102
SEEPAGE STUDY OF SIX CANALS IN SALT LAKE COUNTY, UTAH, 1982-83 Technical Publication No. 82 State of Utah DEPARTMENT OF NATURAL RESOURCES 1985

SEEPAGE STUDY OF SIX CANALS IN SALT LAKE COUNTY, UTAH, …waterrights.utah.gov/docSys/v920/w920/w92000a7.pdf · 2009. 11. 30. · IN SALT LAKE CDUNI'Y, lJI'AH, 1982-83 By L. R. Herbert,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • SEEPAGE STUDY OF SIX CANALS

    IN SALT LAKE COUNTY, UTAH, 1982-83

    Technical Publication No. 82State of Utah

    DEPARTMENT OF NATURAL RESOURCES1985

  • STATE OF UI'AHDEPARTMENT OF NA'lURAL RESOORCES

    Technical Publication No. 82

    SEEPAGE STUDY OF SIX CANALSIN SALT LAKE CXXJNI'Y, UI'AH, 1982-83

    by

    by L. R. Herbert, R. W. Cruff, and K. fil. WaddellU. S. Geological Survey

    Prep:l.red bythe United States Geological Survey

    in cooreration withthe utah DeJ:6rtlIlent of Natural Resources

    Division of Water Rights

  • i i

  • CDNTENTS

    Page

    Introduction •••••..••.••••••••••••••••••••••••••••••••••••••••••••••••Abstract •••••••.•••.••••••••••••••••••••••••••••••••••••••••••••••••.• 1

    1113445667889

    ...............................................................................

    Utah Lake Distributing canalProvo Resen"oi r CB.nal ••••••••••••••••••••••••••••••••••••••••••••Drar;er Irrigation canalEa.st J oroon CB.nal ••••••••••••••••••••••••••••••••••••••••••••••••Jordan and Salt Lake City canal ••••••••••••••••••••••••••••••••••

    Summary and conclusions •••••••••••••••••••••••••••••••••••••••••••••••Referenc:es cited ••••••••••••••••••••••••••••••••••••••••••••••••••••••

    General description of canal systems ••••••••••••••••••••••••••••••••••Methods of investigation ••••••••••••••••••••••••••••••••••••••••••••••Procedures used in canputing gains and losses f ran canal systans ••••••Evalua.tion of the cana.l sy-stans •••••••••••••••••••••••••••••••••••••••

    utah and Salt Lake canal •••••••••••••••••••••••••••••••••••••••••

    Publications of the utah Dep:3.rtrrent of Natural Resources and Energy,Division of Water Rights •••••••••••••••••••••••••••••••••••••••••••• 84

    ILLUSTRATIONS

    .........................

    Jordan and Salt Lake City canal ••••••••••••••••••

    Figures 1-6. M:lps showing measuring sites along the:1. Utah and Salt Lake canal2. utah Lake Distributing canal •••••••••••••••••••••3 • Provo Reservoi r canal ••••••••••••••••••••••••••••4. Draper Irrigation canal ••••••••••••••••••••••••••5. East Jordan canal ••••••••••••••••••••••••••••••••6.

    101112131415

    Jordan and Salt Lake City canal ••••••••••••••••••

    Draper Irrigation canal ••••••••••••••••••••••••••East Jordan canal ••••••••••••••••••••••••••••••••

    Figures 7-12. Graphs showing gage heights at recor~r sites duringseep:3.ge nIDS along the:7• Utah and Sal t Lake canal •••••••••••••••••••••••••8. Utah Lake Distributing canal •••••••••••••••••••••9. PrOV'o Reservoir Canal ••••••••••••••••••••••••••••

    10.II.12.

    162123262733

    Jordan and Salt Lake City canal

    13-18. Graphs showing gain or loss for reaches of the:13. utah and Salt Lake canal •••••••••••••••••••••••••14. Utah Lake Distributing canal •••••••••••••••••••••15. Provo Reservoir canal ••••••••••••••••••••••••••••16. Draper Irrigation canal ••••••••••••••••••••••••••17. E.a.st J orfun

  • TABLES--COntinued

    Page

    Tables 1-6.--Continued4. Draper Irrigation Canal.............................. 685. F.a.st Jorda.rl ca.nal •••••••••••••••••••••••••••••••••••• 716. Jordan and Salt Lake City Canal •••••••••••••••••••••• 79

    7. Gains or losses determined fran seetage measurerrents forreacl1es of the ca.nals ......•.....•.........•....•...... 82

    CDNVERSION FACI'ORS

    For readers who prefer to use metric units, conversion factors for inch-pound units used in this report are listed below:

    MultiplY inch-pound units

    cubic foot p=r seoondcubic foot per secondper mile

    footmile

    By

    0.02832

    0.017600.30481.609

    To obtain metric units

    cubic meter per secondcubic meter per secondper kilaneter

    meterkilareter

    Water temperature is given in degrees Celsius (OC), which can beconverted to cegrees Fahrenheit (oF) by the following equation: 0F=1.8 (OC)+32.

    iv

  • SEEPPGE SWDY OF SIX CANALS

    IN SALT LAKE CDUNI'Y, lJI'AH, 1982-83

    By L. R. Herbert, R. W. Cruff, and K. M. WaddellU.S. Geological Survey

    ABSTRACl'

    A study of selected reaches of the Utah and Salt Lake, Utah LakeDistributing, Provo Reservoir, Draper Irrigation, East Jordan, and Jordan andSalt Lake City Canals in Salt Lake County, Utah, was made to determine gainsor losses of flow in those reaches. Three to five sets of seepagemeasurements were made on each canal during 1982 or 1983. Adjustments forfluctuations in flow were made from information obtained from water-stagerecorders operated at selected locations during the time of each seep:lge run.

    The study showed an overall net loss of about 9.5 cubic feet per secondin the Utah and Sal t Lake Canal, 11.0 cubic feet per second in the Utah LakeDistributing canal, 20.5 cubic feet per seoond in the Provo Reservoir canal,1.5 cubic feet per second in the Draper Irrigation Canal, and 4.0 cubic feetper second in the East Jordan canal. It also showed a net gain of about 6.0cubic feet per second in the Jordan and Sal t Lake City Canal. The gains andlosses are attributed primarily to the relation of the canals to the depth ofthe water table near the canals.

    INTROOOCl'ION

    This report gives the results of seep:lge studies on six large canals inSal t Lake County, Utah. The study (sixth of a series) is part of thestatewide water-resources program oonducted by the u.s. Geological Survey incooperation with the Utah Department of Natural Resources, Division of WaterRights. Information on gains or losses of canal flow is needed by watermanagers for allocating irrigation water. Detailed investigation of a canalsystem can aid in locating the losing or gaining sections of the system.

    GENERAL DESCRIPrION OF CANAL SYSTEMS

    This report describes 19.5 miles of the Utah and Sal t Lake canal, 12.9miles of the Utah Lake Distributing Canal, and 13.8 miles of the ProvoReservior canal, which are canals on the west side of Salt Lake Valley, and10.3 miles of the Draper Irrigation canal, 20.2 miles of the East Jordancanal, and 14.6 miles of the Jordan and Salt Lake City canal, which are in theeast side of the valley. Water is diverted to the canals from the JordanRiver near where the river enters the valley, except for the Provo ReservoirCanal which is diverted from the Provo River southeast of the study area. Thewater is mainly used for irrigation and industry.

    r.1E'lliOOO OF INVESTIGATION

    A reoonnaissance was made of the canals on the west side of the Sal t LakeValley during the fall of 1981 and of the canals on the east side during thewinter of 1983. The sections of the canals selected for the study wereexamined for: (1) the locations of controls, turnouts, or other diversion

    1

  • structures, and for bridges; (2) the general condition of the canals (forexample, whether they recently had been cleaned or other maintenance had beenperformed); and (3) the location of areas of natural and irrigation-returnflow to the canals.

    Using the information from the reconnaissance, the selected sections ofthe canals were divided into reaches, and measuring sites were selected withineach reach. Water-stage recorrers were o~rated at selected sites, mainly atthe start and end of each reach. Because of the depth of some of the canals,in some cases it was necessary to locate measuring sites at existing bridgesor to construct bridges or cableways from which measurements could be made.

    Five sets of discharge measurements were made at 23 sites along the Utahand Salt Lake canal during 1982--on May 26, June 24, July 28, August 25, andSeptember 24. Four sets of discharge measurements were made at 13 sitesalong the utah Lake Distributing canal during 1982--on May 27, June 25, July29, and August 26. Four sets of discharge measurements were made at 16 sitesalong the Provo Reservoir canal during 1982--on May 27, June 25, July 29, andAugust 26. 'Ihree sets of discharge measurements were mare at 10 sites alongthe Draper Irrigation canal during 1983--on June 22, June 28, and July 2l.Four sets of discharge measurements were made at 21 sites along the EastJordan canal during 1983--on June 15, June 29, July 20, and August 24. 'lhreesets of discharge measurements were mare at 14 sites along the Jordan and SaltLake City canal during 1983--on September 16, 19, and 23. Sites where ameasurement (or estimate) was mare at least once are shown in figures 1-6.

    The measurements of discharge were made with a current meter, usingstandard methods of the U.S. Geological Survey (Buchanan and Somers, 1969).Each person making measurements was assigned a reach in which the requirednumber of measurements could be completed in a day. In each reach,measurements were made at all selected measuring sites, inclUding both ends ofthe reach, all turnouts, and all inflow points. For each measurement, thedate, time, discharge, tem~rature, and s~cific conductance of the water areshown in tables 1-6.

    The numbers used for the turnouts and inflow points in figures 1-6 (forexample, T2 or R2) were assigned in a downstream order to those turnouts andinflow points that had flow during at least one set of measurements.Continuous water-stage records were obtained for each reach and are shown infigures 7-12.

    2

  • PROCEDURES USED IN mUUl'IN; GAINS AND LOSSES

    The resul ts of the seepage measurements for reaches of the canals aregiven in table 7. The procedures used to obtain these results are describedin the follow ing pages.

