Selecting Intraocular Lens Power in Children

  • Upload
    mumunoo

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 7/30/2019 Selecting Intraocular Lens Power in Children

    1/3

    Ophthalmic Pearls: Pediatrics

    Selecting Intraocular Lens Power in Children

    By Rupal H. Trivedi, MD, MSCR, and M. Edward Wilson Jr., MD

    Edited By Ingrid U. Scott, MD, MPH, and Sharon Fekrat, MD

    The accurate determination of IOL power is one of the major challenges for the long-term care ofchildren undergoing cataract surgery. Selecting a fixed-power lens for implantation into an eye that is

    still growing requires a complicated decision-making process. Recent advances in instrument

    technology have helped us obtain reliable axial length (AL) and keratometry (K) measurements, fromwhich emmetropic implant power calculations using formulas for the adult eye can be derived. In

    children, however, implantation of an IOL at the emmetropic power risks a significant myopia at ocular

    maturity. Yet if we aim for early hyperopia with the expectation that the eye will come to beemmetropic during adulthood, then this early hyperopia may create hurdles in the management battle

    against amblyopia. Both approaches have pros and cons; the best solution probably lies in finding a

    compromise. What is the ideal compromise? Unfortunately, there is no one answer. We present four key

    steps to guide you in selecting an IOL for a child.

    Take Measurements

    Axial length. We measure AL with an immersion technique, often under sedation. Readers should referto the specific technical instructions for the A-scan unit they are using. Errors in AL measurement

    affect the IOL power calculation the most, with an average error of 2.5 D per millimeter of AL in

    adults. However, this error jumps to 3.75 D per mm in short eyes (i.e., AL 20 mm or less).

    Keratometry. For the K measurement, we use a handheld keratometer. Although the reliability of the

    handheld keratometer may be suboptimal for axis measurements, we feel that averaging several

    readings is a practical way to obtain an acceptable K value in sedated children.

    Calculate the IOL Power

    It is preferable to use theoretical formulas because they are generally more accurate for small eyes, andin pediatric studies they appear to be slightly more accurate than regression formulas. While errors in

    AL measurement, K measurement and IOL power calculation show up in the immediate postoperative

    refraction, these errors are not the main source of unexpected refractive error. Growth of the eye, whichis generally not very predictable, is responsible for these refractive surprises.

    For long-term care of children, an additional focus should be on how much undercorrection should bethe goal (based on the likely growth of the eye in a specific child).

    Determine the Target Postoperative Undercorrection

    This is a straightforward decision in adult eyes, as visual needs assist in the determination of thosecalculations. For children, another factor to consider is the projected growth of the eye. The ideal IOL

    power should give the best help for fighting amblyopia in childhood while inducing the least refractive

    error in adulthood. This power can be calculated by anticipating the expected myopic shift andundercorrecting the eye that needs IOL implantation. This initial hyperopia should be low enough to be

    corrected by either a contact lens or glasses to facilitate compliance with amblyopia therapy. We prefer

    a customized step-by-step approach that starts by considering age.

    Age at cataract surgery. When an IOL is implanted in a child, a marked myopic shift must be

    expected. Therefore, IOLs implanted in children are usually selected to produce undercorrection. The

  • 7/30/2019 Selecting Intraocular Lens Power in Children

    2/3

    closer to birth the implantation is performed, the more marked the undercorrection will need to be.

    How much should one undercorrect and at what age? Two approaches can be used for reduction from

    the calculated emmetropic power: percentage (e.g., 20 percent undercorrection) or absolute value (e.g.,

    10-D undercorrection). The former approach is more accurate; the latter approach is more practical.Our current recommendations, based on the latter approach, are shown in the tableAge at Cataract

    Surgery and Residual Refraction. These recommendations must be balanced with the following

    additional factors:

    Status of the fellow eye. In a child with a monocular cataract or with a pseudophakic fellow eye, it is

    important to determine the refractive status of the fellow eye to minimize the aniseikonia. Whensurgery will be done in both eyes, a larger amount of hyperopia may be acceptable, since aniseikonia

    can be avoided by targeting a nearly equivalent refraction in both eyes.

