59
Separation of Complex Branched Polymer Architectures Albena Lederer

Separation of Complex Branched Polymer Architectures · fraction 19 65000 4.82 82200 fraction 20 135000 6.75 - starting sample hb-PUR-Ph 75000 34.10 118000. ... •Composition of

  • Upload
    lymien

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Separation of Complex Branched Polymer Architectures

Albena Lederer

A2+B3 Poly(urea-urethane)s2-dimensional separation

N

H

NH

NH

N N

ON

O

O

O

H H

O

O

O n, linNH

N N

O

O

O

O

NH

H

O

n, hb

lin-PURhb-PUR-Ph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

mi

Fractions

(ppm ) 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8

(p p m )

3 .64 .04 .44 .85 .25 .66 .06 .46 .87 .27 .68 .08 .48 .89 .29 .6

p-urethane

o-urethanep-ureao-urea

aromatic

dendritic

HN

HN

O

Fraction 9

Fraction 17

A2+B3 Poly(urea-urethane)s2-dimensional separation

N

H

NH

NH

N N

ON

O

O

O

H H

O

O

O n, linNH

N N

O

O

O

O

NH

H

O

n, hb

lin-PURhb-PUR-Ph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

mi

Fractions

sample SEC with PVP-calibration*

SEC-MALLS**

Mw Mw/Mn Mw

fraction 1-11 1160 1.1 -

fraction 12 1350 1.35 -

fraction 13 2030 1.62 -

fraction 14 2850 1.68 5700

fraction 15 3800 1.72 6500

fraction 16 4400 1.69 7200

fraction 17 5300 1.68 9900

fraction 18 7950 1.51 10600

fraction 19 65000 4.82 82200

fraction 20 135000 6.75 -

starting sample hb-PUR-Ph

75000 34.10 118000

A2+B3 Poly(urea-urethane)s2-dimensional separation

N

H

NH

NH

N N

ON

O

O

O

H H

O

O

O n, linNH

N N

O

O

O

O

NH

H

O

n, hb

lin-PURhb-PUR-Ph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

mi

Fractions

fraction 5

fraction 10

fraction 12

fraction 17

398Da

218.

8Da

Diphenylurea+Li +

TDI+DEA+phenylisocyanate

A2+B3 Poly(urea-urethane)s2-dimensional separation

N

H

NH

NH

N N

ON

O

O

O

H H

O

O

O n, lin

NH

N N

O

O

O

OH

H

n, hbNH

N N

O

O

O

O

NH

H

O

n, hb

lin-PURhb-PUR-OH hb-PUR-Ph

3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8-1.5

-1.0

-0.5

0.0

HB-PUR-Phα = 0.11

lin-PUR α= 0.72

hb-PUR-OHα = 0.25

log[

η]

logMw

Branched polymers

Elution Fractionation

Molar mass

2-dimensional separation

Branched polymers2-dimensional chromatography (LCxLC)

SEC

elution volume

I

Separation of linear and branched polymer 2D-LC

Coelution in SEC Separation in the 2nd Dimension

Linear

Branched

mol

ar m

ass

elution volume [mL]

Branched

Linear

SECLAC

Two-Dimensional Liquid Chromatographic Set-up

2D-LCWaste

Sample

Pump 1st D

Pump 2nd D

ELSD

SEC Separation: Hydrodynamic

Volume

Gradient Chromatography:

7 8 9 10 11 12

0

20

40

60

80

100

norm

aliz

ed E

LSD

Sig

nalin

tens

ity [%

]

Elution volume [ml]

Waste

Sample

Pump 1st D

Pump 2nd D

ELSD

Det

ecto

r In

tens

ity

Branched polymers2-dimensional chromatography (LCxLC)

Radke, e-Polymers, 2005

On-line 2D separation of a mixture of PS star

polymers having an arm molecular weight

Marm = 4800 and polydisperse polystyrene

Separation of linear and branched polymer Liquid chr omatography at critical conditions

At critical conditions of the linear polymer, LAC separation according to branching!

Location of the end groups and compaction of the molecule responsible

mol

ar m

ass

elution volume [ml]

SECLAC

LCCC

Macromolecules 2010, 43, 3215-3220

O O

O n

Si

2.5 3.0 3.5 4.0 4.5

2x104

3x104

4x104

5x104

6x104

MW

/ g m

ol-1

elution volume / mL

SY-0

B

SY-50SY-38SY-18

94% acetone: 6% THF

Separation of linear and branched polymer 2D-LC

linear, DB = 0%

hyperbranched, DB = 50%

molar mass, g/mol

Ve,

GLA

C

Macromolecules 2010, 43, 3215-3220

O O

O n

Si

linear, DB = 0%

pseudo-dendrimer, DB = 100%

Ve,

GLA

C

molar mass, g/mol

What is Phase Distribution Chromatography?What is Phase Distribution Chromatography?What is Phase Distribution Chromatography?What is Phase Distribution Chromatography?

Phase Distribution Chromatography

from First publication in the year 1970197019701970 from Casper and Schulz (Mainz)

[R.H. Casper, G.V. Schulz; J. Polym. Sci, Part A-2; (1970); 8888; 833-839]

Developed for determination of molecular weight distribution of narrow distributed Polystyrenes

Experiment of dynamic phase separation

PDC equipment Mainz 1971

3

Diluted solution of polymer to be

separated

ThermodynamicThermodynamicThermodynamicThermodynamic-kinetic interactions between kinetic interactions between kinetic interactions between kinetic interactions between