    A computation was made of the flow that would be expected at each maincanal measuring site, assuming no loss or gain. Beginning with the flow atthe head of each reach and proceeding in a downstream sequence, all turnoutflows were subtracted and all inflows were added 'llie computed value at eachsite then was adjusted for fluctuations in canal flow that originated upstreamfrom the reach being analyzed Information required to make this adjustmentis the change in flow with time at the head of the reach, the time ofmeasurements at the head of the reach and the downstream measuring site, andthe time required for passage of water from the head of the reach to thedownstream site.

    The change in flow with time at the head of the reach was determined fromthe recorded gage height and the discharge measurement at the head of eachreach. The times of the two measurements are available from tables 1-6, andthe time of travel between the two points was determined from the stagerecorders at or near the ends of each reach.

    As an example, assume that the measurement at the head of the reach was200 cubic feet per second at 0800 hours, the measurement at the downstreammeasuring site was made at 1000 hours, the time required for flow to travelbetween the two sites is 1 hour, and the discharge at the head of the reachwas decreasing at the rate of 5 cubic feet per second per hour. To make theadj ustment, the travel time is subtracted f rom the time of the downstreammeasurement to give a comp;lrable time for flow at the head of the reach. Fromthe gage-height records and the measurements available for the head of thereach, the flow at 0900 hours was calculated at 195 cubic feet fer sea:md, oran adj ustment of -5 cubic feet per second. This adj ustment then was appl iedto the computed value of the downstream measuring site.

    The computed value then was subtracted from the measured value todetermine the amount of gain or loss between the head of the reach and thedownstream measuring site. The amount of gain or loss then was plotted as afunction of distance downstream from the head of the reach. 'lliis was

  • Within a given reach, the amount of gain or loss varied in each set ofseepage measurements and among the several sets of measurements. Thisvariation is shown 1::¥ the scatter of the plotted points in figures 13-18. Thescatter is attributed to one or more of the following: (1) Poor measuringconditions, (2) changes in the rate of seepage loss from the canal, (3)changes in the rate of seepage return to the canal of ground water andunconsumed irrigation water, (4) the inability to adjust completely forfluctuation in the amount of flow within a given reach, and (5) thepossibility that a water user changed the flow in his turnouts or returnflows during the time of the measurements.

    EVALUATION OF '!HE CANAL SYSTEMS

    utah and salt Lake canal

    Five seepage runs with measurements at 23 sites were made on the utah andSalt Lake canal (fig. 1). The measurements made on July 28, 1982, areincluded in table 1, but they were not used for conclusions in this reportbecause they were affected 1::¥ a rain storm. All reaches that were studied inthe downstream three quarters of the canal had small losses, whereas theupstream quarter had one reach with a gain and two reaches with no loss orgain. The net loss for the entire canal was about 9.5 cubic feet ~r second,or about 0.5 cubic foot per second per mile. The maximum loss in any reachwas about 7 cubic feet per second, and the maximum gain was about 6 cubicfeet ~r second. '!he following is a brief description of each reach studiedand the calculated change (see also fig. 13 and table 7).

    Reach QSIJ.-usra.-Site USLl is the Utah and Salt Lake canal gage near thediversion from the Jordan River in the Jordan Narrows. Site USL3 is a bridgeabout 2 miles downstream from site USLl.. '!he measurements showed some scatterand indicated no loss or gain.

    Reach usr.3-USUi.-Site USL6 is above a check dam, about 0.1 mile south ofRose Creek. A water-stage recorder o~rated at this site was used to monitorchanges in flow. '!he measurements in this reach had considerable scatter, butthey indicated a net gain of about 6 cubic feet per second or 2.2 cubic feetfer second ~r mile.

    Reach USL6-USL7.--Site USL7 is at a road bridge along the line betweenTownships 3 and 4 South. '!he measurements in this reach had some scatter, butno gain or loss could be def ined for the 0.7-mile length.

    Reach USL7-usr,12.--Site USLI2 is at a road bridge near South Jordan. Awater-stage recorder was operated at this site to monitor changes of flowduring the study. '!he measurements in this reach had considerable scatter,but they indicated a net loss of 7.0 cubic feet per second or 1.3 cubic feetper second ~r mile.

    Reach US!J.2-UST,15.--Site USLl5 is below a check dam, about 0.5 mile southof State Highway 48. '!he measurements in this reach had some scatter, but thereach showed a net loss of 1.5 cubic feet per second or 0.7 cubic foot persecond ~r mile.

    4

  • Reach USLlS-QSL2D.--Site USL2D is at a road bridge, about D,s mile southof Interstate 215. At site USL17 within this reach, a water-stage recorderoperated to monitor changes in flow. The measurements in the lower half ofthis reach had considerable scatter, and the reach showed a net loss of 4cubic feet ~r second or 1.1 cubic feet ~r second per mile.

    Reach USL20-USL23.--Site USL23 is at a road bridge near Kearns. A water-stage recorder was operated to monitor changes in flow at this site. Themeasurements in this reach showed little scatter, and the reach had a netloss of 3 cubic feet per second or about 1 cubic foot ~r second per mile.

    Utah Lake Distributing canal

    Four seepage runs with measurements at 13 sites were made on the UtahLake Distributing canal (fig. 2). Most reaches that were studied had losses,al though one had a small gain and one had no gain or loss. The net loss forthe canal was about 11 cubic feet per second or about 0.8 cubic foot persecond per mile. The maximum loss in any reach was about 5 cubic feet persecond and the maximum gain was 1.5 cubic feet per seoond. 'lhe following is abrief description of each reach studied and the calculated change (see fig. 14and table 7).

    Reach ID.Ql-ID.Q3.--Site ULDI is about 0.5 mile downstream from the };X)intof diversion of the canal from the Jordan River at the Jordan Narrows. Awater-stage recorder operated at this site was used to monitor changes inflow. Site ULD3 is about 2.5 miles downstream from site ULOl, where the canalcrosses Redwood Road. The measurements in this reach had considerable scatter,and the.y indicated a net loss of 5 cubic feet per seoond or about 2 cubic feet~r second per mile.

    Reach ULD3-ULD5.--Site ULD5 is near a road bridge, between Township3 3and 4 Sout~ The measurements in this reach had some scatter, and theyindicated a net loss of 4 cubic feet per second or about 1.4 cubic feet persecond r-er mile.

    Reach IDJl)-rrr.Q7.--Site ULD7 is up3tream from a road bridge, about 1 milenorth of State Highway 135. A water-stage recorder was operated at this siteto monitor changes of flow during the study. The measurements in this reachhad little scatter and indicated no gain or loss.

    Reach ULD7-ULD8.--Site ULD8 is about 0.9 mile north of site ULD7. Themeasurements in this reach had little scatter, and they indicated a net lossof 1.5 cubic feet per second or about 1.7 cubic feet per second per mile.

    Reach lJI.OO-m.Ql Q.--Site ULOIO is about 0.8 mile south of Bingham Creek.The measurements in this reach had considerable scatter, and they indicated anet gain of about 1.5 cubic feet per second or about 0.7 cubic foot per secondper mile.

    5

  • Reach ULDlQ-ULDl3,--Site ULD13 is upstream from a road bridge on StateHighway 48. A water-stage recorder was operated at this site to monitorchanges of flow during the study. '!he measurements in this reach showed littlescatter, and they indicated a net loss of 2 cubic feet per second or aoout Q.8cubic foot rer second per mile.

    Provo Reservoir canal

    Four seep:ige runs with measurements at 16 sites were made on the ProvoReservoir canal (fig. 3). Most reaches that were studied had losses, althoughone reach had no gain or loss. 'Ihe net loss was about 2Q.5 cubic feet persecond or about 1.5 cubic feet r-er second fer mile. The following is a briefdescription of each reach studied and the calculated changes (see fig. 15 andtable 7).

    Reach PRl-PR1.--Site PRl is 5Q feet cbwnstream from the bridge on RedwoodRoad near the Jordan Narrows. A water-stage recorder was operated at thissite to monitor changes of flow. Site PR3 is about 1.9 miles downstream. Themeasurements in this reach had little scatter, and they indicated a ret lossof 5 cubic feet per second or about 2.7 cubic feet per second per mile.

    Reach PRJ-PR6.--Site PR6 is 25 miles downstream from site PRJ. Themeasurements in this reach had considerable scatter, and they indicated nogain or loss.

    Reach PR6-PRB,--Site PR8 is at the upstream side of a road bridge onstate Highway 135. A water-stage recorder was operated at this site tomonitor changes in flow. The measurements in this reach had some scatter, andthey indicated a net loss of 4.5 cubic feet rer second or about 2.1 cubic feetper second per mile.

    Reach PRB-PRlQ.--Site PRIO is about 2.2 miles north of site PR8. Themeasurements in this reach had sOOle scatter, and they indicated a net loss of6 cubic feet per second or about 2.8 cubic feet per second per mile.

    Reach PRlQ-PRl6.--Site PRl6 is about Q.3 mile downstream from StateHighway 48. water-stage recorders were orerated at this site and at Site PRl4,which is upstream 1.6 miles from PRl6, to monitor changes in flow. Themeasurements in this reach had little scatter, and they indicated a net lossof 5 cubic feet per second or about 1 cubic foot per second per mile.

    Draper Irrigation canal

    Three seep:ige runs with measurements at 10 sites were made on the DraferIrrigation canal (fig. 4). The measurements showed little gain or loss, withmost of the loss being in the first reach. The net loss was about 1.5 cubicfeet rer second. '!he following is a brief description of each reach studiedand the calculated changes (see fig. 16 and table 7).

    Reach DIl-DI2.--Site DII is 600 feet downstream from the head of thecanal. A water-stage recorder was operated at this site to monitor changes inflow. site DI2 is about 1.2 miles downstream from site OIL The measurementsin this reach had little scatter, and they indicated a net loss of 1.5 cubicfeet rer second or about 1.2 cubic feet rer second per mile.

    6

  • Reach 012-016.--Site 016 is in Orat:er. The measurements in this reach hadvery little scatter, and they did not indicate loss or gain.

