31
ECE-305: Spring 2016 Semiconductor Equations: II Professor Peter Bermel Electrical and Computer Engineering Purdue University, West Lafayette, IN USA [email protected] Pierret, Semiconductor Device Fundamentals (SDF) pp. 104-124 9/19/2016 1

Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

ECE-305: Spring 2016

Semiconductor Equations: II

Professor Peter BermelElectrical and Computer Engineering

Purdue University, West Lafayette, IN [email protected]

Pierret, Semiconductor Device Fundamentals (SDF)pp. 104-124

9/19/2016 1

Page 2: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Bermel ECE 305 F16 2

outline

1. Semiconductor equations

2. Equilibrium versus non-equilibrium

3. Minority carrier diffusion equation

9/19/2016

Page 3: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

drift- diffusion equation

3

current = drift current + diffusion current

total current = electron current + hole current

D

p

p D

n

n k

BT q

9/19/2016 Bermel ECE 305 F16

Page 4: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

continuity equation for holes

4

in-flow

out-flow

p t

recombinationgeneration

in-flow - out-flow + G - Rp

t

9/19/2016 Bermel ECE 305 F16

Page 5: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Continuity Equations for Electron/Holes

Bermel ECE 305 F16

Continuity Equations for Electron/Holes

1n N N

nJ g r

t q

+ -

1 - + -

P P P

pJ g r

t q

( )J x

( )J x dx+

Ng

n

Nr

p

( )pJ x

( )pJ x dx+

rp

gp

5

Page 6: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Bermel ECE 305 F166

outline

1. Semiconductor equations

2. Equilibrium versus non-equilibrium

3. Minority carrier diffusion equation

Page 7: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

equilibrium (no G-R)

7

in-flow

out-flow

p t

9/19/2016 Bermel ECE 305 F16

Page 8: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

current and QFL’s

8

p nieEi-Fp kBT

dp

dx nie

Ei-Fp kBT´1

kBT

dEi

dx-

dFp

dx

p

kBT

dEi

dx-

dFp

dx

dEi

dx qE x

n nieFn-Ei kBT

9/19/2016 Bermel ECE 305 F16

Page 9: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Direct Band-to-band Recombination

Bermel ECE 305 F16

Photon(light)

GaAs, InP, InSb (3D)

Lasers, LEDs, etc.

In real space … In energy space …

Photon

9

Page 10: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Indirect Recombination (Trap-assisted)

Bermel ECE 305 F16

Phonon (Thermal Energy)

Ge, Si, ….

Transistors, Solar cells, etc.

10

Page 11: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Auger Recombination

Bermel ECE 305 F16

Phonon (Thermal Energy)

InP, GaAs, …

Lasers, etc.

12

3

1 2

4

3

4

11

Page 12: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Bermel ECE 305 F1612

outline

1. Semiconductor equations

2. Equilibrium versus non-equilibrium

3. Minority carrier diffusion equation

Page 13: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Minority Carrier Equation

Bermel ECE 305 F16

0 0 0

D A

D A

D q p n N N

q p p n p N N

+ -

+ -

- + -

® + D - - D + - ®

0

20

2

1 1p pNN N N N

n

p p p p

N p

n

n n nnr g g

t q t q x

n n n n nD g

t t x

+ D D - + ® - +

+ D D D D - +

JJ

t

t

( ~0)

N N N

N

qn qD n

nqD

x

+

®

J E

E

13

Page 14: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Various approximations …

Bermel ECE 305 F16

2

2

p p p

N p

n

n n nD g

t x

D D D - +

t

Time dependence

density gradient

recombination

generation

14

Page 15: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Summary: Equation of State

Bermel ECE 305 F16

0 0 0D A D AD q p n N N q p p n p N N+ - + - - + - ® + D - - D + - ®

2

2

1 1 p n nP P P p P p

n n

p p p pr g g D g

t q q x x

- D D D - + ® - - + ® - - +

JJ

t t

( ~0)P P P P

pqp qD p qD

x

- ® -

J E E

2

2

1 1 p pNN N N N N p

n n

n nn nr g g D g

t q q x x

D D D - + ® - + ® - - +

JJ

t t

( ~0)N N N N

nqn qD n qD

x

+ ®

J E E

15

Page 16: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

when is the electric field zero?

17

x

n x ND x

1017 cm-3

1018 cm-3

n x » ND x

9/19/2016 Bermel ECE 305 F16

Page 17: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

e-band diagram

18

EF

EC x

EV x

Ei x

x

E qE x

dEC

dx

Dp

t¹ Dp

d 2Dp

dx2-Dp

t p

+GL

9/19/2016 Bermel ECE 305 F16

Page 18: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

example #1: N-type sample in ll injection

19

Steady-state, uniform generation, no spatial variation

Solve for Δp and for the QFL’s.