Mobile PhaseMobile PhaseMobile PhaseMobile Phase Stationary PhaseStationary PhaseStationary PhaseStationary PhaseGel of same polymer,

linear, high molecular, non-crosslinked

Below theta-temperature (Cyclohexane – Polystyrene 34 °C)

within the solubility gap

Phase Distribution Chromatography

4

Curves of 2 Polystyrenes (Mw = 135,000 and Curves of 2 Polystyrenes (Mw = 135,000 and Curves of 2 Polystyrenes (Mw = 135,000 and Curves of 2 Polystyrenes (Mw = 135,000 and 415,000 g/mol) depending on temperature (1970)415,000 g/mol) depending on temperature (1970)415,000 g/mol) depending on temperature (1970)415,000 g/mol) depending on temperature (1970)

First Experiments of FractionationFirst Experiments of FractionationFirst Experiments of FractionationFirst Experiments of Fractionation

ColumnColumnColumnColumn:

Length = 26 cm

Ø = 1.3 cm

CH / CH / CH / CH / polymer blendspolymer blendspolymer blendspolymer blends

Mobile phaseMobile phaseMobile phaseMobile phase:

cyclohexane (CH, θ-solvent), polymer solution (1 wt%) flow rate: 10-12 ml/h

)

Stationary phaseStationary phaseStationary phaseStationary phase:

concentrated ultra high molecular polystyrene (UHPS) adhering at Ballotini (glass beads, Ø = 0.1 mm) insoluble below 36 °C, non crosslinked

Mw = 5,800,000 g/mol

PDI = 1.16

First Separations

fractionsfractionsfractionsfractions

5

Preparation of stationary phase

SEM images of pure and coated Ballotini SEM images of pure and coated Ballotini SEM images of pure and coated Ballotini SEM images of pure and coated Ballotini made with Phenom™(Fei Company)

6

wt% of UHPS = 0.25 % Frequent changes of solvent / non-solvent

Flushing with CH (loss of 20 %)

160 µm160 µm160 µm160 µm

Compositional modeCompositional modeCompositional modeCompositional mode

Topographic modeTopographic modeTopographic modeTopographic mode

Compositional modeCompositional modeCompositional modeCompositional mode

Topographic modeTopographic modeTopographic modeTopographic mode

First Separations: Preliminary Tests

Preliminary test 2:Preliminary test 2:Preliminary test 2:Preliminary test 2:Separation according to molar mass?Separation according to molar mass?Separation according to molar mass?Separation according to molar mass?

20 40 60 80 100 120 1400

20

40

60

80

per

cen

tage

of

PS

(%

)

VCH

(ml)

125k 300k

Ratios of PS1 and PS2 in fractions determined by GPC-RI signals

20 40 60 80 100 120 1400,0

0,2

0,4

0,6

0,8

1,0

con

cen

tra

tion

(m

g/m

l)

VCH

(ml)

Distribution of polymer concentrations during fractionation

• Mixture (1:1) of two linear polystyrenes PS1: Mw = 125,000 g/mol; PDI = 1.01 PS2: Mw = 300,000 g/mol; PDI = 1.01

• Fractionation at ambient temperature (23 °C)

• Composition of each fraction determined by SEC-RI-signals

→→→→ Separation according to MM!Separation according to MM!Separation according to MM!Separation according to MM!9

Preliminary test 3: Preliminary test 3: Preliminary test 3: Preliminary test 3:

Influence of stationary phase?Influence of stationary phase?Influence of stationary phase?Influence of stationary phase?

2 0 4 0 6 0 8 00 ,0

0 ,1

0 ,2

0 ,3

0 ,4

0 ,5

con

cen

trati

on (

mg/m

l)

VC H

(m l)

Distribution of polymer concentrations during fractionation

20 30 40 50 60 70 800

20

40

60

80

per

cen

tage

of

PS

(%

)

VCH

(ml)

125k 300k

Ratios of PS1 and PS2 in fractions determined by GPC-RI signals

→→→→ No separation effect using No separation effect using No separation effect using No separation effect using pure Ballotini pure Ballotini pure Ballotini pure Ballotini without UHPSwithout UHPSwithout UHPSwithout UHPS!!!!

First Separations: Preliminary Tests

10

Thermometer Pt1

00

PC

Magnetic stirrer

Multi-meter

Thermostat

Photo diode

Laser

Equipment for cloud point determinationEquipment for cloud point determinationEquipment for cloud point determinationEquipment for cloud point determination

Turbidimetric measurements

11

Linear polystyrene

3 arms

Turbidimetric measurements

Solvent: Cyclohexane

Linear polystyrene (Mw = 300,000 g/mol; PDI = 1.01)

Star-shaped polystyrene; 3 arms (Mw = 305,000 g/mol; PDI = 1.06)

Cooling rate: 0.1 K/min20 22 24 26 28 30 32 34

0,0

0,2

0,4

0,6

0,8

1,0

5 wt% linear PS

5 wt% star-shaped PS

Inflection point

I/I o

T(°C)

Linear PS Star-shaped PS

Polymer content (wt%)

inflection point

T(°C)

Polymer content (wt%)

inflection point

T(°C)

3 26.5 3 25.8

4.98 27.0 4.96 25.9

9.98 26.8 9.35 25.7

16.8 25.7 16.7 25.0

Turbidimetric measurements

12

0 5 10 15 2024

25

26

27

28

Clinear

Cstar

T (

°C)

polymer content (wt%)→→→→ Determination of preferential Determination of preferential Determination of preferential Determination of preferential concentration and temperature!concentration and temperature!concentration and temperature!concentration and temperature!

