35
Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

  • Upload
    hoshi

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. First Assignment. e-mail to [email protected] In the body of the message include subscribe EE5342 - PowerPoint PPT Presentation

Citation preview

Page 1: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

Semiconductor Device Modeling and

Characterization – EE5342 Lecture 09– Spring 2011

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

2

First Assignment

• e-mail to [email protected]– In the body of the message include

subscribe EE5342 • This will subscribe you to the

EE5342 list. Will receive all EE5342 messages

• If you have any questions, send to [email protected], with EE5342 in subject line.

Page 3: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

3

Second Assignment

• Submit a signed copy of the document that is posted at

www.uta.edu/ee/COE%20Ethics%20Statement%20Fall%2007.pdf

Page 4: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

4

Additional University Closure Means More Schedule

Changes• Plan to meet until noon some days in the next few weeks. This way we will make up for the lost time. The first extended class will be Monday, 2/14.

• The MT changed to Friday 2/18• The P1 test changed to Friday 3/11.• The P2 test is still Wednesday 4/13• The Final is still Wednesday 5/11.

Page 5: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

MT and P1 Assignment on Friday, 2/18/11

• Quizzes and tests are open book – must have a legally obtained copy-no

Xerox copies.– OR one handwritten page of notes.– Calculator allowed.

• A cover sheet will be published by Wednesday, 2/16/11.

©rlc L09-14Feb2011

5

Page 6: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

6

Energy bands forp- and n-type s/c

p-typeEc

Ev

EFi

EFpqfp= kT ln(ni/Na)

Ev

Ec

EFi

EFnqfn= kT ln(Nd/ni)

n-type

Page 7: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

7

Making contactin a p-n junction• Equate the EF in

the p- and n-type materials far from the junction

• Eo(the free level), Ec, Efi and Ev must be continuous

N.B.: qc = 4.05 eV (Si),

and qf = qc + Ec - EF

Eo

EcEf EfiEv

qc (electron affinity)

qfF

qf(work function)

Page 8: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

8

Band diagram forp+-n jctn* at Va = 0

EcEfNEfi

Ev

Ec

EfP

Efi

Ev

0 xnx

-xp-xpc xnc

qfp < 0

qfn > 0

qVbi = q(fn - fp)

*Na > Nd -> |fp| > fn

p-type for x<0 n-type for x>0

Page 9: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

9

• A total band bending of qVbi = q(fn-fp) = kT ln(NdNa/ni

2)is necessary to set EfP = EfN

• For -xp < x < 0, Efi - EfP < -qfp, = |qfp| so p < Na = po, (depleted of maj. carr.)

• For 0 < x < xn, EfN - Efi < qfn, so n < Nd = no, (depleted of maj. carr.)

-xp < x < xn is the Depletion Region

Band diagram forp+-n at Va=0 (cont.)

Page 10: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

10

DepletionApproximation• Assume p << po = Na for -xp < x <

0, so r = q(Nd-Na+p-n) = -qNa, -xp < x < 0, and p = po = Na for -xpc < x < -xp, so r = q(Nd-Na+p-n) = 0, -xpc < x < -xp

• Assume n << no = Nd for 0 < x < xn, so r = q(Nd-Na+p-n) = qNd, 0 < x < xn, and n = no = Nd for xn < x < xnc, so r = q(Nd-Na+p-n) = 0, xn < x < xnc

Page 11: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

11

Poisson’sEquation• The electric field at (x,y,z) is

related to the charge density r=q(Nd-Na-p-n) by the Poisson Equation:

silicon for 7.11andFd/cm, ,14E85.8

with , ypermitivit the is xEE where, ,E

r

o

ro

x

r

Page 12: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

12

Poisson’sEquation• For n-type material, N = (Nd - Na) >

0, no = N, and (Nd-Na+p-n)=-dn +dp +ni

2/N• For p-type material, N = (Nd - Na) <

0, po = -N, and (Nd-Na+p-n) = dp-dn-ni

2/N• So neglecting ni

2/N, [r=(Nd-Na+p-n)]

carriers. excess with material type-pand type-n for ,npqE dd

Page 13: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

13

Quasi-FermiEnergy

used. be must levelFermi-quasi the then ,nnn i.e.,

m,equilibriu not in ionconcentrat the IfkT

EEexpnn and , n

nlnkTEE

:by given are level Energy Fermi the andconc carrier mequilibriu the m,equilibriu In

o

fifio

io

fif

d+

Page 14: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

14

Quasi-FermiEnergy (cont.)

