

82KUB 01

8opow 01

80VAN 01

8 0 J U E 01

80BEN 0 1 8 0 R I C 0 1 8OAPO 01

-------------

8OSCO 01

82CRO 01

82CRO 01

80STo 01

8 0 S P E 01

80ERZ 01

80HER 01

82KRA 01

80POT 0 1 84BAR 0 1 82CRO 01

81POT 01

BOVAN 0 1 80DEL 01

82KUB 01

84MIC 01

84GOV 01

8OAPO 01

8 0 F I T 01

82SEN 01

8OJUE 01

BORIC 01 ._----__------

8OSCO 01

80VAN 01

82CRO 01

82SEN 0 1 BODEL 01

*Not inc luded i n mean ca lcu la t ion

Page 14: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

148

Table A (Cont'd.).Rare-earth elements in basalt BE-N (in ppm)

Conc. Anal. Ref. Method

3.4 3.5 3.55 3.6 3.6 3.65 3.66 3.7 3.74 3.75

NAA

I CP NAA

NAA

NAA

I DMS NAA

I CP NAA

NAA

82KRA 01 85SAM 01 80STO 01 80APO 01 84BAR 01 84MIC 01 8OSPE 01 84GOV 01 8OHER 01 BOPOT 01

3.76 NAA 80ERZ 01 3.76 NAA 81POT 01 3.78 NAA 82CRO 01 3.86 NAA 82KUB 01 3.92 NAA 82CRO 01 4 AAS 8lMAZ 01 4.8 SSMS BOJUE 0 1 6 * SSMS 80RIC 01 ...............................

5.9 8 8.7 9 9.4 9.84 10 10 11.2 11.5

Gd SSMS AAS

NAA

NAA

NAA

IDMS ICP OES NAA

SSMS

- 80SCO 01 82SEN 01 8OERZ 01 82KRA 0 1 80SPE 01 ~ ~ M I C 01 84GoV 01 8OGRI 01 80PoT 01 BORIC 01

Conc. Anal. Ref Method

El! 5.87 NAA 82KUB 01 5.9 NAA 80SPE 01 5.9 SSMS 80SCO 0 1 6.28 IDMS 84MIC 01 6.6 ICP 84GoV 01 6.7 AAS 82SEN 01 6.8 NAA 80APO 01 7 AAS 81MAZ 01 13.5 5r SSMS 80RIC 01

Er - 1.9 SSMS 8OSCO 01 2.5 AAS 81MAZ 01 2.54 ISMS 84MIC 01

2.7 ICP 84GOV 01 2.8 AAS 82SEN 01

Yb - 0.6 OES 80DOR 01 1 NAA 82KUB 01 1.3 SSMS 80SCO 01 1.7 NAA 80 POT 01 1.71 NAA 8OCRO 01 1.74 ICP 84GoV 01 1.77 NAA 80HER 01 1.77 NAA 81POT 01 1.78 NAA 80DEL 01 1.8 NAA 80STO 01

Table B. Rare-earth elements in basalt BR (in ppm)

Conc. Anal. Ref. Method

COnC. Anal. Ref. Method

Conc. Anal. Ref. Method

1.88 NAA 80SPE 01 1.89 NAA 82CRo 01 1.9 NAA 84BAR 01 1.94 NAA BOER2 01 1.95 NAA 82KRA 01 2 AAS 82SEN 01 2 ICP 85SAM 01 2 OES 82SEN 01

2.5 NAA 80ApO 01 3 OES 80GRI 01 3.1 NAA 80VAN 01 5 * AAS 81MAZ 01 ...............................

0.1

0.16 0.16 0.18 0.19 0-23 0.243 0.26

LU NAA

SSMS NAA

NAA

NAA

NAA

NAA

AAS

- 80DEL 01 80SCO 01 80ERZ 01 82KRA 01 82CRo 01 84BAR 01 8OSPE 01 82SEN 01

0.26 NAA 8OHER 01 80STO 01 0.26 NAA

0.26 NAA 82CRO 01 0.3 NAA 80APO 01 0.3 I CP 85SAM 01

80VAN 01 0.52 I. NAA

Conc . Anal. Ref a Method

15 52 60 65 69.5 71 79.5

La - OES 77BAN 01 XRF 77GAG 01 NAA 78BUC 01 XRF 77LEA 01 XRF 77DEA 01 XRF 74RIC 01 NAA 84BAR 01

80 NAA 74- 01 80 NAA 81PoT 01 81.0 NAA 79uAN 01 82 XRF 77ROB 01 83 ICP 81CHU 01 83.2 NAA 84KAL 01 86 NAA 82KRA 01

86.3 NAA 79BOR 01 87 NAA 77JAF 01 91 OES 70HUB 01 95 XRI? 77DEF 01 105 OES 77ING 01

77NEI 01 150 * OES ............................