Upscale: Separation of linear and star-shaped Polystyrene

• Using a system with HPLC pump, column (300 x 7.5 mm), RI- and UV-detector (λ = 280 nm)

• First measurements with low concentration (0.2 wt%) to determine flow rate and injection volume

• Checking elution times of Polystyrenes with different molar masses (flow rate 14 ml/h, temperature 24 °C)

20 30 40

0,00

0,02

0,04

0,06

0,08

UV

-sig

nal

(V)

retention time (min)

PS 2k PS 19k

PS 92k PS 233k PS 300k

15

4,4 4,8 5,2 5,6 6,00

1x105

2x105

3x105

Linear PSm

olar

mass

(g/m

ol)

retention volume (ml)

4,4 4,8 5,2 5,6 6,00

1x105

2x105

3x105

77k, 4 arms

300k, 3 arms

230k, 8 arms

Linear PS Star-shaped PS

mol

ar

mass

(g/m

ol)

retention volume (ml)

→→→→ Separation according to branching!Separation according to branching!Separation according to branching!Separation according to branching!

Upscale: Separation of linear and star-shaped Polystyrene

→→→→ Tempreature dependent sTempreature dependent sTempreature dependent sTempreature dependent separation eparation eparation eparation according to branching!according to branching!according to branching!according to branching!

Amphiphilic polymers

pH < 7

drug

encapsulation release

-OOC-OOC COO-

COO-

COO-

-OOC

COO-

COO-

COO-

COO-

COO-

COO-

COO-

COO-

COO-

COO--OOC

COO-

-OOC COO-

-OOC-OOC

-OOC

-OOC

-OOC

-OOC

-OOC

-OOC

-OOC

-OOC

-OOC COO-

-OOC

-OOC COO-COO-

Amphiphilic polymers with hb core

O

OH

O

O

O

O

O

O

O

O

OO

O

O

OO

O

OH

OO

O

O O

HO

OO

HO

O

O

HO

O

Br

Br

Br

O

O

O

Br

O

BrO

BrO

BrO

O

OH

O

O

O

OH

O

O

O

O

OO

HO

OH

OO

HO

OH

OO

O

O O

HO

OHO

HO

HO

O

HO

HO

N

O R

O

OH

O

O

O

O

O

O

O

O

OO

O

O

OO

O

OH

OO

O

O O

HO

OO

HO

O

O

HO

O

O

O

OO

O

O

O

N O

R

N O

R

NO

R

NO

R

NO

R

N

OR

NHO

N

OH

N

OH

N

OH

N

HO

NHO

NHOO

O

O

O

epoxy photo-

curing

www.californiapaints.comwww.home.howstuffworks.com

NCO

NCO

isocyanato

thermo-

curing

Star Formation

0 10 20 30 40 500

20

40

60

80

100

monom

er

conve

rsio

n [%

]

time [h]5 6 7 8

6 h: 47% monomer conv.2 h: 17% monomer conv.

start 2 h 6 h 18.5 h 22.5 h

a.u.

elution volume [mL]

18.5 h: 74% monomer conv.

died living-chain-ends22.5 h: 75% monomer conv.

SEC in DMAc + 3 g/L LiCl

O

O

O

O

Br

O

N

O

OH

O

O

O

N

N O

PhCN, 100 °C, 6 h

NH

OH

n,hb n,hb

2.)

m

PhCN, 100 °C10 min

1.) 100 eq.

Star growing

6,5 7,0 7,5 8,0 8,5 9,0 9,5 10,00,0

0,2

0,4

0,6

0,8

1,0

normalized RI signal normalized UV signal

nom

aliz

ed s

igna

l RI a

nd U

V

elution volume [ml]

hyperbranched star polyoxazoline chainsgrown from impurities

O

O

O

O

Br

O

N

O

OH

O

O

O

N

N O

PhCN, 100 °C, 6 h

NH

OH

n,hb n,hb

2.)

m

PhCN, 100 °C10 min

1.) 100 eq.

0,00

0,01

0,02

0,03

4 5 6 7 8 9

90

° LS

sig

nal (

vo

lt )

elution volume ( mL )

FD277cap_01 (Y1) FD278capw_01 (Y1)

Star dimerization

NH

OH

N O

N

OH

N

OH

N

HO

N

OH

N

HO

N

HO

NHO

NHO

N

OH

N

OHN

OH

N

OH

N

HO

NHO

N

OH

N

OH

N

HO

N

OH

N

HO

N

HO

NHO

NHO

N

OH

N

OHN

OH

N

OH

N

HO

NHO

N

OH

0.5 M KOH/EtOH+1%H2O OH

HO

OH

OH

OH

OH

HOHOHO

HO

HOOH

HO

HO

HO

HO

Amphiphilic nanocarrier

6 80,0

0,2

0,4

RI-S

igna

l [V]

RI-S

igna

l [V]

RI-S

igna

l [V]

RI-S

igna

l [V]

Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]

RI-Signal

0,000

0,005

0,010

0,015

0,020

LS-Signal L

S-Si

gnal

[V]

LS-S

igna

l [V]

LS-S

igna

l [V]

LS-S

igna

l [V]

N

N

N

H2N

NH

NH2

NH

NNH2

N

NH2

NH

H2N

HN

NHN

HN

NH2

H2N

NHH2N

Mn 2000 g/molMw 2600 g/moldn/dc -0.125DMAc LiCl

6 7 8

10000

20000

30000

40000

50000

60000

M/EV-Abhängigkeit

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]

0,0

0,3

0,6

RI-Signal

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

LS-Signal

LS-,

RI-D

etek

tor [

V]LS

-, R

I-Det

ekto

r [V]

LS-,

RI-D

etek

tor [

V]LS

-, R

I-Det

ekto

r [V]

Mn 15800 g/molMw 15900 g/moldn/dc -0.127DMAc LiCl

CH3NH2

OO

NH

OO

O

CH3NH

ONH

OO

H

n+

n

3

5

6

RT, 72 h

DMF

PEI – poly (glutamic acid ester) core-shell

5 6 7 8

1000

10000

100000

M/EV-Abhängigkeit

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]

0.0

0.1

0.2

0.3

RI-Signal

LS-,

RI-

Det

ekto

r [V]

LS-,

RI-

Det

ekto

r [V]

LS-,

RI-

Det

ekto

r [V]