    Reach OI6A-DIlO.--Site DI6A is aoout 0.2 mile cbwnstream from site DI6,and site DIlO is downstream of a road bridge, about 0.25 mile south of DryCreek. Site DI6A was used because of large quantities of surface inflow thatentered the canal directly below site DI6. '!he measurements in this reachhad little scatter, and they did not indicate gain or loss.

    East Jordan canal

    Four seepage runs with measurements at 21 sites were made on the EastJordan canal (fig. 5). Most reaches that were studied had a gain or lossal though two reaches had no gain or loss. '!he net loss was aOOut 4 cubic feetper second. The following is a brief description of each reach studied andthe calculated change (see fig. 17 and table 7).

    Reach EJI-EJ2.--Site EJI is about 0.2 mile downstream from where thecanal diverts from the Jordan River at the East Jordan Canal gage in theJordan Narrows. A water-stage recorder was operated at this site to monitorchanges in flow. Site EJ2 is aOOut 1 mile downstream from site EJI at a footbridge. 'll1e measurements in this reach had little scatter, and they indicateda net loss of 5 cubic feet per second or 4.8 cubic feet per second per mile.

    Reach EJ2-EJ4.--Site EJ4 is 100 feet upstream from the pumps that divertwater for the Draper Irrigation canal. A water-stage recorder was operated atthis site to monitor changes in flow. '!he measurements in this reach had verylittle scatter, and they indicated a net gain of 11 cubic feet per second oraoout 7.0 cubic feet per serond per mile.

    Reach E'J5-EJIO.--Site EJ5 is aOOut 0.2 mile fuwnstream from site EJ4. Awater-stage recorder was operated at this site to monitor changes in flows.Site EJIO is upstream from a bridge about 0.1 mile north of Corner Creek. Awater-stage recorder was operated at this site to monitor changes in flow. '!hemeasurements in this reach had considerable scatter, and they indicated a netloss of 13 cubic feet per serond or aoout 2.5 cubic feet per second per mile.

    Reach EillQ-FJll.--Site EJll is at a road bridge, aOOut 0.2 mile south ofState Highway 135. 'll1e measurements in this reach had considerable scatter,and they indicated a net loss of about 5 cubic feet per second or about 4.7cubic feet p:r serond Fer mile.

    Reach EJII-EJ15.--Site EJ15 is downstream from a highway bridge, aOOut0.8 mile northwest of Dry Creek. A water-stage recorder was operated at thissi te to moni tor changes in flow. The measurements in this reach had somescatter but showed no loss or gain.

    Reach EJ15-EJl9.--Site EJ19 is aOOut 2 miles northeast of the center ofMidvale. A water-stage recorder was operated at this site to monitor changesin flow. The measurements in this reach had some scatter, and they indicated anet gain of about 8 cubic feet per second or about 1,7 cubic feet per secondper mile.

    7

  • Reach EJl9-&J21.--Site EJ21 is upstream from a road bridge about 2 milessouth of Holladay. A water-stage recorder was operated at this site tomonitor changes in flow. The measurements in this reach had little scatter andindicated no loss or gai~

    Jordan and salt Lake City canal

    Three seep:l.ge runs with measurements at 14 sites were made on the Jordanand Sal t Lake City Canal (fig. 6). Losses were indicated in the two reachesat the head of the canal, whereas the remainder of the canal showed gains.The canal had a net gain of 6 cubic feet fer second The follow ing is a br iefdescription of each reach studied and the calculated changes (see fig. 18 andtable 7).

    Reach JSIJ.-Jsp.--Site JSLl is the Jordan and Salt Lake City Canal gagenear the diversion point of the canal. A water-stage recorder was o~rated tomonitor changes in flow at this site. Site JSL2 is downstream about 1.2 milesfrom site JSL1. The measurements in this reach had some scatter, and theyindicated a net loss of about 2.5 cubic feet per second or about 2.1 cubicfeet ~r second per mile.

    Reach JSL2-JSL3.--Site JSL3 is 1.3 miles downstream from site JSL2,upstream from a road bridge. The measurements in this reach had littlescatter, and they indicated a net loss of 0.5 cubic foot per second or about0.4 cubic foot fer second ~r mile.

    Reach JSTJ-JSL7.--Site JSL7 is downstream from a farm bridge, about 0.3mile north of State Highway 135. A water-stage recorder was operated at thissite to monitor changes in flow. The measurements in this reach had littlescatter, and they indicated a net gain of about 1.5 cubic feet per second orabout 0.3 cubic foot fer second per mile.

    Reach JSL7-JST.8.--Site JSL8 is near a road bridge, about 0.2 mile westof Highway I-IS and about 1 mile north of State Highway 135. 'Ihe measurementsin this reach had considerable scatter, and they indicated a net gain of about1.5 cubic feet fer second or about 1.2 cubic feet ~r second ~r mile.

    Reach JSL8-JSLlO.--Site JSLIO is near a private bridge, about 0.2 milenorth of Dry Creek. The measurements in this reach had little scatter, andthey indicated a net gain of about 0.5 cubic foot per second or about 0.2cubic foot per second per mile.

    Reach JSLlO-JSLl4.--Site JSL14 is at a road bridge near Midvale. Awater-stage recorder was operated at this site to monitor changes in flow.The measurements in this reach had a little scatter, and they indicated a netgain of about 5.5 cubic feet per second or about 1.3 cubic feet ~r second ~rmile.

    SUMMARY AND ffiNCLUSIONS

    Most reaches of the canals west of the Jordan River (Utah and Salt Lake,Provo Reservoir, and Utah Lake Distributing Canals) showed seepage losses,whereas most reaches of canals east of the Jordan River (Draper Irrigation,

    8

  • East Jordan, and Jordan and Salt Lake City Canals) showed seer:age gains or nosignificant change. 'rhe differences can be attributed primarily to the depthto the water table near the canals.

    Large gains in several reaches of the Jordan and Salt Lake City Canal andthe East Jordan canal resulted from the discharge of ground water into thecanals where water levels in a shallow-unconfined aquifer were near the landsurface (Seiler and Waddell, 1984, pl. 2) and above the bottom of the canals.The losses in other r:arts of the two canals were in the area where waterlevels were below the bottom of the canals.

    Preliminary results from a comprehensive ongoing (1984) study of theground-water reservoir in the Salt Lake Valley, however, indicate that thequanti ty of ground water that was discharged to the East Jordan and Jordan andSalt Lake City canals during 1983 was greater than the average annualrecharge to the shallow aquifer (written communication, R. L. Seiler, u.S.Geological Survey, January 15, 1984). Precipitation on the Salt Lake Valleyduring 1982 and 1983 was considerably above normal, and the water table in theshallow aquifer prooobly was higher than average during this study. 'rhus, thegains computed during 1983 prooobly were greater than would re expected duringperiods of normal or below normal precipitation.

    \'lest of the Jordan River, water levels in the shallow aquifer along mostreaches of the canals that were studied generally are more than 20 feet belowland surface; and thus they are below the bottoms of the canals. This isconducive to seepage loss, not to gain. Apparently the above normalprecipitation during 1982 and 1983 did not result in a rise of water levelssufficient to create gaining reaches. 'rhus, the seeplge losses reported hereare prooobly representative of corditions in these canals at all times.

    REFERENCES CITED

    Buchanan, Thomas J. and Somers, William P., 1969, Discharge measurements atgaging stations, UOO&-'IWRI Book 3, O1apter AB, 66 p.

    Seiler, R. L., and Waddell, K. M., 1984, Reconnaissance of the shallow-unconfined aquifer in Salt Lake Valley, Utah: U.S. Geological SurveyWater-Resources Investigations Report 83-4272, 31 P.

    9

  • T.3S.

    T.

    2S._40°37

    /30

    1/

    CANAL-MEASURING SITEWITHOUT RECORDER

    (;;Jt:::J .,." ....,,-j'--,,""'.. /-.,~ --\,

    ,-"-~)

    USL2.

    DIVERSION TURNOUT FROMCANAL WITH FLOW DURINGAT LEAST ONE SEEPAGE RUN

    RS Y RETURN TO CANAL WITH FLOWDURING AT LEAST ONE SEEPAGERUN

    o 2 3MILES..!--,r--........,--t-.l __---I'o ~ 3 KILOMETERS

    Figure 1.-Measuring sites along the Utah and Salt Lake Canal.

    10

  • T.2S.

    . _40°37/30

    1/Ini--+-+-_+-

    T.3S.

    ULD2. CANAL-MEASURING SITEWITHOUT RECORDER

    Tl Y DIVERSION TURNOUT FROMCANAL WITH FLOW DURINGAT LEAST ONE SEEPAGE RUN

    R2 Y RETURN TO CANAL WITH FLOWDURING AT LEAST ONE SEEPAGERUN

    o 2 3MILES~"'----,r--.L-..,r---.,IL....---"'"

    {) ~ 3 KILOMETERS

    Figure 2.-Measuring sites along the Utah Lake Distributing Canal.

    11

  • T.3S.

    T.

    2S.

    -40°37/30

    3 MILESI

    PR2. CANAL-MEASURING SITEWITHOUT RECORDER

    Tl' / DIVERSION TURNOUT FROM,,7 CANAL WITH FLOW DURING

    AT LEAST ONE SEEPAGE RUN

    2I

    I2

    oIo

    .....-;:..- T." / 4

    ';!.',,-, (~.- 1 E. S.>;"\..'" ):,:; /,1, ' • I

    ;}~t'r~'~,{~»---" ~~XPLANATION.:' ',:~·'l11 °52/30/1 ""'PRI. CANAL-MEASURING SITE;-- WITH RECORDER

    /I

    '..-

    Figure 3.-Measuring sites along the Provo Reservoir Canal.

    12

  • T.

    3s.

    T.

    2s.-40°37

    /30

    1/

    CANAL-MEASURING SITEWITHOUT RECORDER

    DIVERSION TURNOUT FROMCANAL WITH FLOW DURINGAT LEAST ONE SEEPAGE RUN

    Rl Y RETURN TO CANAL WITH FLOWDURING AT LEAST ONE SEEPAGERUN

    3 MIL. ESI

    2I

    I2o

    oI

    .') T ...... ,_ 4

    ._/ s.

    k:%;~~t!~1)~r'· )~:P~:NATI ON)1[!:'111 0 52/3011 -'011. CANAL-MEASURING SITEj--''''' WITH RECORDER

    /,I

    ~-

    112°00/ 111 0 513011

    1 ~-___.-- __r_~_nr..--I_,,_-___.-

    Figure 4.-Measuring sites along the Draper Irrigation Canal.

