85
Sept. 27, 2013, Athens, Greece ECO-BOND GRAPHS An Energy-Based Modeling and Simulation Framework for Complex Dynamic Systems with a focus on Sustainability and Embodied Energy Flows Dr. Rodrigo Castro ETH Zürich, Switzerland. University of Buenos Aires & CIFASIS-CONICET, Argentina. The 10th International Multidisciplinar y Modelling & The 1st Int’l. Workshop on Simulation for Energy,

Sept. 27, 2013 , Athens , Greece

  • Upload
    said

  • View
    40

  • Download
    0

Embed Size (px)

DESCRIPTION

ECO-BOND GRAPHS An Energy-Based Modeling and Simulation Framework for Complex Dynamic Systems with a focus on Sustainability and Embodied Energy Flows. Dr. Rodrigo Castro ETH Zürich, Switzerland. University of Buenos Aires & CIFASIS-CONICET, Argentina. Sept. 27, 2013 , Athens , Greece. - PowerPoint PPT Presentation

Citation preview

Page 1: Sept. 27, 2013 , Athens , Greece

Sept. 27, 2013, Athens, Greece

ECO-BOND GRAPHSAn Energy-Based Modeling and Simulation Framework

for Complex Dynamic Systems with a focus on Sustainability and Embodied Energy Flows

Dr. Rodrigo Castro ETH Zürich, Switzerland.

University of Buenos Aires & CIFASIS-CONICET, Argentina.

The 10th International Multidisciplinary Modelling & Simulation Multiconference

The 1st Int’l. Workshop on Simulation for Energy, Sustainable

Development & Environment

Page 2: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 2

• Problem formulation– Emergy tracking & Complex Dynamics Systems

• Possible approaches• Our approach– Networked Complex Processes– 3-faceted representation of energy flows

• The Bond Graph formalism• The new Eco Bond Graphs– Definition– Examples– Simulation results

• Conclusions

Agenda

Page 3: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 3

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Page 4: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 4

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Page 5: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 5

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Page 6: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 6

System Theoretic Approach

• Complex Dynamics Systems– Global scale socio-natural processes• We live in a nonlinear world, mostly away from equilibrium

Problem formulation

Page 7: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 7

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Page 8: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 8

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Page 9: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 9

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Page 10: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 10

Storages and Processes Problem formulation

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Page 11: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 11

Storages and Processes Problem formulation

“Grey Energy”

• Flows of Mass and Energy– Each process can abstract several internal sub processes

   

Page 12: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 12

Storages and Processes Problem formulation

“Grey Energy”

• Flows of Mass and Energy– Each process can abstract several internal sub processes

– We want to model systematically this type of systems– Structural approach Sustainability properties

Page 13: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 13

• Sankey Diagrams– Static (snapshot-like) World Energy Flow.

Considering energy losses Possible approaches

Page 14: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 14

• Sankey Diagrams– Static (snapshot-like) World Energy Flow.

Considering energy losses Possible approaches

Page 15: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 15

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Page 16: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 16

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Page 17: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 17

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Page 18: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 18

Considering energy losses

• Energy System Language (H.T. Odum)– Account for dynamicsDifferential Eqns.

Possible approaches

Page 19: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 19

Networked processes

• Multi Input/Multi Output Processes– Including recycling paths

Our approach

Page 20: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 20

Networked processes

• Multi Input/Multi Output Processes– Including recycling paths

Our approach

Page 21: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 21

Networked processes

• Multi Input/Multi Output Processes– Including recycling paths

Our approach

P3

P5

P1

P2

P4P6

RB

RC

RA

Page 22: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 22

Focus on mass flows

• 3-Faceted representation

Our approach

Page 23: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 23

Focus on mass flows

• 3-Faceted representation

Our approach

Balance: Mass and Energy

Page 24: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 24

Focus on mass flows

• 3-Faceted representation

Our approach

Balance: Mass and Energy

321 EEEME

1E

2E

3E Tracking: Emergy

Page 25: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 25

Focus on mass flows

• 3-Faceted representation

Our approach

Balance: Mass and Energy

321 EEEME

1E

2E

3E Tracking: Emergy

Page 26: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 26

• Minimum required formulation – To achieve the modeling

goal systematically

• How do we formalize and generalize this structure ?

Basic formulation Our approach

Page 27: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 27

• Bondgraph is a graphical modeling technique – Rooted in the tracking of power [Joules/sec=Watt]– Represented by effort variables (e) and flow variables (f)

     

     

Bondgraphic approach The Bond Graph Formalism

ef Power = e · f

e: Effortf: Flow

Page 28: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 28

• Bondgraph is a graphical modeling technique – Rooted in the tracking of power [Joules/sec=Watt]– Represented by effort variables (e) and flow variables (f)

• Goal:– Sound physical modeling of generalized flows of energy– Self checking capabilities for thermodynamic feasibility

• Strategy:– Bondgraphic modeling of phenomenological processes – Including emergy tracking capabilities

Bondgraphic approach The Bond Graph Formalism

ef Power = e · f

e: Effortf: Flow

Page 29: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 29

Energy domains

• Bondgraph is multi-energy domain

The Bond Graph Formalism

ef

Page 30: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 30

Energy Domaine

Effort variablef

Flow variableMechanical, translation Force Linear velocity

Mechanical, rotation Torque Angular velocity

Electrical Electromotive force Current

Magnetic Magnetomotive force Flux rate

Hydraulic Pressure Volumetric flow rate

Thermal temperature entropy flow rate

Energy domains

• Bondgraph is multi-energy domain

The Bond Graph Formalism

ef

Page 31: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 31

• As every bond defines two separate variables– The effort e and the flow f– We need two equations to compute values for these two variables

• It is always possible to compute one of the two variables at each side of the bond.