LS-,

RI-

Det

ekto

r [V]

LS-Signal

5 6 7 8

1000

10000

100000

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]

M/EV-Abhängigkeit

0.0

0.1

0.2

0.3

RI-Signal

LS-

, RI-

Det

ekto

r [V]

LS-

, RI-

Det

ekto

r [V]

LS-

, RI-

Det

ekto

r [V]

LS-

, RI-

Det

ekto

r [V]

LS-Signal

O

O

NHO

O

O

3

+N

NH2

N

NH

NH2

NHNH2N

NH2

NH

NH2

n

n

4

7

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

OO

HO

NH

O O

H

DMF50 °C, 72 h

Mn 11900 g/molMw 20700 g/moldn/dc -0.125DMAc LiCl H2O

Mn 7600 g/molMw 13600 g/moldn/dc -0.106DMAc LiCl

PEI – poly (hydroxy ethyl glutamin) core-shell

10 12 14 16 18 20 22

0

200000

400000

600000

800000

1000000

1200000

M/EV-Abhängigkeit

Mol

ekul

arge

wic

ht

Mol

ekul

arge

wic

ht

Mol

ekul

arge

wic

ht

Mol

ekul

arge

wic

ht [[ [[ g

/mol

g/m

olg/

mol

g/m

ol

))))

Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]

0.0

0.2

RI-Signal

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LS-Signal

LS-

, RI-D

etek

tor [

V] L

S-, R

I-Det

ekto

r [V]

LS-

, RI-D

etek

tor [

V] L

S-, R

I-Det

ekto

r [V]

A4FMn 62400 g/molMw 141800 g/moldn/dc -0.130

n

n

9

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

NHO

HO

NH

NH O

H

OH

OH

n

n

7

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

OO

HO

NH

O O

H

NH2OH

30 °C, 72 hn

n

9

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

NHO

HO

NH

NH O

H

OH

OH

n

n

7

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

OO

HO

NH

O O

H

NH2OH

30 °C, 72 h

Aminolysis

PEI – poly (L- glutamic acid) core-shell

n

n

8

n

n

7

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

OO

HO

NH

O O

H

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

OHO

HO

NH

O-

O

H

Na+

NaOH

MeOH/H2O (1:1)

n

n

8

n

n

7

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

OO

HO

NH

O O

H

N

NH

N

N

NH2

NHNH2N

NH2

NH

NH2

O

NH

OHO

HO

NH

O-

O

H

Na+

NaOH

MeOH/H2O (1:1)

15 20 25

10000

100000

1000000

M/EV-Abhängigkeit

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]

0.00

0.05

0.10

0.15

0.20 RI-Signal

0.00

0.05

0.10

0.15

0.20

LS-Signal

LS-

, RI-D

etek

tor [

V]LS

-, R

I-Det

ekto

r [V]

LS-,

RI-D

etek

tor [

V]LS

-, R

I-Det

ekto

r [V]

15 20 25

10000

100000

1000000

M/EV-Abhängigkeit

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Mol

ekul

arge

wic

ht [g

/mol

]M

olek

ular

gew

icht

[g/m

ol]

Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]Elutionsvolumen [ml]

0.00

0.05

0.10

0.15

0.20 RI-Signal

0.00

0.05

0.10

0.15

0.20

LS-Signal

LS-

, RI-D

etek

tor [

V]LS

-, R

I-Det

ekto

r [V]

LS-,

RI-D

etek

tor [

V]LS

-, R

I-Det

ekto

r [V]

Hydrolysis

2 3 4 5 6 7 8 9 10-800

-600

-400

-200

0

200

400

600

800

1000

1200

U [m

V]U

[mV]

U [m

V]U

[mV]

pH

3 6 9-800

-400

0

400

800

1200

PEI-PLGA

PEI

Complex dendritic polymers and their interactions for biological applications

orgchem.science.ru.nl

J. Chromatogr. A 2010, 1217, 4841–4849Polym. Prepr.(ACS) 2010, 51 (2), 174-175

• Specific interactions e.g. with proteins and polype ptides

• Transport molecules for metal ions and particles, R NA und

DNA molecules

• Exploration/tailoring of biological processes

• Recognition/non-recognition of oligosaccharide-modi fied

molecules on cell membrane surfaces

•••• Formation of biocompatible surfaces

hb polymers

globular compact

linear polymers

worm-likepolymers

dendrimers

spherical

N

N

N

H2N

NH

NH2

N

N

NH2

NH2

NHNH

N

NH2

NH

H2N

N

H2N

NHH2N

NH2

NN

NN

NN

N

N N

N

N

N

N

N

N

N

NN

N

N

N

N

N

N

N

N

N

N

N

N

N

NN

N

N

N

N N

NN

R

R

RR

NR

R

R

R

N R

R

N

RR

N

R

R

NR

R

N

RR

N

R

R N

R

R

NR

R

NR

RN R

RR

RRR

RRR

R

N

N R

R

N R

R

RR

N

R

RNR

RRRRR

RR

R

R

NR

R

N

RR

NR

R

N

N

R

R

NR

R

coil-likepolymers

Glycopolymer – Multifunctional macromolecules for po tential polymeric therapeutics and diagnostics

NO

O

NO

N

H

HO

N

N

R

R

RR

NO

O

OHO

OO

O NO

O

NO

N

H

HO

N

N

H

O

NR

N

R

HO

N

R

NR

R

R

R R

NO

O

NO

N

H

HO

N

N

H

O

NH

O

NHO

HO

NHO

NH

O N

N

N

N

N

N

N

NR

R

RR

RR

RR

R

R

R

R

RR

R

R

1st generationMI copolymer

2nd generationMI copolymer

3rd generationMI copolymer

OHHO

HOHO

OHO

OHOH

HOOR =

Dendronised MI copolymers decorated with maltose sh ell

maltose

Repeating units of MI copolymerswith dendritic lysine side groupsfor use as bio-hybrid structures

in solution and in thin layer technology

14

applications:

molecular containers

guest-host interactions

drug-delivery systems

biomimetic materialien

synthetic nanoparticles

tailored catalytic systems

Topology

linear main chain (maleimide-ethylene-copolymer)

modified end groups with maltose

poly-L-lysin-dendrones in 4 generations

O

O

O

O

NN

O

H

N

H

O

N

O ON

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HO HO

O

OH

O

OH

HOHO

OH

( )