    13

  • CANAL-MEASURING SITEWITHOUT RECORDER

    EJ2 •

    DIVERSION TURNOUT FROMCANAL WITH FLOW DURINGAT LEAST ONE SEEPAGE RUN

    RI Y RETURN TO CANAL WITH FLOWDURING AT LEAST ONE SEEPAGERUN

    o 2 3MILES..1--.--.........,...._.....,/L-..__....J1o 2 3 KILOMETERS

    I(,-

    Figure 5.-Measuring sites along the East Jordan Canal.

    14

  • EXPLANATION

    CANAL-MEASURING SITEWITHOUT RECORDER

    T.

    3S.

    T.

    2

    S.

    -40 0 3/3011

    ~7'---+-__-.....

    . /(--. R. 1 E.

    ,-.----,-~!" \..,' ~(:' "- (

    ;'(:"~11052/30// j'SLl. CANAL-MEASURING SITE1---" WITH RECORDER

    /I

    DIVERSION TURNOUT FROMCANAL WITH FLOW DURINGAT LEAST ONE SEEPAGE RUN

    R2 j/ RETURN TO CANAL WITH FLOWDURING AT LEAST ONE SEEPAGERUN

    o 2 3MILESI-I--.---'--rl---,/'------"o 2 3 KILOMETERS

    Figure 6.-Measuring sites along the Jordan and Salt Lake City Canal.

    15

  • " I "" u;c, M" ".,", = =_-----------3.8 ~=::::::::===========================

    5.6

    tJ

    5.5 :..- ------'r----- ~ _______'

    Site USL 6 May 26, 19825.4 L- _

    6'5~ j6.4

    ~6.3 -------------

    f-Ww

    ~"~"".,,~(? 3.0

    wI

    ~ 5.3 ,.-------------------------------------,c:((?

    5.2

    5.1

    5.0

    Site USL 23 May 26, 19824.9 L- . ---'

    4.6 ,..---------------------------------------,

    4.5

    4.4Site USL 1 June 24,1982

    242220161412

    HOUR

    106424.3 L-__L-_---l__--l.__---'-__---'-__--'-__-L__-L__...l.-__--'--__-'-_---'

    o

    Figure 7.-Gage heights at recorder sites during seepage runsalong the Utah and Salt Lake Canal.

    16

  • 5.7

    r~

    5.6 '-- ~

    SIte USL 6 June 24, 19825.5

    "F ~,..Lu'u, "••"". "" ~~---===:/J6.3 -----""--~-'-"--'-'-----------------

    3.3 r-------------------------------------------,

    3.2

    3.1

    Site USL 17 June 24, 19823.0 '------------'-------------------------------'

    I-UJUJLL 5.5

    ~1-"I 5.4c.!lUJIUJ

    5.3c.!lCl:c.!l

    5.2

    5.1

    5.0 '--_S_i_te_U_S_L_2_3_J::..:u::..:n.:...e_2=-4-'--','---1=-9=--8.:...2 ~

    242220181610 12 14

    HOUR

    8

    4.7

    5.0 ,----------------.,-----------------------,

    4.6

    4.5

    4.4

    4.3

    4.20 2 4 6

    Figure 7.-Continued17

  • 5. 7 ~-----..----r---r--..--.,.----,----,---,-----r--~-,-----,

    5.6

    5.5

    5.4Site USL 6 July 28, 1982

    6.9,..--------------·---------------------

    6.8

    6.7

    Site USL 12 July 28, 19826.6 L- -'

    ::3.6...

    wwu.Z 5.9

    ...'ICl 5.8WIwCl 5.7ctCl

    5.6

    Site USL 23 JulY 28, 19825.5

    4.6

    4.5

    4.4

    Site USL 1 Aug. 25, 19824.3

    6.1

    6.0

    5.9

    5.8

    Site USL 6 Aug. 25, 1982

    24222018161412

    HOUR

    108642

    5.7 '---_--'__......L.__....L-__.......__'--_ ___l__.-'-__~__..J___......._ ___l'___......Jo

    Figure 7.-Continued18

  • 6.9 ~--~~-~--~--~----.---~---.-----,---.,---.,---,---r-----,

    6.8

    6.7

    Site USL 12 Aug. 25, 1982

    3.8 ~------------------------------------,

    3.7

    f-

    ~ 3.6LL

    ZSite USL 17 Aug. 25, 1982f-' 3.5 L- -'

    J:Clw:rwCl

  • 4.9 F=I==-_='===1====~_~-_-_-_--=--=--==_I__I_I_~L5iteUSL 6 Sept. 24, 1982 _~4.8

    6.1

    5--------~Site USL 12 SePt. 24, 19826.0 ----------------------------------f-~

    ~3.3~~ Site USL 17 se9t._2_4_,_1_9_8_2 .

    ~-I 3.2 ---------------------------(!l

    ~

    I~

    C.'Jc( 4.9(!l

    4.8

    4.7

    4.6

    Site USL 23 Sept. 24,1982

    24222018161412

    HOUR

    106424.5 L.-_---'__--'__-'-__-'-__-'-__-L..__--'-__...L-__-'-__-'-__-'-_--'

    o

    Figure 7.-Continued

    20

  • May 27, 19_8_2 . 1 j15.4 ,----------------------------------,

    Site ULD 7 May 27, 1982

    15.3

    15.2

    15.1 '-----------------------------------'

    6.4 ,-----------------------------------,

    6.3 f-

    6.21::::-_------ -

    Site ULD 1 June 25, 1982

    f0-UlUlII.

    Z

    I-"I

    "UlIUl(!)c((!)

    Site ULD 13 May 27,19826.1 '------------------------- -.-----

    2.91

    2.8 t:=================:::::::::::=================15'5~15.4

    Site UL~7 June 25~15.3-- -------

    ::r::=::;~--~J6.1 ---------------

    3.01~~--~-. Site ULD 1 July 29,19822.9 ---------------------------------

    15.7~Site UL~7 July 29,1982

    15.6~1 I~o 2 4 6 8 10 12

    HOUR

    I14

    I16

    I18

    I20 22 24

    Figure B.-Gage heights at recorder sites during seepage runsalong the Utah Lake Distributing Canal.

    21

  • 6.3

    Site ULD 13 July 29,19826.2L------

    -------~--------

    :: ~~-~=_S=_i=t_e=_u=_:=_=~--~-_-=A~U-_~-.--~~6_-,-=-~-9-~-2-~-_--_~-=-_-~-=-_-~-_--~---_~~~.~~=_-~=~~.-=-:_-~~~~.~~_~~----------]f-UJUJLL

    i- 15.7,...----~~---------------JUJ 15.6

    r~ Site ULD 7 Aug. 26,1982c( 15.5 L- _

    6.3 r--------------------------------------,

    6.2f-~

    6.1 -:-JSite ULD 13 Aug. 26, 1982

    I I I I6.00'---'-2---

    4L---'6-----'-8--...L..--..L---L----l-----'----L--..L-----.J

    Figure a.-Continued

    22

  • 1.11_----- ~1.0t S,tePR14 June25,1982~

    "~~,,,.,',,,~ ~5.0 -------------------

    5'6[ ==:35 5 ----------------------

    'SitePR8 MaY27,19825.4 -----------------------

    5.21 j5.1 ~---

    _ _ S_it_e_p_R_1_J_U_n_e_2_5_,_1_98_2 _5.0

    5.6

    t=:=1

    ~I' ,., ----------~...-/ ............----------r- _ Site PR 8 June 25,1982 _(!J 5.4 -----------------------------

    WIW(!Jc((!J

    ::ER"'"",=-2---~0.6 ----------

    5.2~

    L~_2---~5.1 ------------------------

    ::rSite PR 8 July 29,1982

    :Jf ==~I I I I I5.4 0 2 4 6 8 10 12 14 16 18 20 22 24HOUR

    Figure g.-Gage heights at recorder sites during seepage runsalong the Provo Reservoir Canal.

    23

  • :: ,---,-----,--,--'----,-----,--.---r~--T-.--9.

    Site PR 14 July 29, 1982 ~.J.9 L-~~~_~~~~~~~~ ~__~~~ ~_

    1.9 r--~~~~~--~~~-~----------~--~---~~~--,

    1.1 -

    1.0 -

    1.2 f-

    1.8 I--

    1.7 -

    1.6 -

    1.5 f-1.4 f-

    t;; 1.3 '-wl!.Z

    t-":r(!J

    w:rw(!J

  • ;~::§,.,: : : :: : : :Jo 2 4 6 8 10 12 14 16 18 20 22 24

    HOUR

    Figure g.-Continued

    25

  • " f----'--'---l-,-~l 011 June 22,1983

    1.9 '--------'--------

    i--rJ._-----------

    011 July 21,1983

    ~z 2.21. 01 1 June 28, 1983

    ;::- 2.1 --------'----------------

    Ie";2.9.---------Je,,2.8 ~~

    016 June 28,19832.7 '------------------------------

    2.3

    12.2 b=====================- -..--J

    2.21~IY 21, 1983 ~2.1~ I J__-':~__:c':I,---_c'::I_ ____:.LI-----::-':cl.-Jc----::'I,----.,..,I----,-

    a 2 4 6 8 10 12 14 16 18 20 22 24HOUR

    Figure 10.- Gage heights at recorder sites during seepage runsalong the 0 raper I rrigation Canal.