1) Simplify the MCDE2) Solve the MCDE3) Deduce Fp from Δp

Dp

t Dp

d2Dp

dx2-Dp

t p

+GL

9/19/2016 Bermel ECE 305 F16

Page 19: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

example #1: solution

20

x

Dp x

Dp x GLt p

x L 200 mx 0

Steady-state, uniform generation, no spatial variation9/19/2016 Bermel ECE 305 F16

Page 20: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Example 2A: Transient, No Illumination

Bermel ECE 305 F16

1N N N

nr g

t q

- +

J J + N N Nqn E qD n

(uniform)

0( )

n

n n nG

t t

+ D D - +

Acceptor doped

1 - - +

J p P p

pr g

t q - J p p Pqp E qD p

(uniform)

0( )

t

+ D D - +

p

p p pG

tMajority carrier

0 0 0+ - + - - + - + D- - + - DD A D AD q p n N N q p n N Npn21

Dn

time

Page 21: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Example 2A: Transient, No Illumination

Bermel ECE 305 F16

( )

n

n nG

t

D D - +

t

( , ) ntn x t A Be-D + tAcceptor doped

22

000,

00,

nBnxn

Axn

DDD

¥D

ntt

entxn-

DD 0,

Dn

time

Page 22: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Example 2B: Transient, Uniform Illumination

Bermel ECE 305 F16

1N N N

nr g

t q

- +

J

1

J + N N Nqn E qD n

(uniform)

0( )

n

n n nG

t t

+ D D - +

Acceptor doped

1 - - +

J p P p

pr g

t q - J p p Pqp E qD p

(uniform)

0( )

t

+ D D - +

p

p p pG

tMajority carrier

0 0 0+ - + - - + - + D- - + - DD A D AD q p n N N q p n N Npn23

Page 23: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Example 2B: Transient, Uniform Illumination

Bermel ECE 305 F16

1

( )

n

n nG

t

D D - +

t

( , ) ntn x t A Be-D + t

( , ) 1 ntnn x t G e tt -D -

Acceptor doped

0, ( ,0) 0

, ( , ) n

t n x A B

t n x G A

D -

®¥ D ¥ t

time

24

Page 24: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

example #3

25

Solve for Δp and for the QFL’s.

1) Simplify the MCDE2) Solve the MCDE3) Deduce Fp from Δp

Dp

t Dp

d2Dp

dx2-Dp

t p

+GL

Transient, no generation, no spatial variation

9/19/2016 Bermel ECE 305 F16

Page 25: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

example #3

26

x

Dp x

Dp t 0 GLt p

x L 200 mx 0

transient, no generation, no spatial variation

Dp t Dp t 0 e-t /t p

9/19/2016 Bermel ECE 305 F16

Page 26: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

example #4

27

Steady-state, sample long compared to the diffusion length.i.e., a short diffusion length

fixedDp x 0

1) Simplify the MCDE2) Solve the MCDE3) Deduce Fp from Δp

Dp

t Dp

d2Dp

dx2-Dp

t p

+GL

9/19/2016 Bermel ECE 305 F16

Page 27: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

example #4

28

x

Dp x

Dp x ®¥ 0

Dp 0

Dp x Dp 0 e-x/Lp

x L 200 mx 0

Lp Dpt p << L

Steady-state, sample long compared to the diffusion length.9/19/2016 Bermel ECE 305 F16

Page 28: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Continuity Equations…

Bermel ECE 305 F16 29

1 - - +

JP P P

pr g

t q

D AD q p n N N+ - - + -

P P Pqp qD p - J E

1N N N

nr g

t q

- +

J

N N Nqn qD n + J E

1

time

Dn

time

Analytic solutions

ntt

entxn-

DD 0,

( , ) 1 ntnn x t G e tt -D -

Dn

Page 29: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Example 5: One sided Minority Diffusion

Bermel ECE 305 F16

1 nN N

n dJr g

t q dx

- +

N N N

dnqn E qD

dx +J

2

20 N

d nD

dx

Steady state, no generation/recombination, acceptor dopedLong diffusion length

30

1

0,' D txn

a 0x’

Metal contact

Page 30: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Example: One sided Minority Diffusion

Bermel ECE 305 F16

, ( ' ) 0 D -x a n x a C Da

'( , ) ( 0 ') 1

D D -

xn x t n x

a

2

20 N

d nD

dx

( , ) 'n x t C DxD +

x’

a

Metal contact

0 ', ( ' 0 ') D x n x C

0x’

31

0,' D txn

Page 31: Semiconductor Equations: II...Bermel ECE 305 F16 2 outline 1. Semiconductor equations 2. Equilibrium versus non-equilibrium 3. Minority carrier diffusion equation 9/19/2016

Conclusions

1) We will often be using minority carrier diffusion equation to understand the mechanics of carrier transport in electronic devices. Review the problem carefully to see if the assumption of minority carrier transport is satisfied.

2) Divide all complex problems into solvable parts, solve the parts sequentially and then put the partial solutions back by using proper boundary conditions to arrive at the complete solution.

3) Explore analytical solution whenever possible, however numerical solutions are also of great value.

Bermel ECE 305 F16 32