+

+

kTEE

nnn

nnnkTEE

fifn

i

o

i

ofifn

exp

:is density carrier the and

, ln

:defined is (Imref) level Fermi-Quasi The

d

d

Page 15: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

15

Quasi-FermiEnergy (cont.)

d+

d+

kTEE

npp

nppkTEE

fpfi

i

o

i

ofpfi

exp

:is density carrier the and

, ln

:as defined is (Imref) level Fermi-Quasi the holes, For

Page 16: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

16

Induced E-fieldin the D.R.• The sheet dipole of charge, due to

Qp’ and Qn’ induces an electric field which must satisfy the conditions

• Charge neutrality and Gauss’ Law* require that Ex = 0 for -xpc < x < -xp and Ex = 0 for -xn < x < xnc QQAdxEAdVdSE 'p'n

xx

xxx

VS

n

p+

r

h 0

Page 17: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

17

Induced E-fieldin the D.R.

xnx-xp-xpc xnc

O-O-O-

O+O+

O+

Depletion region (DR)

p-type CNR

Ex

Exposed Donor ions

Exposed Acceptor Ions

n-type chg neutral reg

p-contact N-contact

W0

Page 18: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

18

Depletion approx.charge distribution

xnx

-xp

-xpc xnc

r+qNd

-qNa

+Qn’=qNdxn

Qp’=-qNaxp

Charge neutrality => Qp’ + Qn’ = 0, => Naxp = Ndxn

[Coul/cm2]

[Coul/cm2]

Page 19: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

19

1-dim soln. ofGauss’ law

nx

nnax

ppax

px

ndpada

daeff

npeff

bi

xx ,0E ,xx0 ,xxNq E

,0xx ,xxNq- E

xx ,0E

,xNxN ,NNNNN

,xxW ,qNVaV2W

+

+

+

xxn xn

c

-xpc-xp

Ex

-Emax

Page 20: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

20

Depletion Approxi-mation (Summary)• For the step junction defined by

doping Na (p-type) for x < 0 and Nd, (n-type) for x > 0, the depletion width W = {2(Vbi-Va)/qNeff}1/2, where Vbi = Vt ln{NaNd/ni

2}, and Neff=NaNd/(Na+Nd). Since Naxp=Ndxn, xn = W/(1 + Nd/Na), and xp = W/(1 + Na/Nd).

Page 21: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

21

One-sided p+n or n+p jctns• If p+n, then Na >> Nd, and

NaNd/(Na + Nd) = Neff --> Nd, and W --> xn, DR is all on lightly d. side

• If n+p, then Nd >> Na, and NaNd/(Na + Nd) = Neff --> Na,

and W --> xp, DR is all on lightly d. side

• The net effect is that Neff --> N-, (- = lightly doped side) and W --> x-

Page 22: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

22

JunctionC (cont.)

xnx-xp

-xpc xnc

r+qNd

-qNa

+Qn’=qNdxn

Qp’=-qNaxp

Charge neutrality => Qp’ + Qn’ = 0,

=> Naxp = Ndxn

dQn’=qNddxn

dQp’=-qNadxp

Page 23: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

23

JunctionC (cont.)• The C-V relationship simplifies to

][Fd/cm ,NNV2NqN'C herew

equation model a ,VV1'C'C

2dabi

da0j

21

bia0jj

+

Page 24: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

24

JunctionC (cont.)• If one plots [C’j]-2 vs. Va

Slope = -[(C’j0)2Vbi]-1

vertical axis intercept = [C’j0]-2 horizontal axis intercept = Vbi

C’j-2

VbiVa

C’j0-2

Page 25: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

25

Arbitrary dopingprofile• If the net donor conc, N = N(x),

then at xn, the extra charge put into the DR when Va->Va+dVa is dQ’=-qN(xn)dxn

• The increase in field, dEx =-(qN/)dxn, by Gauss’ Law (at xn, but also const).

