13
Segmented cell testing for cathode parameter investigation P. Tanasini , J. A. Schuler, Z. Wuillemin, M. L. Ben Ameur, C. Comninellis, and J. Van herle European Fuel Cell Forum Lucerne, July 2 nd 2010 ENI Fuel Cells Industrial Energy Systems Laboratory (LENI), Group of Electrochemical Engineering (GGEC), Interdisciplinary Centre of Electron Microscopy (CIME) École Polytechnique Fédérale de Lausanne – EPFL Lausanne - Switzerland

Segmented cell testing for cathode parameter investigation

  • Upload
    jael

  • View
    35

  • Download
    0

Embed Size (px)

DESCRIPTION

ENI Fuel Cells. Segmented cell testing for cathode parameter investigation. Industrial Energy Systems Laboratory (LENI), Group of Electrochemical Engineering (GGEC), Interdisciplinary Centre of Electron Microscopy (CIME) École Polytechnique Fédérale de Lausanne – EPFL Lausanne - Switzerland. - PowerPoint PPT Presentation

Citation preview

Page 1: Segmented cell testing for cathode parameter investigation

Segmented cell testing for cathode parameter investigation

P. Tanasini, J. A. Schuler, Z. Wuillemin, M. L. Ben Ameur, C. Comninellis, and J. Van herle

European Fuel Cell Forum Lucerne, July 2nd 2010

ENIFuelCells

Industrial Energy Systems Laboratory (LENI), Group of Electrochemical Engineering (GGEC), Interdisciplinary Centre of Electron Microscopy (CIME)

École Polytechnique Fédérale de Lausanne – EPFLLausanne - Switzerland

Page 2: Segmented cell testing for cathode parameter investigation

OUTLINE

Introduction

Experimental

Results

Conclusion

• Validation• Parameter investigation

2/13

Page 3: Segmented cell testing for cathode parameter investigation

INTRODUCTION (1)- motivation -

Objectives: Reduce testing time Increase reproducibility

0.4

0.5

0.6

0.7

0.8

0 250 500 750 1000 1250 1500 1750 2000

Pot

entia

l [V

]

Time [h]

0.6 A/cm2, 850°C, 7%H2O/H2

And more…… for each experiment!!

Button cell testing:

• Low degradation

Long testing time

• Fluctuations

3/13

Page 4: Segmented cell testing for cathode parameter investigation

INTRODUCTION (2)- strategy -

• N-fold decrease of testing time

• Same T, gas concentration, history

4/13

Page 5: Segmented cell testing for cathode parameter investigation

EXPERIMENTAL- the testing station -

5/13

I

I

Page 6: Segmented cell testing for cathode parameter investigation

RESULTS (1)

1. Validation

2. Parameter investigation• Current density• Cathode thickness• Cathode composition

• Cr source

Anode-Supported (AS) cells

Electrolyte-Supported (ES)

cells

6/13

Page 7: Segmented cell testing for cathode parameter investigation

RESULTS (2)validation

7/13

4 IDENTICAL CELLS

700

800

900

1000

1100

0 200 400 600 800

Pote

ntia

l [m

V]

Current [mA/cm2]

AS-A IAS-A IIAS-A IIIAS-A IV

IV-CURVES

• Similar behavior• Small difference in OCV• Polarization lowers the difference

850°C, 97%H2/3% H2O

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1 1.2

-Z'' [

Ohm

cm2 ]

Z' [Ohm cm2]

AS-A IAS-A IIAS-A IIIAS-A IV

~3 hzEIS MEASUREMENTS

• High frequency overlapping• Low frequency mismatch

(conversion process)

H2O/H2 distribution850°C, 97%H2/3% H2O

Page 8: Segmented cell testing for cathode parameter investigation

RESULTS (3)current density

8/13

• Polarization-driven activation

• Current-dependent degradation

0.30 A/cm2

0.45 A/cm2

0.60 A/cm2

0.75 A/cm2

0.30 A/cm2

850°C, 97%H2/3%H2O

• Activation at 0.3 A/cm2

• Operation at different I

Page 9: Segmented cell testing for cathode parameter investigation

RESULTS (4)cathode thickness

9/13

850°C, 93%H2/7% H2O, 0.6A/cm2

20µm

15µm10µm

5µm • Different thicknesses

• Operation 0.6 A/cm2

• Difference in Rohm at the beginning

• AS-B I limited by thickness

• Different degradation behavior:

Thickness Degradation5µ 6.0%/1000h

10µ 2.2%/1000h

15µ 1.5%/1000h

20µ 0.9%/1000h

Cr contamination (SEM, WDX)

Page 10: Segmented cell testing for cathode parameter investigation

RESULTS (5)cathode composition

10/13

• LSM/Mn-doped YSZ cathodes

• Same microstructure (except AS-C II)

600

700

800

900

1000

1100

0 0.2 0.4 0.6 0.8 1

Pote

ntia

l [m

V]

Current [A]

AS-C I (0%Mn-YSZ/LSM)AS-C II (2.5%Mn-YSZ/LSM)AS-C III (4.5%Mn-YSZ/LSM)AS-C IV (6.5%Mn-YSZ/LSM)

850°C, 93% H2/7% H2O

EIS analysis with variation of:

Temperature (750°C, 800°C, 850°C)

Current density (OCV, 0.3 A/cm2, 0.6 A/cm2)

Fuel composition (93%H2/7%H2O, 65%H2/7%H2O, 65%H2/5%H2O)

Frequency Process

10 Hz Conversion, anode

30 Hz (750°C)Dissociative adsorption,

cathode70 Hz (800°C)

200 Hz (850°C)

200 HzDiffusion, anode

(not clear, small signal)

700 Hz (750°C)

Charge transfer, anode1000 Hz (800°C)

2000 Hz (850°C)

Page 11: Segmented cell testing for cathode parameter investigation

RESULTS (6)Cr source

11/13

• WE (cathodes) exposed to Cr source

• One polarized cell, 3-electrode measurements

• One cell at OCV, symmetric cell measurements (4-electrode configuration)

Separation of the cathodic contribution in the polarized cell

The non-polarized cell doesn’t show degradation -0.10

-0.05

0.00

0.05

0.10

0.15

0.70 0.80 0.90 1.00 1.10 1.20 1.30

-Z" [

Ohm

cm2 ]

Z' [Ohm cm2]

120h264h336h432h

800°C, 0.2 A/cm2, air both sides

Page 12: Segmented cell testing for cathode parameter investigation

The multicathode strategy permits to decrease n-fold the testing time

Same testing environment, history for all the segments

Rapid identification of issues by comparison

Flexibility comparable to the classic button-cell testing

CONCLUSIONS12/13

Page 13: Segmented cell testing for cathode parameter investigation

13/13

THANK YOUfor your attention