Page 15: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

149

Table B (Cont'd.). Rare-earth elements in basalt BR (in ppm)

Conc. Anal. Ref. Method

Conc. Anal. Ref. Method

Conc. Anal. Ref. Met hod

(40 * 110 * 124 127 130

135 135 136

138 145 146 146 147 151

151 152 153 155 158 160

168 172 172

Ce XRF XRF XRF NAA OES

NAA NAA

-

NAA XRF NAA IDMS XRF XRF NAA NAA NAA NAA 14 AA NAA NAA ICP CAN XRF

79vAN 02 77GAG 01 77DEF 01 77JAF 01 77ING 01 74RAN 01 78BUC 01 73CHA 01 77RIC 0 1 82KRA 01 84MIC 01 77DEA 01 77FES 01 79BOR 01 81POT 01 84KAL 01 79vAN 01 84BAR 01 77PAL 01 78PAL 01 81CHU 01 80MAZ 01 77LEA 01

Nd (30 * XRF 79vAN 02 17 OES 77BAN 0 1 19 NAA 78BUC 01 50 XRF 77LEA 0 1 55 NAA 79vAN 0 1 58 NAA 84BAR 01 60 NAA 77JAF 01 60 NAA 74RAN 01 65 I DMS 84MIC 01 66 NAA 82XRA 0 1

66.6 NAA 81POT 01 70 I CP 81CHU 01 70 XRF 77FES 0 1 84 NAA 79BOR 0 1 110 NAA 73CHA 01

Sm - 4 t XRF 77LEA 01 6.5 NAA 78BUC 01 7.4 OE S 77BAN 01 9.9 10.9

11.5 12.0 12.1 12.2 12.7 12.7 14 17

NAA NAA NAA NAA I DMS NAA NAA NAA NAA ICP

77JAF 01 84KAL 01 84BAR 01 81POT 01 84MIC 01 82KRA 01 79vAN 01 79BOR 01 74RAN 01 81CHU 01

Eu - 0.9 * NAA 78BUC 01 3.4 NAA 73CHA 01 3.45 I DMS 84MIC 01 3.48 NAA 84KAL 01 3.5 NAA 77JAF 01 3.6 NAA 74RAN 0 1

3.6 NAA 82KRA 01 3.6 NAA 84BAR 01 3.68 NAA 79vAN 01 3.70 NAA 81POT 01 3.8 NAA 79BOR 01 3.9 NAA 77PAL 01 4 ICP 8lCHU 01

4.5 7.1 7.1 7.2 8.5 9.6 10

13

Gd NAA NAA NAA

OES ICP IDMS NAA NAA

- 78BUC 01 77PAL 01 78PAL 01 77" 01 81CHU 01 84MIC 01 82KRA 01 77JAP 01

1.38 1.6 1.6 1.7 1.7 1.7 1.73 1.79 1.86 1.95 1.95 2 2 2.4 2.6 3 6 * 7.2 *

Yb NAA

NAA NAA ICP NAA

NAA

I DMS NAA

NAA NAA NAA NAA OES OES

OES

OES OES OES

-

__-__------

84KAL 01 77PAL 01. 78PAL 01 81CHU 01 77JAF 01 84BAR 01 84MIC 01 8lPOT 01 79BOR 01 82KRA 01 79VAN 01 78BUC 01 77ING 01 77HOF 01 7OHUB 01 77NEI 01 77MOA 01 77BAN 01

_-_------

0.13 t N U 0.2 NAA 0.20 NAA 0.23 NAA 0.23 NAA 0.24 NAA 0.25 NAA

0.27 NAA

77JAF 01 78BUC 01 84KAL 01 8lPOT 01 84BAR 01 82XRA 01 79BOR 01 7 4 m 01

Page 16: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

150

Table C. Rare-earth elements in diorite DR-N (in ppm)