    26

  • ::r =~====~ _______rSite EJ 1 June 15, 19834.8

    5.9 r-------

    Site EJ 4 June 15, 1983~.8

    24

    3'3~-"-_-'-_.----==-~_j3.2

    Site EJ 5 June 15, 19833.1

    2.5

    2.4

    f- 2.3wwu.~

    Site EJ 10 June 15, 19832.2 -----

    ,:I(!J

    w 3.8

    w(!J

    «(!J 3.7

    3.6

    3.5

    3.4

    Site EJ 15 June 15,19833.3

    2.9

    2.8

    2.7

    2.6

    2.5

    Site EJ 19 June 15, 1983

    2.40 6

    HOUR

    Figure 11.-Gage heights at recorder sites during seepage runsalong the East Jordan Canal.

    27

  • ::LT r~~l ~I--'-----~~.=4~-4.8 ---------------

    6.4

    6.3

    6.2

    6.1

    Site EJ 4 June 29, 19836.0

    I-llJ 3.6llJu.

    ~i-"' 3.5It?llJI

    3.4llJt?c:(t?

    3.3

    3.2Site EJ 5 June 29, 1983

    2.8

    2.7

    2.6

    2.5

    2.4

    2.30 2 4 6 8 10 12 14

    HOUR

    16 24

    Figure 11.-Continued

    28

  • 6.4

    6.3

    6.2

    6.1

    6.0r-WwI.L

    ~5.9

    r-"IGW

    5.8

    I Site EJ 15 June 29, 1983

    WG

  • 5'0[~,_ / ~ '--T-~..,l "" E" '"" ", "" ~4.8 -------------------------------------'

    6,Or ~

    'T ,,,"', ""'''', "" ~5.8 '--------------------------::t,,,"", ''''''',"" :;:]

    ~ 3.2 --------------------

    UJu.

    i"~ 3:r 2.2UJ -------~~ Site EJ 10 July 20.1983CJ 2.1

    "~"'~,,,5.5

    2.1 ,-------------------------------------,

    2.0

    1.9

    1.8

    24221. 7 '-----'----'----'-----'------'------'----'-----'-----'---- -'------''-----'

    o 2 4 6 8 10 12 14 16 18 20HOUR

    Figure 11.-Continued

    30

  • Site EJ 4 Aug. 24, 1983

    16.3 r--~---,---.----,-----r------r-----'---'----'-----'--·-I

    16.2

    16.1

    16.0

    IS.9

    IS.8

    f-WWIL IS.7Z

    ~ IS.6 t--_S_it_e_E_J_2_1_J_U_IY_2_0_,_1_9_8_3 -------'

    WIW

    ~ 4.SI ~~----- --~_.-.-=---~. Site EJ 1 Aug. 24, 1983 ~~~..J

    4.4 '-----------------------------

    " IS.S '-----------------------------------

    ::~ ~--S-ite-E-J-S-A-U-9.-2-4-,-1-9-8-3-2.7 .__...l.I__LI_-..-JIL-_...L...._---'-::_---JIL-_-'-I__,c,1-~I~--::'I=--__:-::I _--,

    o 2 4 6 8 10 12 14 16 18 20 22 24

    HOUR

    Figure 11.-Continued

    31

  • 21

    1

    =-c==:=r= I--~- ]Site EJ 10 Aug. 24, 1983

    2.0

    6.3

    6.2

    6.1

    Site EJ 15 Aug. 24, 1983

    6.0

    3.2

    3.1

    3.0

    2.9

    ...l1Jl1JlJ.. 2.8

    ~....:r: 2.7~l1J:r:l1J 2.6

    "c!" Site EJ 19 Aug. 24, 1983

    2.5

    16.7

    16.6

    16.5

    16.4

    16.3

    16.2

    16.1

    16.0 Site EJ 21 Aug. 24, 1983

    15.9___.L_

    0 2 4 6 10 12 14 18 20 22 24

    HOUR

    Figure 11.-Continued

    32

  • 1.9 .--S-it-eT"J-S-L-l-----rS-ep-L=;-~r~-~-_-~~-_-_-_-~r~-~---r~~~==~-_-_-_~~~~-_-_,-_--~~~1.8 '---------'----'---------------------

    "[0.7 ~e JSL 7

    Sept. 16, 19830.6

    5.0

    4.9

    4.8

    Site JSL 14 Sept. 16, 19834.7

    I-UJUJIL 1.9

    ~..--I

    1.8~UJIUJ

    " 1.7c{"

    1.6

    Site JSL 1 Sept. 19, 19831.5

    1.3

    1.2

    1.1

    1.0

    0.9

    0.8Site JSL 7 Sept. 19, 1983

    0.70 2 4 6 8 10 12 14

    HOUR

    16 18 20 22 24

    Figure 12.-Gage heights at recorder sites during seepage runs

    along the Jordan and Salt Lake City Canal.

    33

  • 5.0 ....-----,----,---,--..,--

    4.9

    'I~ j:=1Sept. 23, 1983,O~, I I I I I I I I1.90 2 4 6 8 10 12 14 16 18 20 22 24

    HOUR

    fo-UJ

    ~ 4.8z:.-: Site JSL 14 Sept. 19, 1983ili 4.7 '-------------------------------------'UJIUJ

    "ct"

    Figure 12.-Continued

    34

  • 2.3

    2.2

    2.1

    2.0

    1.9

    1.8

    1.1

    1.6

    I-UJUJlL 1.5

    ~1-"I~ 1.4UJIUJCJ 1.3

  • EXPLANATION

    • POINT FROM WHICH CHANGE WAS COMPUTED

    o SEEPAGE RUN OF MAY 26, 1982

    • SEEPAGE RUN OF JUNE 24, 1982

    6 SEEPAGE RUN OF AUG. 25,1982

    o SEEPAGE RUN OF SEPT. 24, 1982

    M '"...I ...Il/l l/l:J :J

    +15

    '" ....0 • ...I ...Il/l l/lZ • :J :J0 +10 +10

    Iu 0Wl/l

    a: ~w +5 +5 f- -a. •f-WWU. 0 0U 0 0 0al 6:J 0U -5 -5 r-- -~

  • C\J.-< "'.-<~ ~

    ~ ~

    + 15 :Jr-__~-,c--r--__-r---r-_--,-__..,---r:J_...,

    EXPLANATION

    +10 • POINT FROM WHICH CHANGE WAS COMPUTED

    o SEEPAGE RUN OF MAY 26. 1982

    +5

    o

    o 6 SEEPAGE RUN OF JUNE 24,1982

    (:, SEEPAGE RUN OF AUG. 25. 1982

    o SEEPAGE RUN OF SEPT. 24. 1982

    -5 o

    12108642-10 L-__-'------'_.L-__.L-.L.._-.L-__-'----l.._-'

    oReach USL 12-USL 15

    0Z0UW

    "' "'

  • I I~.--.L_.l-L..4 6 8 10 12 14

    Reach ULD l-ULD 3

    0.J:J

    +5

    a

    -5

    -10 1a 2

    '"o.J:J

    ('f)

    o...J:J

    EXPLANATION

    • POINT FROM WHICH CHANGE WAS COMPUTED

    o SEEPAGE RUN OF MAY 27, 1982

    • SEEPAGE RUN OF JUNE 25,1982

    o SEEPAGE RUN OF JULY 29, 1982~ SEEPAGE RUN OF AUG. 26, 1982

    ('f)

    ,..,U 0 0 0 0 0

    ~.J .J .J .J ..J:J :J :J :J :J

    vi +10 +10 I I ~I I I

  • C\J '" '" U1 IDa:: a:: a:: a:: a::a. a. a. a. a.

    +10 +10

    0

    +5 +5 00 i

    0 0 0

    -5 -5 0

    -10 -10 I I, 1__1--,---J _ L0 2 4 6 10 0 2 4 6 8 10 12 14

    Reach PR 1-PR 3 Reach PR 3-PR 6

    ozouWI1l

    a::Wa.f-WWLL

    U

    III::>U

    Z

    EXPLANATION

    • POINT FROM WHICH CHANGE WAS COMPUTED

    o SEEPAGE RUN OF MAY 27, 1982

    • SEEPAGE RUN OF JUNE 25, 1982

    o SEEPAGE RUN OF JULY 29, 19826 SEEPAGE RUN OF AUG. 26, 1982

    0co '" ....a:: a:: a::a. a. a.

    +5

    •0

    -5

    -100

    Reach PR 8-PR 10

  • '"+5

    0

    tI~ j

    o a

    -5-1~o 2 4 6 8

    Reach 01 1-012

    EXPLANATION• POINT FROM WHICH CHANGE WAS COMPUTED

    o SEEPAGE RUN OF JUNE 22.1983

    A SEEPAGE RUN OF JUNE 28.1983

    o SEEPAGE RUN OF JULY 21.1983

    2826242220

    Reach 01 2-01 6

    o 0; I -r. r--------r-~;T~L-L.---J.I__LI-1-1_1_---'-1__ L~__=-_=_~_L)8 10 12 14 16 18

    :I6

    ozouwV1

    crw '"Cl-

    rOE:-5 - I I

    ~ 0 2 4o-l

    crozc:(

    " c:(III

  • N...,W

    ...,W

    +20 ,------.-----.--,-,

    N ~ ~..., ...,...,W W W

    +20 '--'-'-1·--'-'--1--"'-'---'

    +10

    o

    -10 L__-----''--_--'_------'''-'o

    +10- ....~

    O.-----~ -

    Reach EJ 1-EJ 2 Reach EJ 2-EJ 4

    o

    " '" '"..., ..., ...,W W wr I 1

    00

    0

    EXPLANATION

    Reach EJ 5· EJ 10

    • POINT FROM WHICH CHANGE WAS COMPUTED

    o SEEPAGE RUN OF JUNE 15, 1983

    • SEEPAGE RUN OF JUNE 29, 1983

    o SEEPAGE RUN OF JULY 20,1983A SEEPAGE RUN OF AUG. 24, 1983

    rlrl...,W

    o

    o•

    •__-'--_----l.I_--'-'-'I__-'I__J..__ 1.__'---1_l..-LI __ L__J ...LI_---,-1__,---1__ L _4 6 8 10 12 14 16 18 20 22 24 26 28

    10...,W

    0 +10 IZ I0UW111 0C(

    W0-

    I- -10WwlL.UCD -20:Ju~ I111- -30111 0 20.J

    C(

    0Z«0

    arl...,W

    +20

    +10

    0

    -10

    -20 -

    -30 --- 10 2 4 6

    Reac h EJ 10·EJ 11

    DISTANCE, IN THOUSANDS OF FEET

    Figure 17.-Gain or loss for reaches of the East Jordan Canal.