• So dVa=-(xn+xp)dEx= (W/) dQ’• Further, since N(xn)dxn = N(xp)dxp

gives, the dC/dxn as ...

Page 26: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

26

Arbitrary dopingprofile (cont.)

+

+

+

pn

j

3j

j

j

n

j

nd

ndj

pn

2j

np

2n

j

xNxN1

dV'dC

q

'C'Cd

Vdq'C

xd'Cd

N with

, dV'Cd

dC'xdqNdV

xdqNdVdQ''C further

,xNxN1'C

dxdx1

Wdx'dC

Page 27: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

27

Arbitrary dopingprofile (cont.)

,VV2qN'C where , junctionstep

sided-one to apply Now .dV

'dCq

'C xN

profile doping the ,xN xN orF

abij

3j

n

pn

Page 28: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

28

Arbitrary dopingprofile (cont.)

bi0j

bi23

bia0j

23

bia30j

V2qN'C when ,N

V1

VV12

1'qC

VV1'C

N so

Page 29: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

29

Arbitrary dopingprofile (cont.)

)( and ,1

2

and

when area),(A and V, , ' ,quantities measured of in terms So,

22

0

VCxN

dVC

dqA

NxNxNN

CAC

jnd

j

rapnd

jj

Page 30: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

30

Debye length• The DA assumes n changes from

Nd to 0 discontinuously at xn, likewise, p changes from Na to 0 discontinuously at -xp.

• In the region of xn, the 1-dim Poisson equation is dEx/dx = q(Nd - n), and since Ex = -df/dx, the potential is the solution to -d2f/dx2

= q(Nd - n)/

n

xxn

Nd

0

Page 31: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

31

Debye length (cont)• Since the level EFi is a reference

for equil, we set f = Vt ln(n/ni)• In the region of xn, n = ni exp(f/Vt),

so d2f/dx2 = -q(Nd - ni ef/Vt), letf = fo + f’, where fo = Vt

ln(Nd/ni) so Nd - ni ef/Vt = Nd[1 - ef/Vt-fo/Vt], for f - fo = f’ << fo, the DE becomes d2f’/dx2 = (q2Nd/kT)f’, f’ << fo

Page 32: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

32

Debye length (cont)• So f’ = f’(xn) exp[+(x-xn)/LD]

+con. and n = Nd ef’/Vt, x ~ xn, where LD is the “Debye length”

material. intrinsic for 2n and type-p for N type,-n for N pn :Note

length. transition a ,qkTV ,pnq

VL

iad

ttD

+

+

Page 33: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

33

Debye length (cont)• LD estimates the transition length

of a step-junction DR (concentrations Na and Nd with Neff = NaNd/(Na +Nd)). Thus,

biefft

da0VdDaD

V2NV

N1

N1

WNLNL

a

+

+d

• For Va=0, & 1E13 < Na,Nd < 1E19 cm-3

13% < d < 28% => DA is OK

Page 34: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

34

Example

• An assymetrical p+ n junction has a lightly doped concentration of 1E16 and with p+ = 1E18. What is W(V=0)?

Vbi=0.816 V, Neff=9.9E15, W=0.33mm

• What is C’j? = 31.9 nFd/cm2

• What is LD? = 0.04 mm

Page 35: Semiconductor Device Modeling and Characterization – EE5342 Lecture 09– Spring 2011

©rlc L09-14Feb2011

35

References *Fundamentals of Semiconductor Theory and

Device Physics, by Shyh Wang, Prentice Hall, 1989.

**Semiconductor Physics & Devices, by Donald A. Neamen, 2nd ed., Irwin, Chicago.

M&K = Device Electronics for Integrated Circuits, 3rd ed., by Richard S. Muller, Theodore I. Kamins, and Mansun Chan, John Wiley and Sons, New York, 2003.

• 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986.

• 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

• 3 Physics of Semiconductor Devices, Shur, Prentice-Hall, 1990.