O

O

O

O

NN

O

H

N

H

O

N

O ON

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HO HO

O

OH

O

OH

HOHO

OH

( )

O

O

O

O

NN

O

H

N

H

O

N

O ON

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HO HO

O

OH

O

OH

HOHO

OH

( )

O

O

O

O

N N

O

H

N

H

O

N

OON

OH

O

HO

HO HO

O

OH

O

OH

HOHO

OH

OH

O

OH

OH

HOO

OH

O

OH

OH

HO

HO

HO

O

OH

OH

OH

O

HO

O

OH

OH

OH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

()

O

O

O

O

N N

O

H

N

H

O

N

OON

OH

O

HO

HO HO

O

OH

O

OH

HOHO

OH

OH

O

OH

OH

HOO

OH

O

OH

OH

HO

HO

HO

O

OH

OH

OH

O

HO

O

OH

OH

OH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

()

O

O

O

ON

N

N

N

H

O

O

H

N

N

O

H

N

H

O

N

O ON

O

O

O

OHO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

OHO

O

HO

OH

OH

HO

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OHOH

OHO

HO

OH

O

OH

O

HO

HO

HO

OH

OH

O

HO

HO

HO

O

OH

O

OH

HOHO

OH

OH

O

HO

HOHO

O

OH

O

OH

HO HOOH

OHO

HOHO

HO

O

OH

O

OH

OH

HO

OH

O

O

O

ON

N

N

N

H

O

O

H

N

N

O

H

N

H

O

N

O ON

O

O

O

OHO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

OHO

O

HO

OH

OH

HO

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OHOH

OHO

HO

OH

O

OH

O

HO

HO

HO

OH

OH

O

HO

HO

HO

O

OH

O

OH

HOHO

OH

OH

O

HO

HOHO

O

OH

O

OH

HO HOOH

OHO

HOHO

HO

O

OH

O

OH

OH

HO

OH

O

O

O

ON

N

N

N

H

O

O

H

N

N

O

H

N

H

O

N

OON

O

O

O

OOH

O

HO

HOHO

O

OH

O

OH

HO HOOH

OH

O

HO

HO HO

O

OH

O

OHHO

HO

OH

OH

O

HO

HOHO

OOH

O

OH

HO

HO

OH

OH

O

OH

OH

HOO

OH

O

OH

OH

OH

HO

HO

OOH

OH

OH

O

OH

O

OH

OH

OH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOHHO

HOO

OH OH

OH

O

HO

O

HO

OH

OH

OH

O

O

O

ON

N

N

N

H

O

O

H

N

N

O

H

N

H

O

N

OON

O

O

O

OOH

O

HO

HOHO

O

OH

O

OH

HO HOOH

OH

O

HO

HO HO

O

OH

O

OHHO

HO

OH

OH

O

HO

HOHO

OOH

O

OH

HO

HO

OH

OH

O

OH

OH

HOO

OH

O

OH

OH

OH

HO

HO

OOH

OH

OH

O

OH

O

OH

OH

OH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOHHO

HOO

OH OH

OH

O

HO

O

HO

OH

OH

OH

O

O

O

ON

N

N

N

H

O

O

H

N

N

O

H

N

H

O

N

O ON

O

O

O

OHO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

OHO

O

HO

OH

OH

HO

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OHOH

OHO

HO

OH

O

OH

O

HO

HO

HO

OH

OH

O

HO

HO

HO

O

OH

O

OH

HOHO

OH

OH

O

HO

HOHO

O

OH

O

OH

HO HOOH

OHO

HOHO

HO

O

OH

O

OH

OH

HO

OH

O

O

N

O

O

N

O

H

O

O

NO

N

O

H

N

N

O

N

O

N

O

O

N

N

O

H

N

H

NH

O

O

H

NN

O

H

N

H

O

N

ON

OO

O

O

O

OHO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OH

OH

HO

HOO

OHOH

OH

O

HOO

HO

OH

OH

OH

HO O

OHOH

OH

O

HO

O

HO

OH

OH

OH

HOO

OH OH

OH

O

HO

O

HO

HO

OH

OH

HO

O

HO

HO

OHO

HO

OHO

HO

OH

OH

HO

O

HO

HO

OH O

HO

O

HO

HO

OH

OH

OH

O

HO

HO

OH

O

OH

O

HO

HO

HO

OH

()

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HOHO

O

OH

O

OH

HO HO OH

OH

O

HO

HOHO

OOH

O

OHHO

HO

OH

OH

O

OH

OH

HOO

OH

OOH

OH

HO

HO

OHO

OHHO

HO

O

OH

O

OH

OH

HO

OH

OH

O

OH

OH

HO

O

OH

O

OH

OH

OH

HO

O

O

O

N

O

O

N

O

H

O

O

NO

N

O

H

N

N

O

N

O

N

O

O

N

N

O

H

N

H

NH

O

O

H

NN

O

H

N

H

O

N

ON

OO

O

O

O

OHO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OH

OH

HO

HOO

OHOH

OH

O

HOO

HO

OH

OH

OH

HO O

OHOH

OH

O

HO

O

HO

OH

OH

OH

HOO

OH OH

OH

O

HO

O

HO

HO

OH

OH

HO

O

HO

HO

O HO

HO

OHO

HO

OH

OH

HO

O

HO

HO

OH O

HO

O

HO

HO

OH

OH

OH

O

HO

HO

OH

O

OH

O

HO

HO

HO

OH

()