    41

  • ... N '"

  • (\J (\J ""iii ...J

    ...J ...J EXPLANATIONV1 V1 V1.., .., .., ..,

    • POINT FROM WHICH CHANGE WAS COMPUTED+5 +5I I I

    o SEEPAGE RUN OF SEPT. 16. 1983

    0 0 .. - • SEEPAGE RUN OF SEPT. 19. 1983~

    '€>'

    o SEEPAGE RUN OF SEPT. 23. 1983-5 -5 I I I

    0 2 4 6 8 0 2 4 6 8

    Reach JSL I-JSL 2 Reach JSL 2-JSL 3

    '"...JV1

    .;

    ...JV1

    '"...JV1

    '"...JV1

    ...JV1

    12

    1':[ I : :: : : ~: : ,:: : ~3a: 0 2 4 6 8 10 12 14 16 18 20 22 24it' Reach JSL 3-JSL 7f-WWlL

    U

    m 0:l '" co co en .-1U ...J ...J ...J ...J ...J

    r:E I :~ j ::I:: :: : I ~lo 2 4 6 8 0 2 4 6 8 10

    Reach JSL 7-JSL 8 Reach JSL 8-JSL 10

    (\J........JV1..,'I

    - I

    g

    '" .;..... ........J ...JV1 V1.., ..,'I --1'--

    ,I12 14 16 18 20 22 24

    Reach JSL 10-JSL 14

    DISTANCE. IN THOUSANDS OF FEET

    Figure l8.-Gain or loss for reaches of the Jordan and Salt Lake City Canal.

    43

  • Table 1.--Measurements made along the Utah and Salt Lake Canal

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 250C)

    USLl 5-26-82 0820 200.04 1260 16.5R1 0750 e.2R2 0755 e.05USL2 1020 207.97 1260TI 0815 .31

    R3 0900 .15USL3 1230 201.11 1260 18.0T2 1645 .05T3 1700 2.17USL4 1350 197.50 1260 18.0

    T4 1705 .18T5 1710 .03T6 1720 e.4T7 1730 1. 96T8 1735 .75

    USL5 1530 204.86 1260 18.0T9 1750 3.41TI2 1810 .12TI4 1825 3.31USL6 0810 191. 84 1200 17.0

    TI5 0935 5.04R7 1040 2.60TI7 1000 4.55TI8 1020 1.02TI9 1100 2.37

    T20 1105 .43T21 1125 5.38USL7A 0925 178.56 1200 17.0T23 1145 .06USL8 1020 162.42 1170 17.0

    T24 1205 .22T26 1220 3.09T28 1230 e.05T29 1245 4.05T31 1320 2.09

    44

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Disc~arge conductance Temperature

    (ft Is) (micromhos per (DC)em at 250 C)

    USL9 5-26-82 1120 157.30 1240 17.0T33 1350 0.80T34 1410 4.43T35 1425 .08USLlOA 1240 127.72 1270 18.0

    T36 1440 4.84T37 1450 1.66T39 1505 3.67USLl1 1330 146.53 1270 18.0T40 1520 .30

    T41 1530 3.82T42 1540 .04T43 1550 .18T44 1555 .09T45 1605 6.53

    USLl2 0820 122.81 1180 17.0T48 0750 3.36T49 0815 e2.5T50 0820 .02USLl3 1020 118.21 1180 17.0

    T52 0850 .94T53 0915 2.25USLl4 1150 114.91 1180 17.0T54 1250 2.93T55 1315 .30

    T57 1345 e.01T58 1345 1. 54USLl5 1310 100.13 1190 19.0T59 1405 .10USLl6 1410 98.11 1190 19.5

    T60 1720 .46T61 1725 e.GT62 1730 e.1T64 1740 e.01T65 1740 e.03

    45

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (oC)cm at 25°C)

    T66 5-26-82 1745 eO.03T67 1745 e.04USLl7 1530 92.71 1190 19.5USLl7 0730 102.49 1220 16.5T68 1005 .22

    no 1040 .10R17 1110 1. 91T72 1105 e.2USL18 0910 99.15 1220 16.5USL19 1055 90.22 1220 16.5

    T75 1145 .09Tn 1210 3.49USL20 1220 94.89 1220 17.0T81 1510 2.43USL21 1345 89.63 1220 18.0

    T83 1630 e.01T84 1640 e.06USL22 1455 87.77 1220 18.0T86 1845 e.32T87 1030 4.08

    USL23 1550 80.58 1220 19.5USLl 6-24-82 0905 235.58 1250 21.0R1 0715 e.2R2 0720 e.05USL2 1120 232.47 1230 21. 5

    Tl 0740 e2.0R3 0915 .10USL3 1325 236.67 1280 22.5T2 0755 .09T3 0810 3.07

    USL4 1545 236.11 1260 23.0R4 0835 .15T4 0900 e.02T5 0905 .12T6 1500 .4

    46

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e. estimated.

    Specifi cSi te Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    17 6-24-82 1505 1. 91USL5 1750 242.51 1280 23.0T9 1520 4.22TlO 1530 .47Tl1 1545 e.1

    Tl2 1605 1. 75Tl3 1600 .27Tl4 1625 3.40USL6 1945 233.66 1270 23.0USL6 0830 221. ?l 1210 21. 0

    Tl5 0950 5.41R7 1045 e.01Tl6 1010 .32Tl7 1020 5.55Tl8 1035 4.67

    USL7 0950 209.39 1240 21. 0Tl9 1100 3.04T20 1120 .23T21 1130 4.80T22 1150 3.26

    T23 1205 .60USL8 1050 195.75 1280 21.0T24 1215 .19T25 1235 .03T26 1230 2.94

    T27 1245 .64T28 1250 .07T29 1300 2.87131 1330 2.34USL9 1210 191. 34 1240 21. 5

    133 1405 1. 33134 1420 4.58135 1435 4.27USLlO 1300 167.58 1240 21.5136 1310 5.26

    47

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)em at 250C)

    137 6-24-82 1355 3.15138 1410 e.01139 1440 3.45USL11 1350 166.34 1210 23.0T40 1500 e3.4

    T41 1545 e.15T42 1550 e.2T43 1630 5.87T44 1655 e1. 5T45 1715 7.22

    USL12 0810 144.05 1240 20.5RIO 0725 e.04Rll 0730 e.02T48 0805 3.17T50 0830 e.02

    USL13 0950 141.47 1240 21. 0T52 0915 4.39T53 0955 2.3GUSL14 1110 139.13 1240 21. 5T54 1020 3.69

    T55 1115 3.88T56 1120 .11T57 1140 e.06USU5 1230 120.04 1250 22.0T59 1200 e.2

    USL16 1340 117.68 1260 22.5T60 0745 3.45T61 0815 e.34T63 0815 e.01T64 0835 e.02

    T65 0845 e.02T67 0850 e.02USL17 1450 109.GO 1260 22.5USL17 0810 123.19 1270 20.5T68 0900 .95

    48

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R. inflow; T. diversion.Discharge: e. estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    T71 6-24-82 0925 eO.01USLl8 0940 113.96 1250 20.5T73 0945 e.01T74 1010 2.93USLl9 1100 115.79 1250 20.5

    Tn 1040 4.29USL20 1235 104.54 1270 22.0T78 1105 e.07T80 1110 e.G7T81 1120 4.45

    USL21 1350 95.19 1270 23.0T83 1220 3.07T84 1240 e3.0USL22 1500 89.98 1260 23.0T87 1430 e3.2

    T88 1340 3.24T89 1400 2.25USL23 1555 78.23 1270 23.0USLl 7-28-82 0720 247.68 1320 24.0R1 1105 e.5

    USL2 0830 249.87 1330 24.0Tl 1115 e1.5R3 0955 .05USL3 1030 227.34 1300 24.0T2 1125 .05

    T3 1130 .08USL4 1310 216.16 1290 24.0R4 1145 .78T4 1200 .10T5 1210 .05

    R5 1515 .50T6 1515 e.4T7 1525 .58USL5 1550 239.73 1270 24.aT9 1550 5.00

    49

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (DC)cm at 25°C)

    TlO 7-28-82 1600 0.24R6 1645 e.2Tl2 1700 .15Tl4 1730 3.53USL6 1800 220.20 1270 24.0

    USL6 0805 237.94 1300 24.0TI5 0720 5.15R7 0810 2.09Tl7 0740 .11Tl8 0755 1.16

    USL7 0910 221. 65Tl9 0825 3.38T20 0845 .27T21 0900 4.95T22 0915 .20

    T23 0930 .22USL8 1035 205.77 1320 24.0T24 1230 .08T26 1305 3.07R9 1345 .72

    T27 1315 1.02T29 1325 4.02T31 1400 2.71USL9 1130 198.74 1290 25.0T32 1420 .03

    T33 1425 1. 99134 1440 5.06T35 1450 .20USLlO 1225 179.39 1290 25.0T37 1225 .20

    T38 1235 .07T39 1240 .09USL11 1320 177.90 1280 25.0T40 1310 .55T41 1315 e.01

    50

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R. inflow; T. diversion.Discharge: e. estimated.