Conc. Anal. Ref. Method

Conc. Anal. R e f . Method

- ~~~

La - 12 X XRF 82BRA 01 19.7 NAA 77ROE 01 20 NAA 82JAF 01 20.5 NAA 81POT 01 20.7 NAA 79BOR 01 21.5 NAA 79VAN 01 22 NAA 82KRA 01 23 XRF 82GAG 01 23.5 XRF 82ALB 01 24 ICP 8lCHU 01 30 ICP 85SAM 01 32 X NAA 78BUC 01 ..............................

34 35 38 39 41 42 44 46 46.7 48 49 49 50 58 59 59

Ce XRF CAN NAA NAA NAA I CP NAA NAA NAA NAA NAA ICP XRF XRF ICP NAA

- 82GAG 01 80MAZ 01 82KRA 01 82JAF 01 78PAL 01 83BOR 01 79vAN 01 73CHA 01 8lPoT 01 78BUC 01 77ROE 01 85SAM 01 82ALB 01 82BRA 01 8lCHU 01 79BOR 01

Pr - 6 NAA 78BUC 01

Nd - 18 NAA 78BUC 01 19 NAA 79vAN 01 21 NAA 79BOR 01 21.5 XRF 82ALB 01 24 NAA 73CHA 01 24.1 NAA 81PoT 01 25 NAA 82JAF 01 26.2 NAA 77ROE 01 27 ICP 8lCHU 01 28 NAA 82KRA 01 ..............................

SKI - 3.4 * NAA 4.8 NAA 5.2 NAA 5.3 NAA 5.35 NAA 5.4 NAA

5.6 NAA 6 ICP .....................

82JAF 01 78BUC 01 77ROE 01 82XRA 01 81PoT 01 79BOR 01 79vAN 01 81CHU 01

---------

Eu - 1 NAA 78BUC 01 1.04 NAA 78PAL 01 1.43 NAA 82JAF-01 1.49 NAA 81POT 01 1.5 NAA 82KRA 01 1.52 NAA 79BOR 01 1.55 NAA 73CHA 01 1.57 NAA 77ROE 01 1.6 ICP 81CHU 01 1.66 NAA 79vAN 01 ...............................

Conc. Anal. Re€. Method

~ ~-

Gd - 3 NAA 78PAL 01 3.2 NAA 78BUC 01 4.7 ICP 8lCHU 01 4.8 NAA 82KRA 01 6 NAA 82JAF 01 ------_3__----_--------------

a 78BUC 01 2.1 NAA

3.4 NAA 82KRA 01 3.6 NAA 82JAF 01 ------ ------------- ----------

Er - 1.8 NAA 78BUC 01 .............................

Yb - 2.3 NAA 82KRA 01 2.57 NAA 79BOR 01 2.60 NAA 77ROE 01

81POT 01 2.62 NAA 2.7 NAA 82JAF 01 2.8 I CP 81CHU 01 2.9 NAA 78PAL 01 2.95 NAA 79vAN 01 3.r ICP 85SAM 01 3 NAA 78BUC 01 4 QES 82MOA 01 8 * OES 82GoV 02 --------------------._________

Lu - 0.1 NAA 78BUC 01

82KRA 01 0.35 NAA 0.37 NAA 77ROE 01 0.39 NAA 79BOR 01 0.39 NAA 81PoT 01 0.45 NAA 82JAF 01

85SAM 01 0.9 * I CP ------------c----------------

Page 17: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

151

Table D. Rare-earth elements in granite GS-N (in ppm)

Con. Anal. Re f Method

Conc. Anal. Ref Method

Conc. Anal. Ref. Method

5 6 . 5 * 5 9 63 6 6 . 5

67 69

7 0

70 7 0 . 5 71 73 73 73 74 14.6 74.6 75 75

80

81 8 1 . 9 88 90 * loo* _--____---_

110 112 117 117

123 125 128 129

129 129 132

134 134 135 139 140 141 142 143 145 145 155

360 * ------__--_

La ICP XRF SSMS NAA

NAA

NAA

NAA

NAA

NAA

I CP ICP OES NAA

NAA

NAA

NAA

I CP NAA OES NAA

NAA

OES

AAS

NAA

-

.------------- Ce XRF NAA

NAA

NAA OES

ICP NAA

NAA OES XRF ICP NAA

NAA

NAA

NAA

NAA

NAA

NAA NAA CAN NAA ICP OES

-

.-------___-__

03CAS 01 04GAG 01 04KAP 0 1

04MAY 01 01FOU 01 02MEL 01 04MAY 01 02MEL 01 77ROE 01 05SAM 0 1 04GOV 0 3 7 7 S E N 01 02MEL 01 00JAF 01 19VAN 0 1

01POT 01 ~ ~ C H U 01 04BAR 01 7 7 S E N 01 04JAF 01 7980R 01 04CHA 01 7 7 S E N 0 1 71ROW 01

---------