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HOHO

O

OH

O

OH

HO HO OH

OH

O

HO

HOHO

OOH

O

OHHO

HO

OH

OH

O

OH

OH

HOO

OH

OOH

OH

HO

HO

OHO

OHHO

HO

O

OH

O

OH

OH

HO

OH

OH

O

OH

OH

HO

O

OH

O

OH

OH

OH

HO

O

O

O

N

O

O

N

O

H

O

O

NO

N

O

H

N

N

O

N

O

N

O

O

N

N

O

H

N

H

NH

O

O

H

NN

O

H

N

H

O

N

ON

OO

O

O

O

OHO

O

OH

OHOH

O

HO

O

HO

OHOH

HO

HO

O

OH

OHOH

O

HO

O

HO

OH

OH

HO

HOO

OHOH

OH

O

HOO

HO

OH

OH

OH

HO O

OHOH

OH

O

HO

O

HO

OH

OH

OH

HOO

OH OH

OH

O

HO

O

HO

HO

OH

OH

HO

O

HO

HO

OHO

HO

OHO

HO

OH

OH

HO

O

HO

HO

OH O

HO

O

HO

HO

OH

OH

OH

O

HO

HO

OH

O

OH

O

HO

HO

HO

OH

()

HO

O

HO

HO

OHO

HO

O

HO

HO

OH

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HO

HO

O

OH

O

OH

HO

HO

OH

OH

O

HO

HOHO

O

OH

O

OH

HO HO OH

OH

O

HO

HOHO

OOH

O

OHHO

HO

OH

OH

O

OH

OH

HOO

OH

OOH

OH

HO

HO

OHO

OHHO

HO

O

OH

O

OH

OH

HO

OH

OH

O

OH

OH

HO

O

OH

O

OH

OH

OH

HO

O

O

O

N

O

O

N

O

H

O

O

NO

N

O

H

N

N

O

N

O

N

O

O

N

N

O

H

N

H

N H

O

O

H

N

N

O

H

N

H

O

N

ON

OO

O

O

O

OOH

O

HO

HOHO

O

OH

O

OH

HO HOOH

OH

O

HO

HO HO

O

OH

O

OH

HO

HO

OH

OHO

HOHO

HO

O

OH

O

OH

OH

HO

OH

OHO

HOHO

HO

O

OH

O

OH

OH

HO

OH

OHO

OHHO

HO

O

OH

OOH

OH

HO

HO

OH

O

OH

OH

HOO

OH

OOH

OH

HO

HO

OH

O

OH

OH

HOO

OH

O

OH

OH

HO

HO

OH

OOH

OH

HO

O

OH

O

OH

OH

OH

HO

()

OH

O

OH

OH

HOO

OH

O

OH

O H

OH

HO

HO

O

OH

OH

OH

O

HO

O

HO

OH

OH

HO

HO

O

OH

OH

OH

O

HO

O

HO

OH

OH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOHHO

HO

O

OH

OHOH

OHO

O

HO OH

OH

HO

HO

O

HO

HO

OHO

HO

OHO

HO

OH

OH

HO O

OH OH

OH

O

HO

O

HO

OH

OH

OH

O H

O

HO

HO

OH

O

HO

O

HO

HO

HO

OH

O

O

O

N

O

O

N

O

H

O

O

NO

N

O

H

N

N

O

N

O

N

O

O

N

N

O

H

N

H

NH

O

O

H

N

N

O

H

N

H

O

N

ON

OO

O

O

O

OOH

O

HO

HOHO

O

OH

O

OH

HO HOOH

OH

O

HO

HO HO

O

OH

O

OH

HO

HO

OH

OHO

HOHO

HO

O

OH

O

OH

OH

HO

OH

OHO

HOHO

HO

O

OH

O

OH

OH

HO

OH

OHO

OHHO

HO

O

OH

OOH

OH

HO

HO

OH

O

OH

OH

HOO

OH

OOH

OH

HO

HO

OH

O

OH

OH

HOO

OH

O

OH

OH

HO

HO

OH

OOH

OH

HO

O

OH

O

OH

OH

OH

HO

()

OH

O

OH

OH

HOO

OH

O

OH

O H

OH

HO

HO

O

OH

OH

OH

O

HO

O

HO

OH

OH

HO

HO

O

OH

OH

OH

O

HO

O

HO

OH

OH

HO

HO

O

OH

OHOH

O

HO

O

HO

OHOHHO

HO

O

OH

OHOH

OHO

O

HO OH

OH

HO

HO

O

HO

HO

OHO

HO

OHO

HO

OH

OH

HO O

OH OH

OH

O

HO

O

HO

OH

OH

OH

O H

O

HO

HO

OH

O

HO

O

HO

HO

HO

OH

O

Dendronised Polymers: aggregation behaviour

Manuscript in preparation

Principle of FFF separation

Separation in a narrow channelSeparation force perpendicular to the solvent flow

Source: Postnova Analytics

FFF separation methods

Source: Postnova Analytics

AF4 separation principle

Log

M

Elution Volume

Size separation: V E ~ Rh

Source: Postnova Analytics

Laminar flow inside the channel

AF4-MALS50 mM NaNO3-Pufferc= 1 mg/ml, pH = 5,5

15

0 10 20 30 40 50 60 700,0

0,5

1,0

1,5

Fraktionierung/ Elution

linearer Fx-Gradient

exponentieller Fx-Gradient

Ff, F

x (m

l/min

)

Elutionszeit (min)