    Specifi cSite Date Time Di scl1arge conductance Temperature

    (ft3/s) (microml1os per (OC)cm at 25°C)

    T42 7-28-82 1315 eO.75T43 1335 2.06T44 1340 e.02T45 1340 e.02USL12 0750 176.47 1250 24.0

    T46 0705 e.01T47 0745 e.08T48 0750 2.79T50 0800 e.02USL13 0855 177.51 1250 24.0

    T51 0840 e.13T52 0820 1. 58T53 0845 .23USL14 1100 136.08 1270 24.0T54 0915 7.31

    T55 0950 7.65T57 1000 e.05R13 1015 e1.5T59 1025 .15R14 1035 e.25

    R15 1055 3.32USL16 1220 162.04 1240 24.5T60 0705 e.03T61 0715 e1.0T64 0730 e.07

    T65 0740 e.10T67 0740 e.02USL17 1400 157.09 1230 25.0USL17 0815 147.59 1290 24.0T69 0755 e.5

    T71 0755 e.02R17 0800 3.02USL18 1040 154.30 1260 24.0T74 0830 e.10USL19 1150 158.57 1250 24.0

    51

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R. inflow; T. diversion.Discharge: e. estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (oC)cm at 25°C)

    T76 7-28-82 0830 eO.11Tn 0850 3.31USL20 1325 158.41 1280 24.0T78 1005 .99T79 1025 2.37

    R18 1030 .02RIg 1040 .03USL21 1430 143.24 1280 24.0R20 1055 .11T82 1100 e.07

    T83 1110 e.07T84 1125 e.04USL22 1540 150.11 1280 24.0USL23 1650 145.83 1280 25.0USLl 8-25-82 0830 242.60 1340 22.0

    R1 0935 e.3R2 0940 e.1USL2 1030 246.60 1350 22.5R3 0945 e.1Tl 0945 e1.5

    USL3 1240 238.80 1360 22.5T2 0950 .02T3 1000 .08USL4 1410 236.40 1350 23.0R4 1015 .37

    T4 1045 .19T5 1050 .08T6 1425 e.4T7 1435 .53T8 1445 .24

    USL5 1615 242.50 1360 23.0T9 1455 3.89TlO 1500 .72Tl2 1525 .17Tl3 1520 .37

    52

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (oC)cm at 250C)

    Tl4 8-25-82 1540 3.83USL6 1820 234.80 1360 23.0USL6 0815 235.02 1400 21.0Tl5 0655 5.17R7 0805 1. 41

    Tl6 0715 .43TI7 0730 3.46Tl8 0750 1.02USL7 0920 216.81 1330 23.0Tl9 0820 3.32

    T20 0835 .14T21 0850 5.16T22 0905 3.71T23 0915 .09USL8 1015 204.74 1370 22.0

    T24 1110 .05R8 1230 .02T26 1125 2.06R9 1215 .75T27 1135 .49

    T29 1150 3.46T30 1200 .21T31 1305 2.49USL9 1110 188.83 1340 23.0132 1315 e.03

    133 1335 5.84134 1350 3.29135 1410 .22USLlO 1200 175.34 1380 22.0136 1145 4.92

    138 1200 e.02139 1215 e.10USLll 1300 182.80 1400 21.0T40 1230 e.15T41 1245 e.05

    53

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Di scharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    T42 8-25-82 1300 eO.30T43 1320 1.39T44 1330 e.15T45 1345 e.35USL12 0750 172.33

    T47 0730 .15T50 0745 e.20USL13 0855 166.02 1370 22.0T52 0815 4.15T53 0840 e.15

    USL14 1010 161.74 1370 22.0T54 0900 6.79T55 0940 3.22T57 1000 e.05USL15 1130 149.23 1350 22.5

    T59 1020 .51USL16 1240 146.17 1350 22.5T60 0730 .33T61 0745 e.33R16 0810 .16

    T64 0815 .01T66 0820 e.02T6? 0825 e.O?USU7 1405 144.56 1350 22.5USL17 0840 148.92 1390 23.0

    Tll 0845 e.04USU8 0945 136.10 1390 23.0T73 0900 e.05USL19 1050 134.54 1390 23.0T76 0900 e.03

    Tn 0910 .54USL20 1235 128.67 1390 23.0T78 0935 .94USL21 1410 121.56 1390 23.0T83 1020 .84

    54

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    R21 8-25-82 1045 eO.02T84 1050 e.34USL22 1510 119.70 1380 24.0T86 1140 e1.15T89 1120 1.15

    USL23 1600 112.59 1380 24.0USLl 9-24-82 0825 133.72 1360 18.0R1 0850 e.2R2 0855 e.05USL2 1010 133.78 1380 19.0

    T1 0900 e.5R3 0900 e.2USL3 1150 133.98 1340 19.013 0915 2.36USL4 1330 128.13 1360 20.0

    T4 0930 .04T5 0935 e.01T7 1250 .12USL5 1515 134.14 1360 20.0T9 1310 3.18

    T12 1335 1. 60Tl4 1355 1.45USL6 1720 124.23 1360 20.0USL6 0750 123.38 1230 21.5T15 0715 3.19

    R7 0725 e.05T17 0735 .39T18 0745 2.39USL7 0850 115.59 1220 22.0T19 0755 .22

    T21 0805 4.33T22 0815 3.16T23 0825 .14USL8 0940 105.GO 1210 22.5T26 1000 .35

    55

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 250C)

    T27 9-24-82 1005 eO.01T29 1005 .05T30 1015 .23T31 1030 1. 36USL9 1040 107.99 1220 22.0

    T33 1105 2.44T34 1115 .16T35 1125 .24USLlO 1140 96.73 1250 22.0USLll 1235 110.02 1210 21.5

    T40 1145 .18T42 1155 .06T43 1200 e.05T44 1205 e.05T45 1215 5.62

    USLl2 0755 84.34 18.5T47 0725 e.1T49 0730 e2.0T50 0735 e.6USLl3 0850 82.19 1340 18.5

    T52 0735 e.08T53 0750 e.llUSLl4 0940 79.73 1340 18.5T54 0755 7.01T55 0810 e.06

    R12 0820 e.05R13 0825 .01USLl5 1040 73.62 1320 18.5USLl6 1130 75.72 1310 18.5T60 0850 e.06

    T61 0855 e.05T67 0915 e.04USLl7 1300 77.22 1320 18.5USLl7 0920 77 .84 1300 19.0T71 0925 e.04

    56

  • Table 1.--Measurements made along the Utah and Salt Lake Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3js) (micromhos per (OC)cm at 250C)

    USU8 9-24-82 1020 71. 95 1300 19.0USU9 1125 72.40 1300 19.0T77 0945 1. 26USL20 1230 71.98 1300 19.0T81 1025 e.06

    USL21 1315 72.13 1300 19.0T83 1120 .11T84 1125 e1.0T85 1125 .05USL22 1350 71. 21 1310 19.5

    T86 1140 e1.0T88 1225 e.06T89 1210 .61USL23 1435 65.81 1320 19.5

    57

  • Table 2.--Measurements made along the Utah Lake Distributing Canal

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Di scharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 250C)

    ULD1 5-27-82 0840 84.65 1080 16.0ULD2 0950 78.53 1080 16.0ULD3 1145 82.92 1080 17.0T3 1100 2.81T6 1125 2.26

    ULD4 1230 71.85 1080 17.0T7 1140 2.64T8 1150 2.07T9 1210 2.73R1 1200 .15

    ULD5 1320 60.75 1120 17.5T12 1225 2.72T13 1245 3.19ULD6 1415 55.21 1150 18.0T14 1300 2.96

    T15 1310 2.95T16 1320 e.01T17 1325 .10T18 1335 3.30ULD7 1505 43.62

    ULD7 0730 42.88 1070 16.5T19 0820 1.18R3 0830 .09T20 0845 2.57T21 0900 1.18

    ULD8 0820 35.96 1060 16.5T22 0920 e.50T23 0930 2.03ULD9 0900 28.36 1060 16.5T26 1200 3.49

    T27 1215 2.02ULD10 0950 24.77 1060 16.5T29 1230 e.3R9 1225 .33ULD11 1040 22.91 1020 17.0

    58

  • Table 2.--Measurements made along the Utah Lake Distributing Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Disc~arge conductance Temperature

    (ft /s) (micromhos per (OC)cm at 25°C)

    132 5-27-82 1430 3.61ULD12 1135 20.23 1020 17.5T34 1455 4.14ULD13 1250 15.17 1010 18.0ULD1 6-25-82 0745 78.34 1000 20.0

    ULD2 0850 80.49 1000 20.0Tl 0835 .07ULD3 0930 73.68 1020 20.013 0845 e.01T4 0900 1. 93

    T5 0910 .03T6 0930 2.10ULD4 1010 74.89 1110 20.0T8 0945 2.19TlO 1005 3.08

    ULD5 1100 58.66 1060 21. 0Tl1 1155 2.57TI2 1215 2.40ULD6 1205 54.40 1110 19.5TI4 1235 4.51

    TI5 1240 2.88TlS 1300 4.45ULD7 1250 44.56 1080 20.5ULD7 0740 46.51 1080 19.0R3 0730 e.07

    T19 0740 e.03T20 0800 3.36R4 0830 .09T21 0845 2.50ULD8 0825 39.64 1060 19.0

    T22 0855 .01R5 0900 e.03T23 0905 2.56R6 0915 e.4T24 0945 2.43

    59

  • Table 2.--Measurements made along the Utah Lake Distributing Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    T25 6-25-82 1020 2.50ULD9 0900 40.96 1030 19.5T26 1050 4.86R7 1110 e.01R8 1110 e.03

    T27 1115 2.55UL010 1000 26.14 1030 19.5ULD11 1040 21. 29 1040 20.0T30 1250 2.58ULD12 1120 19.23 1030 20.5

    RIO 1320 e.OlT33 1320 e.1T34 1330 4.54UL013 1225 12.66 1040 20.0UL01 7-29- 82 0805 78.60 1090 20.0

    ULD2 0910 82.89 1120 19.0ULD3 1000 73.28 1020 19.5T4 0915 2.21T5 0930 e.05T6 0940 2.89

    ULD4 1050 70.97 1170 17.0T8 0955 e.01T9 1025 2.15TlO 1050 3.87ULD5 1135 58.81 1150 17.5

    Tl2 1110 3.20R2 1125 e.5Tl3 1135 2.88UL06 1220 56.78 1140 18.5Tl4 1150 6.15

    Tl5 1200 1. 98Tl7 1205 e.01Tl8 1210 3.13ULD7 1300 49.24 1050 22.0ULD7 0805 47.65 1070 22.0

    60

  • Table 2.--Measurements made along the Utah Lake Distributing Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    T19 7-29-82 0905 eO.07T20 0920 2.52R4 0930 .33T21 0940 6.43ULD8 0900 39.52 1060 21.0