04GAG 01 04MAY 01 01FOU 01 04MAY 01 7 7 S E N 0 1 05SAM 01 04JAF 01 02MEL 01 7 7 S E N 01 04MUR 0 1

04GOV 03 79BOR 0 1 02MEL 01 02MEL 01 04BAR 01 70PAL 0 1 77ROW 01 01POT 01 79VAN 01 00MAz 01 77ROE 01 01CHU 01 04CHA 01

_-------__

Pr - 1.0 NAA 82MEL 01 1.0 NAA 82MEL 0 1

16 NAA 04MAY 01 1 9 SSMS 04KAP 01 -_---------__--___________________

Nd - 46 AAS 7 7 S E N 01 4 6 N M 04JAF 01

41 NAA 01FOU 01 41 NAA 04MAY 0 1 40 NAA 04MAY 01

77ROW 01 49 NAA

4 9 NAA 79BOR 01 49 NAA 04BAR 01 50 ICP 81CHU 01 5 1 NAA 02MEL 01 51.2 NAA 01POT 01

04QOV 03 5 2 I CP

02MEL 01 52 NAA 52 .4 NAA 77ROE 01

02MEL 0 1 5 6 NAA 5 6 OES 77SEN 01 57 NAA 7 9 v A N 01 --------------------c_____________

Sm - 6.7 NAA 84MAY 0 1

7.1 NAA 82MEL 01 7.2 I CP 81CHU 01 7.2 NAA 84MAY 01 7.2 NAA 81FOU 01 7.83 NAA 77ROE 01 7.9 NAA 82MEL 01 8 .0 NAA 81POT 01 8.12 NAA 79vAN 01 8.24 NAA 84BAR 01 8.3 ICP 84GOV 0 3 8.3 NAA 79BOR 01 8.3 NAA 82MEL 01 9 ?.AS 77SEN 01 9.3 NAA 77ROW 01

_----------------(__------------

ELI - 1.3 NAA 82MEL 01 1.3 NAA 82MEL 01 1.47 I CP 83CAS 01 1.5 NAA 84JAF 01 1.5 NAA 77ROW 01 1.51 N AA 79vAN 01

1.52 NAA 81FOU 01 1.55 NAA 80JAF 01 1.55 NAA 82MEL 01 1.6 AAS 77SEN 01 1.6 NAA 84BAR 01 1.60 NAA 84MAY 01

84MAY 01 1.60 NAA 1.63 NAA 81POT 01 1.7 NAA 77ROE 01 1.71 NAA 7930R 01 1.79 NAA 77PAL 02 1.8 ICP 81CHU 01 1.8 NAA 78PAL 01 1.83 I CP 84GOV 03 2 * ICP 8SSAM 01

Gd - 3.. 4 NAA 78PAL 01 4 .O NAA 81FOU 01 5.4 ICP 81CHU 01 5.9 ICP 84GOV 03 27 NAA 82MEL 0 1 28.0 NAA 82MEL 01

a 3.1 ARS 77SEN 01 3.4 ICP 84GOV 03 22 NAA 82MEL 01 22.9 NAA 82MEL 01 26 NAA 82MEL 01

Er - 82MEL 01 1.0 NAA

1.0 NAA 82MEL 01 1.3 AAS 77SEN 01 1.96 ICP 84GOV 03 2.07 ICP 83CAS 01

Y b - 77ROE 01 0.96 NAA

77SEN 01 1.1 OES

1.2 OES 77SEN 01 77SEN 01 1.3 AAS 81CHU 01 1.3 ICP 85SAM 01 1.3 ICP

i Not included in mean calculation

Page 18: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

152

Table D (Cont'd.). Rare-earth elements in granite GS-N (in ppm)

Conc. Anal. Ref. Method

Conc. Anal. R e f . Method

Conc. Anal. Ref. Method

1.36 1.43

1.43 1.47 1.5 1.56 1.57 1.6 1.9 2 .o 2.02 2.1

NAA

NAA

NAA NAA

NAA

ICP NAA

NAA NAA

NAA

NAA

NAA

84MAY 01 81FOU 01 84MAY 01 84JAF 01 84BAR 01 84GOV 03 81POT 01

77ROW 01 78PAL 01 82MEL 01 79BOR 01 79vAN 01

LU - 0.1 * I C P 85SAM 01 0.16 NAA 77ROE 01 0.17 NAA 84BAR 01 0 . 2 0 NAA 81POT 01 0.21 NAA 84JAF' 01 0.21 NAA 82MEL 01

0.22 0.23 0.23 0.24 0.24 0.26 0.33 0.33

,

____--___.

NAA

NAA

NAA

NAA

HAA ICP NAA NAA

-----

~ ~ R O W 01

84MAY 01

81FOU 01

79BOR 01

84MAY 01

84GOV 03 82MEL 01

82MEL 01

------- --------_

Table E. Rare-earth elements in potash feldspar FK-N (in ppm)

Conc. Anal. R e f . Method

Conc. Anal. Ref. Me thod

Table F. References for individual data

70HUB 01

73CHA 01

74RAN 01

74RIC 01

77BAN 01

0.8 1 1.12 1.28 1.3 1.31 1.4 ---------_-