Fokus/Injektion

elution time

broad distributions

linear Fx-gradient exponential Fx-gradient

elution time

AF4-MALS of dendronised glycopolymers

aggregate resolution

6 8 10 12 14 16 18 20 22102

103

104

105

106

107

108

109

MI-G0-Mal MI-G1-Mal MI-G2-Mal MI-G3-Mal

mol

ar m

ass

(g/m

ol)

elution time (min)

0.0

0.2

0.4

0.6

0.8

1.0

RI a

nd L

S s

igna

l (V

)

10 20 30 40 50 60 70100

101

102

103

radi

us (

nm)

elution time (min)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 MI-G0-Mal MI-G1-Mal MI-G2-Mal MI-G3-Mal

RI a

nd L

S s

igna

l (90

°) (V

)

16

no aggregation in 1st and 2nd generation

strong aggregation at low and high pH of 0 and 3th generation

AF4-MALS of dendronised glycopolymers

0 1 2 30

2

4

6

8

10

12

14

16 pH = 3.5 pH = 5 pH = 7 pH = 8.5 pH = 11

aggr

egat

ion

num

ber

(Mw/M

w,0)

generation number

17

CH2CH2 CH CH

N OO

N

R R

R = OHHO

HOHO

OHO

OHOH

HOO

200 repeating units

Helical structure calculated

Molecular Dynamic simulation of MI-G0-Mal

Scaling parameter ν:

Rg = KMνννν

0,0 0,5 1,0 1,5 2,0 2,51,0

1,5

2,0

2,5 pH = 3,5 pH = 7 pH = 11

y=0,98x+1,31y=-0,26x2+1,17x+1,29

y=0,25x+1,27

y=0,67x+1,18

log(

Rg)

(nm

)

log(Mw*10-6) (g/mol)

AF4 Untersuchungen der Glykopolymere

19

for MI-G0-Mal:

ν > 1 → stiff rodν = 0,5 - 0,7 → coil in a good solventν = 0,33 → hard sphere

W.Burchard, Advances in Polymer Sciences, Vol. 143

AF4-MALS of dendronised glycopolymers

88 nm

48 nm

167 nm165 nm

Mikroskopie

20

AFM of aggregates of 3rd generation dendronised gly copolymers

N

N

NN

N N NN

N

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N N

NN

NN N N

NN

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

Uncapped dendrimer boxGuest molecules exhibit Brownian motion and are not strongly coupled.

Core-shell polymers -Capped (Meijer) dendrimer boxGuest molecules remain well within the interiour of the box.Additional capability: guest molecules can be entrapped by the shell.

Multi-shell Core-shell structureAdditional capability to entrap different types of guest molecules (hydrophilic and hydrophobic) as well as tune physico-chemical properties of the polymer.

Crosslinked dendritic polymersA new way to deliver drugs in the cavities among dendritic molecules.

Dendritic delivery systems

Collaboration Dr. Appelhans

PEI-maltose

J Chrom A 2010, 1217, 4841

PEI-maltose core-shell

R =

OHHO

HOHO

OHO

OHOH

HOO

Mal (maltose)

N

N

N

H2N

NH

NH2

NH

NNH2

N

NH2

NH

H2N

HN

NHN

HN

NH2

H2N

NHH2N

L

D

=

N

N

H

RR

N

N

H

HR

N

N

H

H

R

PEI

L

L

D

N

N

H

H

H

N

N

H

HH

N

N HH

HPEI

PEI-Mal

O R

Rose Bengal

PEI

NH2

PEI

Mw 5k Da and 25k Da

1

PEI

NMalH

Open shell

PEI

NMal

Mal

1

Dense shell

1: mono- and oligo-

saccharides

Reduction agent :

BH3*Py complex

Biomacromolecules 2009, 10, 1114

MaltoseMal = OHHO

HOHO

OHO

OHOH

HOO

N

N

N

H2N

NH

NH2

N

N

NH2

N

NHNH

N

N

NH

H2N

N

HN

NHH2N

NH2

NH

NH

NH

NH

NH2

NH

N

NN

NN N N

NN

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

N

NN

NN N N

NN

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

H

H

H

HH

H

H

HH

HH

HH

H

H

H

H

HH

H H H

N

N

N

H2N

NH

NH2

N

N

NH2

N

NHNH

N

N

NH

H2N

N

HN

NHH2N

NH2

NH

NH

NH

NH

NH2

NH

N

N

N

H2N

NH

NH2

N

N

NH2

N

NHNH

N

N

NH

H2N

N

HN

NHH2N

NH2

NH

NH

NH

NH

NH2

NH

N

NN

NN N N

NN

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

H

H

H

HH

H

H

HH

HH

HH

H

H

H

H

HH

H H H

HH

HH

H HH

H

HH

HH H

H

Dense shellStructure A

Open shellStructure B

Open shellStructure C

A5 – PEI-5 kDa + Maltose

A25 – PEI-25 kDa + Maltose

B5 – PEI-5 kDa + Maltose

B25 – PEI-25 kDa + Maltose

C5 – PEI-5 kDa + Maltose

C25 – PEI-25 kDa + Maltose

48

PEI-Mal variation

PEI-Mal encapsulation

400 450 500 550 600 650 7000.0

0.2

0.4

0.6

0.8

1.0

1.2pH 6.7 pH 11

UV-Vis absorption maximum for pure Rose Bengal at pH 6.7: λλλλ = 550 nm

400 450 500 550 600 650 7000.0

0.2

0.4

0.6

0.8

1.0

1.2

Wavelength (nm)

Rose Bengal pureRose Bengal@PEI-Mal

Wavelenght (nm)

N

N

N

N

N NN

N

N

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H HH

N

N

N

H2N

NH

NH2

N

N

NH2

N

NHNH

N

N

NH

H2N

N

HN

NHH2N

NH2

NH

NH

NH

NH

NH2

NH

1:1 complex RB:B25

RB in ethylamine solutionRB in water

400 450 500 550 600 6500,0

0,2

0,4

0,6

0,8

1,0

Abs

orba

nce

Wavelenght [nm]

30:1 complex RB:B25

RB in maltose solution

RB in water

400 450 500 550 600 6500,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

Abs

orba

nce

Wavelenght [nm]

Vis spectra of Rose Bengal

N

N

N

N

N NN

N

N

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H HH

N

N

N

H2N

NH

NH2

N

N

NH2

N

NHNH

N

N

NH

H2N

N

HN

NHH2N

NH2

NH

NH

NH

NH

NH2

NH

Low complexation ratio drug:PEI-Mal

High complexation ratio drug:PEI-Mal

Low complexation ratio

High excess of RBcomplexation in PEI core

and maltose shell

complexation in PEI core

Where are the guest moelcules?

