29
Selectivity in Atomic Layer Etching Using Sequential, Self-Limiting Thermal Reactions Younghee Lee 1 , Craig Huffman 2 and Steven George 1,3 1 Depts. of Chemistry & 3 Mechanical Engineering, University of Colorado, Boulder, Colorado 80309. 2 SUNY Poly SEMATECH, Albany, New York 12203.

Selectivity in Atomic Layer Etching Using Sequential, Self

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Selectivity in Atomic Layer Etching Using Sequential, Self

Selectivity in Atomic Layer Etching Using Sequential, Self-Limiting

Thermal Reactions

Younghee Lee1, Craig Huffman2 and Steven George1,3

1Depts. of Chemistry & 3Mechanical Engineering,University of Colorado, Boulder, Colorado 80309.

2SUNY Poly SEMATECH, Albany, New York 12203.

Page 2: Selectivity in Atomic Layer Etching Using Sequential, Self

Outline

1. Al2O3 ALE using HF and Sn(acac)2 or Al(CH3)3 as metal precursors.

2. Selectivity using Sn(acac)2, Al(CH3)3, AlCl(CH3)2 and SiCl4 as metal precursors.

3. Selectivity in ALE based on temperature.

Page 3: Selectivity in Atomic Layer Etching Using Sequential, Self

Requirements for Sequential, Self-Limiting Thermal Reactions for ALE

Need spontaneous, sequential, self-limitingthermal reactions that remove with atomic control.

Spontaneous requires thermochemically favorable.Self-limiting requires saturation of surface reaction.

Removal requires volatility of reaction product.

Page 4: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3 ALE Using HF-Pyridine & Sn(acac)2 as Reactants

Y. Lee & S.M. George, ACS Nano 9, 2061 (2015).

Page 5: Selectivity in Atomic Layer Etching Using Sequential, Self

200°Con Al2O3

Sn(acac)2 HF1 - 30 - 1 - 30

Y. Lee & S.M. George, ACS Nano 9, 2061 (2015).

100 ALE cyclesMass change per cycle = -8.4 ng/cm2

Etch rate = 0.28 Å/cycle

Al2O3 ALE Using HF & Sn(acac)2

Page 6: Selectivity in Atomic Layer Etching Using Sequential, Self

Linear Decrease of Al2O3 Film Thickness vs Number of Al2O3 ALE Cycles

XRR measurements yield etch rate = 0.27 Å/cycle

Confirm with spectroscopic

ellipsometry (SE)

Y. Lee & S.M. George, ACS Nano 9, 2061 (2015).

Page 7: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3 ALE via Fluorination & Ligand Exchange

Page 8: Selectivity in Atomic Layer Etching Using Sequential, Self

Metal Precursors for ALE

Requirements for Metal Precursor:1. Accept fluorine from metal fluoride

2. Donate ligand to metal in metal fluoride3. Metal reaction product is stable & volatile

Possible Metal Precursor:Same precursor as used for ALD of etched material

e.g. Al(CH3)3 for Al2O3 ALE

Page 9: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3 ALE Using HF-Pyridine & Al(CH3)3 as Reactants

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press).

Al(CH3)3

Page 10: Selectivity in Atomic Layer Etching Using Sequential, Self

100 ALE CyclesMass change per

cycle = -15.9 ng/cm2

Etch rate = 0.51 Å/cycle

Al2O3 ALE Using HF & Al(CH3)3

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press).

Page 11: Selectivity in Atomic Layer Etching Using Sequential, Self

Linear Decrease of Al2O3 Film Thickness vs Number of Al2O3 ALE Cycles

XRR measurements yield etch rate = 0.46 Å/cycle

Confirm with spectroscopic

ellipsometry (SE)

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. (In Press).

Page 12: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3 ALE via Fluorination & Ligand Exchange

Page 13: Selectivity in Atomic Layer Etching Using Sequential, Self

Outline

1. Al2O3 ALE using HF and Sn(acac)2 or Al(CH3)3 as metal precursors.

2. Selectivity using Sn(acac)2, Al(CH3)3, AlCl(CH3)2 and SiCl4 as metal precursors.

3. Selectivity in ALE based on temperature.

Page 14: Selectivity in Atomic Layer Etching Using Sequential, Self

Selective ALE for Different Materials

Different materials represented by various

colors*

Goal to etch just one material in a background

of other materials

Selectivity determined by stability & volatility of

reaction products

*Adapted from C.T. Carver et al., ECS J. Solid State Sci. Technol. 4, N5005 (2015).