Ce - SSMS 84KAP 01 NAA 77FLA 01 I DMS 84MIC 01 ICP 04GOV 03 NAA 84JA!? 01 NAA 70ROE 01 NAA 79vAN 01

I.HUBERT-SCHAUSBERGER, I. JANDA, P. WLEZEL and E.SCHROLL (1970) CHEMISCHE UND SPEKTROCHEMISCHE ANALYSE INTERNATIO- NALER REFERENZGESTEINSPROBEN, TSCHERMAKS MINERALO- GISCHE UND PETROGRAPHISCHE MITTEILUNGEN, 14: 195-211.

8. CHAYLA, H.JAFFREZIC and J.L.JORON (1973) ANALYSE PAR ACTIVATION DANS LES NEUTRONS EPITHERMI- QUES. APPLICATION A LA DETERMINATION D'ELEMENTS EN TRACES DANS LES ROCHES, COMPTBS RENDUS HEBWMA- DAIRES DES SEANCES DE L'ACADEMIE DES SCIENCES (Pa- ris), 277: D273-275.

K. RANDLE (1974) SOME TRACE ELEMENT DATA AND THEIR INTERPRETATION FOR SEVERAL NEW REFERENCE SAMPLES OBTAINED BY NEU- TRON ACTIVATION ANALYSIS, CHEMICAL GEOLOGY, 13: 237-256.

P.RICHTER (1974) TAKEN FROM 77 GOV 01

S. BANERJEE, J.C. PAL and A.N. CHOWDHURY (1977) TAKEN FROM 77 GOV 01

77DEA 01

Conc. Anal. Ref. Method

Eu - 0.35 ICP 0.41 NAA

0.41 NAA

0.41 NAA

0.43 NAA

0.458 I DMS 0.47 NAA 0.55 NAA .......................

C.A.R. DE ALBUQUERQUE TAKEN FROM 77 GOV 01

(1977)

84GOV 03 77FLA 01 79BOR 01 79vAN 01 ~ ~ J A F 01 04MIC 01

78ROE 01 70PAL 01

77DEF 01 E. DE FUSTER,J.L. BRANDLE, and I. CERQUEIRA (1977) TAKEN FROM 77 GOV 01

77FES 01 H.W. FESQ (1977) TAKEN FROM 77 M V 01

77FLA 01 F.J. FLANAGAN, L.J. SCHWARZ, J.J. ROWE and A.F. WRRZAPF (1977) AVAILABLE CLAY AND FELDSPAR REFERENCE SAMPLES AS STANDARDS FOR ARCHAEOLOGICAL POTTERY STU- DIES, GEOSTANDARDS NEWSLETTER, 1: 61-66.

77 GAG 01 J.GAGNON (1977) TAKEN FROM 77 GOV 01

77 M V 01 K.GOVINDARAJU and H.DE LA ROCHE (1977) RAPPORT (1966-1976) SUR LES ELEMENTS EN TRACES DANS TROIS ROCHES STANDARDS GEOCHIMIQUES DU CRPG: BASALTE BR ET GRANITES, GA et GH, GEOSTANDARDS NEWSLETTER, 1: 67-100.

Page 19: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

153

77HOF 01

771NG 01

77JAF 01

77LEA 01

77MOA 01

7 m ~ 1 01

77PAL 01

7 7 P U 02

77rnB 01

77RoE 01

P.K. HOFMEYR (1977) TAKEN FROM 77 GOV 01

C.O. INGAMELLS, N.H. SUHR (1977) TAKEN FROM 77 GOV 01

H . J A F F R E Z I C (1977) TAKEN FROM 77 GOV 01

B.E. LEAKE, G.L. HENDRY, A. KEMP, A.G. PLANT P.K. HARREY, J . R . WILSON, J .S. COATS, J . W . AUCOTT, T . LUNEL and R.J . HOWARTH(1977) TAKEN FROM 77 GOV 01

J.Y. MOAL, J. BEGUINOT, G. REUIL, V. VANNIER (1977) TAKEN FROM 77 GOV 01

H . NEIMAN (1977) TAKEN FROM 77 GOV 01

S. PAL (1977) TAKEN FROM 77 GOV 01

S.PAL (1977) TAKEN FROM 77 ROE 01

P. ROBINSON (1977) TAKEN FROM 77GOV 01

I .ROELANDTS (1977) NEUTRON ACTIVATION DETERMINATION O F TWENTY-ONE TRACE ELEMENT, INCLUDING RARE-EARTHS, I N TWO ANRT GEOCHEMICAL REFERENCE SAMPLES: D I O R I T E DR-N and GRANITE GS-N, GEOSTANDARDS NEWSLET- TERS, 1: 7-9.

77ROW 01 J.J. ROWE and L . J . SCHWARTZ (1977) TAKEN FROM 77 ROE 01