Separation of RB and RB@PEI-Mal

Focus flowInjection

Membrane

Focus flow

Membrane

Focus flow Focus flow

Separation of RB and RB@PEI-Mal

Quantitative determination of free RB

0 1 2 3 4 5 6 7

20

40

60

80

100

120In

ject

ed R

ose

Ben

gal

(µg)

Peak Area0 1 2 3 4 5 6 7

20

40

60

80

100

120In

ject

ed R

ose

Ben

gal

(µg)

Peak Area

Injection/detection limits:

Minimum = 18 µgMaximum = 80 µg

Pure Rose Bengal solutions with different concentrations prepared from stock solution (3 injections; 100 µl) Method: Focus Flow 3 ml/min for 20 min; UV detector (550 nm) at cross flow outlet Eluent: pure water (0.02% NaN3) pH 6.4

-1.0

0.0

1.0

2.0

3.0

4.0

0.0 4.0 8.0 12.0 16.0

LS, A

UX

(vo

lts)

Volume (mL)

Chromatograms RB Konzreihe 2 C05 5kD 3...RB Konzreihe 2 C07 5kD 2...RB Konzreihe 2 C085 5kD_...RB Konzreihe 2 C12 5kD_0...RB Konzreihe 2 C17 5kD 2...RB Konzreihe 2 C20 5kD_0...

Method: Focus Flow 3 ml/min for 20 min; UV detector (550 nm) at cross flow outlet (waste line), Eluent: pure water (0.02% NaN3)

Membrane modification with free RB

0 5 10 15 20 25 30 35 40 45

0

1

2

3

4

5

fractionation/elution

filtration/focussing

flow

rat

e (m

l/min

)

elution time (min)

crossflow

0.0

0.2

0.4

0.6

0.8

1.0

inje

ctio

n flo

w r

ate

(ml/m

in)

injection flow

0 2 4 6 8 10 12 14 160

1

2

3

4

5

6

injected RB (50 µg) injected RB (100 µg)

peak

are

a of

UV

-sig

nal

injection number

Repeated injections of pure Rose Bengal solution: 250 µg needed to modify the membrane); stable RB layer formation

0 5 10 150.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50 µl 100 µl 200 µl

UV

Res

pons

e (V

)

Elution Time (min)0 5 10 15

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50 µl 100 µl 200 µl

UV

Res

pons

e (V

)

Elution Time (min)

Reproducibility tests with free RB

Injected volume (µL)

Injected mass (µg)

UV peak area

Calculated mass (µg)

50 16.5 0.4918 17

100 33 0.9955 33

200 66 2.0064 64

Variation of injected volume at same RB solution concentration (0.33 mg/ml)

N

N

NN

N N NN

N

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

Comlexation kinetics

1 : 169 = PEI-Mal : RB

0 100 200 300 400 500 600 7002.0x105

4.0x105

6.0x105

8.0x105

1.0x106

Mw

Mn

mol

ar m

ass

(g/m

ol)

Zeit (min)0 100 200 300 400 500 600 700

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

Mw

Mn

mol

ar m

ass

(g/m

ol)

Zeit (min)

0 100 200 300 400 500 6002.0x10-8

3.0x10-8

4.0x10-8

5.0x10-8

bounded Rose Bengal

isolated Rose Bengal

mol

ar m

ass

(g/m

ol)

time (min)0 100 200 300 400 500 600

2.0x10-8

3.0x10-8

4.0x10-8

5.0x10-8

bounded Rose Bengal

isolated Rose Bengal

mol

ar m

ass

(g/m

ol)

time (min)standard deviation < 2%

stable RB@PEI-Mal complexes over 630 min

N

N

NN

N N NN

N

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

0 100 200 300 400 500 6000

50

100

150

200

250

300

dete

rmin

ed R

B:P

EI-

Mal

injected RB:PEI-Mal

RB quantity by UV-detection

0

50

100

150

200

250

300

calc from Mn increase (MALLS)

0 100 200 300 400 500 6000

50

100

150

200

250

300

dete

rmin

ed R

B:P

EI-

Mal

injected RB:PEI-Mal

RB quantity by UV-detection

0

50

100

150

200

250

300

calc from Mn increase (MALLS)

Complexation studies of RB and PEI-Mal

N

N

NN

N N NN

N

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

J Chrom A 2010, 1217, 4841

Complexation studies of RB and PEI-Mal

0 100 200 300

0

50

100

150

dete

rmin

ed R

B:P

EI-

Mal

injected RB:PEI-Mal

RB@PEI 25K-Mal BRB@PEI 5K-Mal BRB@PEI 5K-C11-Mal A

N

N

NN

N N NN

N

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

N

NN

NN N N

NN

N

N

N

N

N

N

NN

N N NN

N

N

N

N

N

N

NN

NN

N N NN

N

N

NN

N

N

NN N N N N N N

NN

N

N

N

THANKS

Susanne BoyeDietmar Appelhans

Petra TreppeChristin RoßbergNikita Polikarpov

Frank Däbritz