Page 15: Selectivity in Atomic Layer Etching Using Sequential, Self

Selectivity During ALE

Requirements for Metal Precursor:1. Accept fluorine from metal fluoride

2. Donate ligand to metal in metal fluoride3. Metal reaction product is stable & volatile

Strategy for Selectivity:Use metal precursors with ligands that yield stable &

volatile reaction products with target metals

Page 16: Selectivity in Atomic Layer Etching Using Sequential, Self

ALE Using HF & Sn(acac)2

Al2O3, HfO2, ZrO2, SiO2, Si3N4, TiN

Selective etching of Al2O3, HfO2 & ZrO2.

Al, Hf & Zr form stable & volatile acac complexes.

Page 17: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3, HfO2 & ZrO2 ALE Using HF & Sn(acac)2

Al2O3, HfO2, ZrO2

Page 18: Selectivity in Atomic Layer Etching Using Sequential, Self

ALE Using HF & Al(CH3)3 (TMA)

Al2O3, HfO2, ZrO2, SiO2, Si3N4, TiN

Selective etching of Al2O3 & HfO2.

Al & Hf form stable & volatile complexes with methyl groups.

Page 19: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3, HfO2 & ZrO2 ALE Using HF & Al(CH3)3 (TMA)

Al2O3, HfO2, ZrO2

Page 20: Selectivity in Atomic Layer Etching Using Sequential, Self

Understanding Selectivity

Al2O3 ALE with Al(CH3)3. Ligand-exchange.

Stable Al-CH3 reaction product.

ZrO2 ALE with Al(CH3)3. No ligand-exchange. Unstable

Zr-CH3 reaction product.

SiO2 ALE with Al(CH3)3. No ligand-

exchange. Si-F bond too stable.

Page 21: Selectivity in Atomic Layer Etching Using Sequential, Self

ALE Using HF & AlCl(CH3)2 (DMAC)

Al2O3, HfO2, ZrO2, SiO2, Si3N4, TiN

Selective etching of Al2O3, ZrO2 & HfO2.

Al, Zr & Hf form stable & volatile complexes

with chloride or methyl groups.

Page 22: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3, HfO2 & ZrO2 ALE Using HF & AlCl(CH3)2 (DMAC)

Al2O3, HfO2, ZrO2

Page 23: Selectivity in Atomic Layer Etching Using Sequential, Self

ALE Using HF & SiCl4

Al2O3, HfO2, ZrO2, SiO2, Si3N4, TiN

SiCl4 350°C

ZrO2HfO2

TiN

SiO2

Al2O3

Si3N4Selective etching of

ZrO2 & HfO2.

Zr & Hf form stable & volatile complexes

with chloride groups.

Page 24: Selectivity in Atomic Layer Etching Using Sequential, Self

Al2O3, HfO2 & ZrO2 ALE Using HF & SiCl4

Al2O3, HfO2, ZrO2

SiCl4 350°C

Why no etching of Al2O3 with SiCl4?

Page 25: Selectivity in Atomic Layer Etching Using Sequential, Self

SiCl4(g) + HfF4(s) → SiF4(g) + HfCl4(g)

SiCl4(g) + ZrF4(s) → SiF4(g) + ZrCl4(g)

SiCl4(g) + 4/3AlF3(s) → SiF4(g) + 4/3AlCl3(g)

Ligand-Exchange Thermochemistry Explains No Al2O3 ALE

Positive ∆G for SiCl4 ligand-exchange for Al2O3 ALE.

Negative ∆G for SiCl4 ligand-exchange >150°C for HfO2 &

ZrO2 ALE.

∆G = 0

Page 26: Selectivity in Atomic Layer Etching Using Sequential, Self

Outline

1. Al2O3 ALE using HF and Sn(acac)2 or Al(CH3)3 as metal precursors.

2. Selectivity using Sn(acac)2, Al(CH3)3, AlCl(CH3)2 and SiCl4 as metal precursors.

3. Selectivity in ALE based on temperature.

Page 27: Selectivity in Atomic Layer Etching Using Sequential, Self

Selectivity Based on Temperature for Al2O3 ALE Using Different

Metal Precursors

Different etch rates at various temperatures for different metal

precursors.

Page 28: Selectivity in Atomic Layer Etching Using Sequential, Self

Selectivity Based on Temperature for ALE Using SiCl4 as Metal Precursor

ZrO2

HfO2

Al2O3

Page 29: Selectivity in Atomic Layer Etching Using Sequential, Self

Conclusions

1. Thermal ALE possible using sequential, self-limiting fluorination & ligand-exchange reactions.2. Thermal ALE using HF and either Sn(acac)2,

Al(CH3)3, AlCl(CH3)2 or SiCl4 as metal precursors.3. Selective ALE is possible. Depends on stability

and volatility of reaction products.4. Temperature provides additional pathway for

selective ALE.