77SEN 01 J . G . SEN GUPTA (1977) DETERMINATION OF TRACE OF RARE-EARTH ELEMENTS, YTTRIUM AND THORIUM I N SEVERAL'INTERNATIONAL GEOLOGICAL REFERENCE SAMPLES AND COMPARISON OF DATA WITH OTHER PUBLISHED VALUES, GEOSTAN- DARDS NEWSLETTERS, 2 : 149-155.

78BUC 01 K. BUCHTELA and H.KOLMER (1978) NEUTRON ACTIVATION DETERMINATION O F THE FOUR- TEEN RARE EARTH ELEMENTS I N F I V E ROCKS STAN- DARDS,GEOSTANDARDS NEWSLETTER, 2: 39-42.

78PAL 01 S. PAL and D . J . TERRELL (1978) INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS OF TWENTY-NINE INTERNATIONAL GEOCHEMICAL REFE- RENCE SAMPLES, GEOSTANDARDS NEWSLETTER,2: 187-197.

78ROE 01 1.ROELANDTS (1978) WSAGE PAR ACTIVATION NEUTRONIQUE DES TERRES RARES ET D'AUTRES ELEMENTS EN TRACE DANS L'ETALON GEOCHIMIQUE FELDSPATH PUTASSIQUE FK-N (ANRT), GEOSTANDARDS NEWSLETTER,2: 35-37.

79BOR 01 T . J . BORNHORST AND J . P . BALAGNA (1979) INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS OF FRENCH GEOCHEMICAL REFERENCE SAMPLES, GEOSTANDARDS NEWSLETTER, 3: 177-180.

79VAN 0 2 P. VAN DER SLOOT and J. ZONDERHUIS (1979) INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS O F 37 GEOCHEMICAL REFERENCE SAMPLES, DARDS NEWSLETTER,3: 185-193.

GEOSTAN-

79VAN 0 2 P . VAN ESPEN, L.VAN'T DACK, F.ADAMS and R. VAN GRIEKEN (19791 EFFECTIVE SAMPLE WEIGHT FROM SCATTER PEAKS I N ENERGY D I S P E R S I V E X-RAY FLUORESCENCE, ANALYTICAL CHEMISTRY. 51: 961-967.

mAP0 01 D. APOSTOLEVA (1980) TAKEN FROM 80 GOV 01.

@BEN 01 M . C. BENNET (1980) TAKEN FROM 80 GOV 01

bOCA.9 01 J . N . CASEY, B . I . CRUIKSHANK (1980) TAKEN FROM 80 GOV 01

BOCHA 01 W. CHAMP and K.A. CHURCH (1980) TAKEN FROM 80 GOV 01

BODEL 01 R . S . DELLA VALLE, J . P . BALAGNA, D.G. BROOKINS (1980) TAKEN FROM 80 GOV 01.

80DIE 01 V. DIETRICH (1980) TAKEN FROM 80 GOV 01

80M3R 01 A.DORRZAPF, K. KOHLMA", W.B. GRANDELL. D.W. GOLIGHTLY (1980) TAKEN FROM 80 GOV 01

8OERZ 01 J. ERZINGER AND V. KRAMAR (1980) TAKEN FROM 80 GOV 01

80 F I T 01 J .G. FITTON. M.F. THIRLWALL, G.R. ANGELL (1980)

TAKEN FROM 80 GOV 01

8OGAG 01

80GOV 01

80 G R I 01

8OHAR 01

80HEN 01

80HER 01

8OHUG 01

8 O J A F 01

8 o J U E 01

80MAZ 01

80HOR 0 1

80 PAL 01

8 0 P O T 01

80POW 01

8 0 R I C 01

8ORID 01

8OSco 01

BOSPE 01

8OSTO 01

80VAN 01

8OWAT 01

81CHU 01

8lFOU 01

J. GAGNON (1980) TAKEN FROM 80 GOV 01

K. GOVINDARAJU (1980) REPORT (1980) ON THREE GIT-IWG ROCK REFERENCE SAMPLES : ANORTHOSITE FROM GREENLAND, AN-G; BASALTE D'ESSEY-LA-COTE, BE-N; GRANITE DE BEAU- VOIR, MAN, GEOSTANDARDS NEWSLETTER, 4: 49-138.

J . M . GRINOVSKIA, T .P . ANDREEVA, N.P. KOSILINA (1980) TAKEN FROM 80 GOV 01

P.K. HARVEY (1980) TAKEN FROM 80 GOV 01

G.L. HENDRY (1980) TAKEN FROM 80 GOV 01

J.HERTOGEN, J. ZELS, M.L. JANSSENS (1980) TAKEN FROM 80 GOV 01

T.C. HUGHES, M.T. HANKKA, I . L . THOMAS (1980) TAKEN FROM 80 GOV 01