 

Causal Bonds The Bond Graph Formalism

ef

Page 32: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 32

• As every bond defines two separate variables– The effort e and the flow f– We need two equations to compute values for these two variables

• It is always possible to compute one of the two variables at each side of the bond.

• A vertical bar symbolizes the side where the flow is being computed.

Causal Bonds The Bond Graph Formalism

ef

Page 33: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 33

• Local balances of energy

Junctions The Bond Graph Formalism

0e1

e2

e3f1

f2

f3

e2 = e1e3 = e1f1 = f2 + f3

1e1

e2

e3f1

f2

f3

f2 = f1f3 = f1e1 = e2+ e3

Page 34: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 34

• Local balances of energy

Junctions The Bond Graph Formalism

0e1

e2

e3f1

f2

f3

e2 = e1e3 = e1f1 = f2 + f3

1e1

e2

e3f1

f2

f3

f2 = f1f3 = f1e1 = e2+ e3

Junctions of type 0 have only one flow equation, and therefore, they must have exactly one causality bar.

Page 35: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 35

• Local balances of energy

Junctions The Bond Graph Formalism

0e1

e2

e3f1

f2

f3

e2 = e1e3 = e1f1 = f2 + f3

1e1

e2

e3f1

f2

f3

f2 = f1f3 = f1e1 = e2+ e3

Junctions of type 0 have only one flow equation, and therefore, they must have exactly one causality bar.

Junctions of type 1 have only one effort equation, and therefore, they must have exactly (n-1) causality bars.

Page 36: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 36

• An electrical energy domain model

Example I The Bond Graph Formalism

Electrical Circuit

Page 37: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 37

• An electrical energy domain model

Example I The Bond Graph Formalism

Electrical Circuit

VoltageSource

Capacitor

Resistor

Inductor

Resistor

Page 38: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 38

• An electrical energy domain model

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Bondgraphic equivalent Electrical Circuit

VoltageSource

Capacitor

Resistor

Inductor

Resistor

Page 39: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 39

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Bondgraphic model

Page 40: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 40

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Bondgraphic model

Page 41: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 41

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsBondgraphic model

Page 42: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 42

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)

Bondgraphic model

Page 43: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 43

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

Bondgraphic model

Page 44: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 44

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1

Bondgraphic model

Page 45: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 45

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .e

Bondgraphic model

Page 46: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 46

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1

Bondgraphic model

Page 47: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 47

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

Bondgraphic model

Page 48: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 48

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1

Bondgraphic model

Page 49: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 49

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1R2 .f = C1 .e / R2

Bondgraphic model

Page 50: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 50

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1R2 .f = C1 .e / R2

Bondgraphic model

Page 51: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 51

Example I The Bond Graph Formalism

U0.e

U0.

eU

0.e

C1.e C1.e

C1.e

R1.e

U0.

fL1

.f

R1.f

R1.f R1.f R2.f

C1.f

Systematic derivationof equationsU0 .e = f(t)U0 .f = L1 .f + R1 .f

d/dt L1.f = U0 .e / L1R1 .e = U0 .e – C1 .eR1 .f = R1 .e / R1C1 .f = R1 .f – R2 .f

d/dt C1.e = C1 .f / C1R2 .f = C1 .e / R2

Bondgraphic model

Page 52: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 52

• A multi-energy domain model– Electricity– Mechanical rotational– Mechanical translational

Example II The Bond Graph Formalism

Special elements such as Gyrator and Transformerconvert energy flows across diff. physical domains

Page 53: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 53

• A multi-energy domain model– Electricity– Mechanical rotational– Mechanical translational

Example II The Bond Graph Formalism

Special elements such as Gyrator and Transformerconvert energy flows across diff. physical domains

Page 54: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 54

• A multi-energy domain model– Electricity– Mechanical rotational– Mechanical translational

Example II The Bond Graph Formalism

ua

ia

ia

ia

ia

uRa

uLa

ui τω1

ω1

ω1

ω1

τB3

τB1

τB1

τB1

τJ1

ω2

ω12

ω2

ω2

ω2

τk1

τG FG

v

v

vv

v

FB2

Fk2

Fm -m·gτJ2

Special elements such as Gyrator and Transformerconvert energy flows across diff. physical domains

Page 55: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 55

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Page 56: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 56

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Page 57: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 57

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Page 58: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 58

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Page 59: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 59

Facets and Bonds

• Bond Graph variables for Complex Systems– Facets 1 and 2• Power variables:

– Specific Enthalpy [J/kg] (an effort variable) – Mass Flow [kg/sec] (a flow variable). [J/sec] = [J/kg] · [kg/sec] represents power

• Information variable

– Mass [Kg] (a state variable)

– Facet 3 (the emergy facet)• Information variable

– Specific Emergy [J/kg] (a structural variable)– [J/sec] = [J/kg] · [kg/sec] also denotes power

Eco Bond Graphs

EcoBG

Page 60: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 60

Accumulators

• The EcoBG Storage element– A Capacitive Field (CF) accumulates more than one

quantity: Enthalpy, Mass and Emergy

Eco Bond Graphs

The specific enthalpy is a property of the accumulated mass

Known in advance -> A parameter

q

Page 61: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 61

Junctions

• The EcoBG 0-Junction

Eco Bond Graphs

M1

M 2

M3

Page 62: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 62

Reusable structures

• Basic unit based on EcoBG elements– An important “building block”

• Storage of mass and energy adhering to the proposed 3-Faceted approach:

Eco Bond Graphs

M1 M2

M3

Page 63: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 63

Modeling processes

• EcoBG Process elements

Eco Bond Graphs

PR()

Page 64: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 64

Modeling processes

• EcoBG Process elements

Eco Bond Graphs

PR()

Page 65: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 65

Modeling processes

• EcoBG Process elements

Eco Bond Graphs

PR()

Page 66: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 66

Example

• Extraction of renewable resources for consumption

Eco Bond Graphs

Page 67: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 67

Example

• Extraction of renewable resources for consumption

Eco Bond Graphs

Natural RenewablePrimary

Reservoir Consumption

SecondaryReservoirSupply

Process

DemandProcess

Page 68: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 68

Software tools

• EcoBG library implemented in the Dymola® tool.

Eco Bond Graphs

Page 69: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 69

Software tools

• EcoBG library implemented in the Dymola® tool.

Eco Bond Graphs

Natural RenewablePrimary

Reservoir

Consumption

SecondaryReservoir

SupplyProcess

DemandProcess

Page 70: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 70

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

Page 71: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 71

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

Page 72: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 72

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

ra MM

dcirrdc MMKM

cirrscasc

casa

MKMMKM

MMKM

..

..

Page 73: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 73

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

ra MM

dcirrdc MMKM

cirrscasc

casa

MKMMKM

MMKM

..

..

Page 74: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 74

The Mass Layer Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

dcirrscasc

casra

MMKMMKM

MMKMM

..

..

sKgM r 2

KgM a 1500, KgM c 10,

1.0

001.0

irrs

s

K

K

sKgM d 05.0

0dirrK

ra MM

dcirrdc MMKM

cirrscasc

casa

MKMMKM

MMKM

..

..

Page 75: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 75

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

Page 76: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 76

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

Page 77: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 77

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

Page 78: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 78

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

Page 79: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 79

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

).(. rrra MhTrME

).(. dccc MhTrME

)...(.

)...(.

cascac

casaaa

MMKhTrME

MMKhTrME

Page 80: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 80

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

).(. rrra MhTrME

).(. dccc MhTrME

)...(.

)...(.

cascac

casaaa

MMKhTrME

MMKhTrME

Page 81: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 81

Energy and Emergy Layers Eco Bond Graphs

Rain

AccumulatedDeposit (Ma)

ConsumptionReservoir (Mc)

HumanDemand

1

1

1

r

rr

r

r

hemTr

kgJem

kgJh

kgJha 1

kgJhc 1

001.0sK

).(.)...(.

)...(.).(.

dcccascac

casaarrra

MhTrMMKhTrME

MMKhTrMhTrME

).(. rrra MhTrME

).(. dccc MhTrME

)...(.

)...(.

cascac

casaaa

MMKhTrME

MMKhTrME

Page 82: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 82

• Accumulated quantities (Deposit and Reservoir)

Simulation results Eco Bond Graphs

eq.

Energy Emergy

Transformity

eq.

eq.

Page 83: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 83

• Experiment: Rain flow reduced 4x. Results for Reservoir.

Simulation results Eco Bond Graphs

Mass

Energy Emergy

Page 84: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 84

• Eco Bond Graphs– A new “Plumbing Technology” for modeling Complex Dynamics Systems– A low-level tool to equip other higher-level modeling formalisms

• with the ability to track emergy flows

• Hierarchical interconnection of EcoBG subsystems– Automatic and systematic evaluation of sustainability:

• global tracking of emergy and • local checking of energy balances

• M&S practice– The laws of thermodynamics are not an opinable subject

• Every sustainability-oriented effort should -at some point- consider emergy

• We should become able to inform both: • decision makers (experts, politicians, corporations) and• people who express their wishes (democratic societies)

– about which are the feasible physical boundaries • within which their -largely opinable- desires and/or plans can

be possibly implemented in a sustainable fashion.

Conclusions

Page 85: Sept. 27, 2013 , Athens , Greece

Dr. Rodrigo Castro I3M–SESDE 2013. Athens, Greece . September 27, 2013. 85

Q&A

[email protected]@[email protected]

Thanks for your attention !