    Visual acuity. Current advances suggest that it will probably be easier in the future to manage myopia

    than amblyopia. Dense amblyopia may prompt a decision to leave less hyperopia (or even to aim for

    emmetropia) to facilitate compliance with amblyopia therapy. In such a case, late myopia is acceptable

    if it helps the child recover vision during the amblyopia treatment years.

    Expected compliance. It is better to leave less refractive error if the child and/or family is expected to

    comply poorly with glasses, contact lenses or occlusion therapy.

    Parents refractive error. It is also important to ask about high refractive error (especially myopia) in

    the parents. Because children with myopic parents can be expected to undergo more eye growth, theseeyes may be left with more hyperopia than stated in the table.

    IOL power. In general, the higher the IOL power, the more undercorrection is needed. For example, if

    at 1 month of age, one child has an emmetropic power need of 50 D and another child needs 40 D, thefirst child will require a higher early residual refraction. We may use an approximate expected

    postoperative refraction in the first child of +12 D, while in the second child the expected refraction

    would be +10 D.

    Microphthalmia. In microphthalmic eyes, the target refraction may not be reached even with the

    highest available IOL power. In such eyes, the highest available IOL power should be chosen.

    How to Adjust the Correction During Surgery

    If the site of the IOL implantation needs to be changed after the start of surgery, an appropriate power

    adjustment should be made. The IOL intended for capsular bag placement should be decreased by 1 D

    to 2 D (depending on the IOL power; the higher the power, the greater the reduction), when placed inthe ciliary sulcus.

    ConclusionOur approach attempts to take into account all known factors affecting axial growth after cataract

    surgery. Several additional factors, such as gender and race, have been reported to affect growth of the

    normal eye and may influence eye growth after cataract surgery as well. A multicenter, prospective trial

    might clarify the effect of these factors on postop eye growth.

    Despite our best efforts, it may be that some children may eventually need an IOL exchange or

    refractive surgery. Surgeons who implant IOLs in young children must be prepared for a wide variancein the long-term myopic shift. Both the magnitude and the variability in this shift are likely to be

    http://www.aao.org/publications/eyenet/200601/pearls.cfm#agehttp://www.aao.org/publications/eyenet/200601/pearls.cfm#agehttp://www.aao.org/publications/eyenet/200601/pearls.cfm#agehttp://www.aao.org/publications/eyenet/200601/pearls.cfm#agehttp://www.aao.org/publications/eyenet/200601/pearls.cfm#age
  • 7/30/2019 Selecting Intraocular Lens Power in Children

    3/3

    greatest in children having surgery in the first few years of life. Nevertheless, we must assume that an

    IOL implanted in a childs eye will remain there for many years. The long-term refractive error

    outcome of the operated eyes of today will help us develop formulas suited for IOL power calculation

    for the pediatric patient of tomorrow.

    ________________________________

    Rupal H. Trivedi, MD, MSCR, is a research assistant professor and M. Edward Wilson, Jr., MD, isprofessor and chairman of ophthalmology at the Medical University of South Carolina.

    Age at Cataract Surgery and Residual Refraction

    Our current recommendations if late myopia is to be minimized.*

    Age

    < 1.9 months

    2.03.9 months4.05.9 months

    6.011.9 months

    1.01.9 years

    2.03.9 years4.04.9 years

    5.05.9 years

    6.06.9 years7.07.9 years

    8.09.9 years

    10.013.9 years> 14 years

    Residual Refraction

    +10 D

    +9 D+8 D

    +7 D

    +6 D

    +5 D+4 D

    +3 D

    +2 D+1.5 D

    +1 D

    +0.5 DPlano

    *Other factors must also be taken into consideration before selection of the IOL power: fellow eye

    status, degree of amblyopia, assumed compliance and parental refractive error.