H . J A F F R E Z I C , J . L . JORON, M. TREUIL, D.A. WOOD (1980) A STUDY OF THE PRECISION OBTAINED BY NEUTRON ACTIVATION ANALYSIS USING INTERNATIONAL STAN- DARDS ROCKS GS-N AND BCR-1 AS EXAMPLES. A DISCUSSION O F A GEOCHEMICAL MODEL ACCOUNTING FOR-THE ESTIHATED ERRORS, JOURNAL OF RADIOANA- LYTICAL CHEMISTRY, 55: 417-425.

M. J U E R Y ( 1 9 8 0 ) TAKEN FROM 80 GOV 01

A. MAZZUCOTELLI AND R. VANNUCCI (1980) CANWLUMINESCENCE EMISSION ANALYSIS OF CERIUM I N THIRTY-SIX INTERNATIONAL GEOCHEMICAL REFE- RENCE SAMPLES, GEOSTANDARDS NEWSLETTER, 4: 149-151.

A-MORRISON 11980) TAKEN FROM 80 COV 01

J . C . PAL (1980) TAKEN FROM 80 GOV 01

P.J. POTTS, D.W. THORPE, J.S.'WATSON (1980) TAKEN FROM 8OGoV 01

G.M. POWER (1980) TAKEN FROM 80 GOV 01

A. RICHARD, A.M. ANDREANI, A. SILVENT (1980) TAKEN FROM 80 GOV 01

C.RIDDLE (1980) TAKEN FROM 80 GOV 01

R.O. SCOTT (1980) TAKEN FROM 80 GOV 01

B.SPETTEL, H . WANKE (1980) TAKEN FROM 80 GOV 01

H.G. STOCH (1980) TAKEN FROM 80 GOV 01

H.A. VAN DER SLOOT (19801 TAKEN FROM 80 GOV 01

P. WATKINS (1980) TAKEN FROM 80 GOV 01

S.E. CHURCH (1981) MULTI-ELEMENT ANALYSIS O F FIFTY-FOUR GEOCHE- MICAL REFERENCE SAMPLES USING INDUCTIVELY COU- PLED PLASMA-ATOMIC EMISSION SPECTROMETRY, GEOSTANDARDS NEWSLETTER, 5: 133-160.

S. FOURCADE and C.J . ALLEGRE (1981) TRACE ELEMENTS BEHAVIOR I N GRANITE GENESIS A CASE STUDY. THE CALC-ALKALINE PLUTONIC ASSOCIATION FROM THE QUERIGUT COMPLEX (PYRENEES, FRANCE). CONTRIBUTIONS TO MINERA- LOGY AND PETROLOGY, 76: 177-195.

Page 20: Sequential Inductively Coupled Plasma Determination Of Some Rare-Earth Elements in Five French Geostandards

154

81MAZ 01

81POT 01

82ALB 01

82BRA 01

82CRO 01

82GAG 01

82GOV 01

82GOV 0 2

8 2 J A F 01

82KRA 01

82KUB 01

82MEL 01 'W

82MOA 01

A. MAZZUCOTELLI ( 1 9 8 1 ) TAKEN FROM 85 GOV 01

P . J . POTTS, O.W. THORPE AND J.S. WATSON

DETERMINATION OF THE RARE-EARTH ELEMENT ABUN- DANCES I N 2 9 INTERNATIONAL ROCK STANDARDS

( 1 9 8 1 )

BY INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS A CRITICAL APPRAISAL OF CALIBRATION ERRORS, CHEMICAL GEOLOGY, 3 4 : 3 3 1 - 3 5 2 .

C.A.R. ALBUQUERQUE ( 1 9 8 2 ) TAKEN FROM 8 2 GOV 01

J . L . BRANDLE, I. CERQUEIRA, E . I . DE FUSTER ( 1 9 8 2 ) TAKEN FROM 8 2 GOV 01

I . W . CROUDACE, J . L . JORON, H. J A F F R E Z I C , G. MEYER and M. TREUIL ( 1 9 8 2 ) NEUTRON ACTIVATION ANALYSIS O F SEVEN B.C.S. C E R T I F I E D REFERENCE MATERIALS OF GEOLOGICAL INTEREST, GEOSTANDARDS NEWSLETTER, 6 : 2 3 3 - 2 3 9 .

J.GAGNON ( 1 9 8 2 ) TAKEN FROM 8 2 GOV 01

R. GOVINDARAJU ( 1 9 8 2 ) REPORT ( 1 9 6 7 - 1 9 8 1 ) ON FOUR ANRT ROCK REFERENCE SAMPLES : DIORITE DR-N, SERPENTINE UB-N, BAUXITE BX-N and DISTHENE DT-N, GEOSTANDARDS NEWLETTER, 6 : 91-159.

K.GOVINDARAJU ( 1 9 8 2 ) TAKEN FROM 8 2 GOV 01

H.JAFFREZIC ( 1 9 8 2 ) TAKEN FROM 8 2 GOV 01

U. KRAMAR AND H . PUCHELT ( 1 9 8 2 ) REPRODUCIBILITY TEST FOR INAA DETERMINATIONS WITH AGV-1, BCR-1 and GSP-1 AND NEW DATA FOR 1 7 GEOCHEMICAL REFERENCE MATERIALS, GEOSTANDARDS NEWSLETTER, 6: 2 2 1 - 2 2 7 .

V . J . KUBAT and J . L . BASTIEN ( 1 9 8 2 ) TAKEN FROM 85 GOV 01

S. MELO x , M. ODDONE, A. CECCHI and G.POL1 4 CTIVE NEUTRON ACTIVATION ANALYSIS OF

RARE EARTHS I N GEOLOGICAL SAMPLES : A COMPARI- SON BETWEEN TWO METHODS, JOURNAL O F RADIOANA- LYTICAL CHEMISTRY, 71: 4 2 9 - 4 4 6 .

J . Y . MOAL ( 1 9 8 2 ) TAKEN FROM 8 2 GOV 01

8 2 OLS 01 H.A. OLSZOWY ( 1 9 8 2 ) TAKEN FROM 85 GOV 01.

82SEN 01 J . G . SEN GUPTA ( 1 9 8 2 ) FLAME AND GRAPHITE FURNACE ATOMIC ABSORPTION AND OPTICAL-EMISSION SPECTROSCOPIC DETERMINATION O F YTTRIUM AND THE RARE-EARTH CONTENTS OF S I X - TEEN INTERNATIONAL REFERENCE SAMPLES O F ROCKS AND COAL, GEOSTANDARDS NEWSLETTER, 6 : 2 4 1 - 2 4 8 .

83808 01

83CAS 01

84BAR 01

84CHA 01

8 4 J A F 01

84GAG 01

84GOV 01

84GOV 02

84GOV 03

84KAL 01

84KAP 01

84MAY 01

84MIC 01

84MUR 01

84SEN 01

85GOV 01

85SAM 01-

M . BORSIER and M. GARCIA ( 1 9 8 3 ) ~ ~~

ANALYSE AUTOMATIQUE D'ECHANTILMNS GEOLOGIQUES PAR PLASMA I C P , SPECTROCHIMICA ACTA, 388: 1 2 3 - 1 2 7 .

CASETTA B . , A. GIARETTA and G. RAMPAZZO ( 1 9 8 3 ) AN APPROACH TO I C P ANALYSIS O F GEOLOGICAL SAMPLES, ATOMIC SPECTROSCOPY, 4 : 1 5 2 - 1 5 4 .

S .J . BARNES and M.P. GORTON ( 1 9 8 4 ) TRACE ELEMENT ANALYSIS BY NEUTRON ACTIVATION WITH A LOW FLUX REACTOR (SIIOWPOKE-11) : RESULTS FOR INTERNATIONAL REFERENCE ROCKS, GEOSTANDARS NEWSLETTER, 8: 1 7 - 2 3 .

M.H. CHAMP and C.F. MEEDS TAKEN FROM 8 4 GOV 0 2

( 1 9 8 4 )

H . J A F F R E Z I C an6 J . L . JORON ( 1 9 8 4 ) TAKEN FROM 8 4 GOV 0 2

J . GAGNON ( 1 9 8 4 ) TAKEN FROM 8 4 GOV 0 2

K . GOVINDARAJU ( 1 9 8 4 ) TAKEN FROM 85 GOV 01

K. GOVINDARAJU ( 1 9 8 4 1 REPORT ( 1 9 7 3 - 1 9 8 4 ) ON TWO ANRT GEOCHEMICAL REFE- RENCE SAMPLES: GRANITE GS-N AND POTASH FELDSPAR FK-N GEOSTANDARDS NEWSLETTER, 8: 1 7 3 - 2 0 6 .

K. GOVINDARAJU and G. TAKEN FROM 84GOV 0 2

MEVELLE ( 1 9 8 4 )

F. KALSBEEK and H.F. JEPSEN ( 1 9 8 4 ) THE LATE PROTEROZOIC ZIG-ZAG DAL BASALT FORMA- TION O F EASTERN NORTH GREENLAND, JOURNAL OF PETROLOGY, 2 5 : 6 4 4 - 6 6 4 .

G. KAPLAN and M . BOUCHET TAKEN FROM 8 4 GOV 0 2

( 1 9 8 4 )

S . MAY and G. P I N T E ( 1 9 8 4 ) W S A G n PAR ECTIVATION NEUTRONIQUE DES TERRES RARES DANS DES ROCHES URANIFERES. JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 81: 2 7 3 - 2 8 1 .

A. MICHARD ( 1 9 8 4 ) TAKEN FROM 84GOV 0 2 and 85 GOV 01

E . MURAD ( 1 9 8 4 ) TAKEN FROM 8 4 GOV 0 2

J . G . SEN GUPTA ( 1 9 8 4 ) TAKEN FROM 84GOV 0 2

K. GOVINDARAJU ( 1 9 8 5 ) GIT-IWG STANDBY DATA COLLECTION, GEOSTANDARDS NEWSLETTER, 9 : 1 6 1 - 1 6 8 .

J. SAMUEL, R. ROUAULT and Y. BESNUS ( 1 9 8 5 ) ANALYSE M~LTIELEMENTAIRE MATERIAUX GEOMGIQUES EN

STANDARDISEE DES SPECTROMETRIE

D'EMISSION PAR PLASMA A COUPLAGE INDUCTIF, ANAL&5IS. 13: 3 1 2 - 3 1 7 .