    T23 1015 2.59T24 1040 4.05T25 1045 5.55ULD9 1015 36.65 1050 21.0T26 1145 4.54

    T27 1135 .40T28 1150 .42ULD10 1115 23.57 1060 21.0ULDll 1340 21.38 1060 21.0130 1315 2.81

    131 1300 e.1ULD12 1420 19.87 1060 22.0134 1440 e.3ULD13 1500 17.06 1060 21.0ULD1 8-26-82 0815 77 .66 1100 20.0

    ULD2 0910 74.53 1100 20.0T2 0840 4.67ULD3 1000 76.04 1100 20.013 0850 .03T4 0900 3.37

    T5 0930 .39T6 1005 2.19ULD4 1040 68.69 1090 20.5T8 1020 .03T9 1030 1. 74

    TlO 1045 3.49ULD5 1120 62.25 1110 19.5Tl1 1100 4.10T12 1120 3.15ULD6 1200 54.38 1120 19.5

    61

  • Table 2.--~1easurements made along the Utah Lake Distributing Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Di scharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    T14 8-26-32 1135 2.73T16 1145 .45T18 1155 4.02ULD7 1240 48.83 1160 18.5ULD7 0845 45.24 1130 21.0

    T20 0900 2.99T21 0935 1.52UL08 0935 37.14 1130 21.0T22 0940 e1. 5T23 0950 2.56

    T24 1300 2.83T25 1310 e2.8ULD9 1025 37.54 1130 21.0T26 1320 10.01T27 1350 3.90

    T28 1400 2.08UL010 1110 20.10 1150 21.0ULDll 1150 19.16 1150 21. 0130 1210 e.2131 1215 2.74

    ULD12 1300 17.19 1150 21. 5134 1325 2.92UL013 1350 12.49 1150 21.5

    62

  • Table 3.--Measurements made along the Provo Reservoir Canal

    Site: T. diversion.Discharge: e. estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (oC)cm at 250 C)

    PR1 5-27-82 0820 101. 99 370 10.5Tl 0900 1. 83PR2 0950 99.41 370 10.5PR3 1050 98.79 360 11.0PR4 1215 99.07 360 12.0

    T3 0930 4.38PR5 1335 101. 64 360T4 0955 4.83T5 1010 1.7T6 1030 2.94

    T7 1040 2.34PR6 1435 82.34 360 14.0T8 1405 2.22PR7 1540 77.57 360 14.0T9 1425 3.02

    TlO 1445 .87Tl1 1530 .77Tl2 1505 4.22Tl3 1520 3.56PR8 1650 61.05 360 15.0

    PR8 0730 65.81 350 12.5Tl4 0710 1.56Tl5 0730 .75T16 0755 3.34PR9 0820 57.29 350 12.5

    TI7 1020 2.94TI8 1045 5.02TIg 1110 3.88PR10 0930 38.46 350 13.5T20 1125 5.50

    PRll 1015 30.69 350 13.0PR12 1055 30.09 350 14.0T21 1130 1.67T23 1140 4.80T24 1320 e3.8

    63

  • Table 3.--Measurements made along the Provo Reservoir Canal--Continued

    Site: T. diversion.Discharge: e. estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (oC)cm at 250C)

    PR13 5-27-82 1140 19.32 350 14.5T25 1330 e.01T26 1345 2.00T27 1410 2.76PR14 1220 14.52 350 15.0

    T29 1335 e.1T30 1420 7.36T31 1300 7.73 350 17.0PR15 1245 0PR16 1320 0

    PR1 6-25-82 0905 108.61 370 11.0Tl 0800 2.17PR2 1025 116.64 370 12.0PR3 1120 100.93 370 12.5PR4 1230 100.53 370 12.5

    13 1025 4.59PR5 1400 100.28 370 12.5T4 1045 4.55T5 1050 1.7T6 1100 2.85

    T7 1115 3.42PR6 1450 83.56 370 13.0T8 1130 2.77PR7 1550 78.91 370 13.0T9 1335 3.15

    TlO 1345 3.53Tl1 1350 .85Tl2 1400 4.19Tl3 1415 3.36PR8 1715 62.49 370 14.0

    PR8 0750 63.75 370 12.5Tl4 0740 3.23Tl5 0820 3.27Tl6 0835 3.98PR9 0835 55.21 370 13.0

    64

  • Table 3.--Measurements made along the Provo Reservoir Canal--Continued

    Site: T, diversion.Discharge: e, estimated.

    Speci fi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 250 C)

    TI7 6-25-82 0910 3.57TI8 0920 e3.5TI9 0935 2.62PR10 0920 37.41 370 13.5T20 0940 5.52

    PRll 1010 31. 37 370 13.5PR12 1100 31. 97 370 14.5T21 0950 e1.7T23 1030 6.04T24 1050 2.56

    PR13 1130 19.88 370 14.5T25 1100 e.01T26 1120 2.02T27 1135 e.lPR14 1210 16.05 360 15.0

    T28 1240 e.07T29 1245 e.07PR15 1240 14.23 360 15.0131 1300 6.12PR16 1315 6.53 360 15.0

    PR1 7-29- 82 0750 109.34 320 13.0PR2 0900 105.67 320 13.5PR3 0940 104.22 320 13.5T2 0820 .02PR4 1115 107.65 310 13.5

    13 1305 5.41PR5 1240 105.85 14.0T4 1315 4.26T5 1325 1.7T6 1330 4.29

    T7 1350 2.56PR6 1320 87.95 14.5T8 1410 3.75PR7 1420 79.34 310 15.0T9 1420 2.26

    65

  • Table 3.--Measurements made along the Provo Reservoir Canal--Continued

    Site: T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 250C)

    TlO 7-29-82 1435 2.31Tl2 1505 5.51Tl3 1520 4.60PR8 1530 64.33 300 16.0PR8 0805 60.67 250 13.5

    Tl4 0720 3.81Tl5 0740 3.28TI6 0750 1. 79PR9 0900 56.45 310 13.5TI7 0810 1. 93

    Tl8 0835 5.84PRI0 0940 37.75 310 14.0T20 1105 e5.5PR11 1020 30.04 310 14.0PR12 1100 32.75 310 14.5

    T21 1120 e1.7T22 1310 5.35T24 1340 1. 94PR13 1135 19.83 320 14.5T26 1355 1.81

    T27 1410 1.80PR14 1215 14.01 310 15.5T30 1240 e.02PR15 1300 12.05 320 16.5T31 1320 7.30

    PR16 1345 7.32 320 17.5PR1 8-26-82 0855 79.63 300 13.0PR2 1005 74.01 300 13.5PR3 1045 72.58 310 14.0T2 0755 e.01

    PR4 1205 67.43 300 14.5T3 1240 6.09PR5 1300 69.57 300 15.0T4 1300 3.26T5 1310 1.7

    66

  • Table 3.--Measurements made along the Provo Reservoir Canal--Continued

    Site: T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromlJos per (°C)cm at 25°C)

    T6 8-26-82 1315 1.84T7 1325 1. 84PR6 1350 63.06 300 15.0T8 1340 1. 53PR7 1445 65.00 300 16.0

    T9 1355 2.18TlO 1405 2.84Tl1 1420 .85Tl2 1425 2.47Tl3 1435 3.05

    PR8 1540 47.17 320 21.0PR8 0800 45.36 290 14.0Tl4 0800 2.29Tl5 0825 1. 59Tl6 0845 2.70

    PR9 0845 36.10 290 14.0Tl7 1020 1. 93Tl8 1040 1. 96PRI0 0920 26.25 290 14.0T20 1050 7.86

    PRll 1015 19.22 290 14.5PR12 1105 20.43 290 15.0T23 1130 4.60T24 1145 2.56PR13 1145 12.13 290 15.5

    T26 1155 1.65T27 1210 3.61PR14 1215 7.53 290 17.0T28 1240 2.67T29 1250 e.01

    131 1310 5.09 290 17.5PR15 1310 0PR16 1340 0

    67

  • Table 4.--Measurements made along the Draper Irrigation Canal

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    011 6-22-83 0755 18.42 930 19.0Tl 0915 5.32012 0830 13.41 930 19.0T2 0950 e.0113 1000 3.27

    013 0910 10.23 930 19.0014 0955 9.05 940 19.5T5 1110 e.1T6 1120 2.8417 1130 e.05

    T8 1140 .05T9 1150 2.19TlO 1210 .07Tl1 1230 2.62015 1035 1. 99 990 19.0

    Tl2 1300 3.86Tl3 1320 e.05Tl4 1330 e.01Tl5 1445 e.05Rl 1500 6.39

    016 1120 3.80 170 12.5DI6A 0850 21.50 130 9.0017 0920 23.22 130 9.0018 1005 21.45 140 10.0019 1045 21.05 140 10.5

    Tl8 0940 7.53Tl9 1005 1. 98T20 1030 6.700110 1125 6.45 150 12.0011 6-28-83 0820 27.43 950 19.5

    Tl 0830 2.26012 0850 22.50 950 20.0T3 0900 5.19013 0940 18.00 990 20.0014 1000 16.42 950 21. 0

    68

  • Tab1e 4. --t1easurements made along tile Draoer Irrigation Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Di sclla rge conductance Temperature

    (ft3js) (micromhos per (OC)cm at 25°C)

    T4 6-28-83 1000 5.12T8 1020 5.01T9 1030 1. 94TlO 1100 0.34015 1050 6.80 980 21.0

    Tl3 1130 3.98Tl5 1200 3.07R1 1210 3.36R2 1230 .78R3 1230 e2.0

    016 1130 2.63 260 12.0OI6A 0820 26.88 160 9.0017 0900 24.14 170 10.0018 0950 22.65 180 10.0019 1030 23.41 170 11. 0

    Tl8 0915 6.48Tl9 0950 3.55R6 1040 .02DIIO 1100 12.23 170 11. 0OIl 7-21-83 0720 27.01 1000 22.5

    Tl 0815 3.75012 0810 21.12 1010 22.5T2 0835 3.02T3 0855 2.32013 0850 15.52 1030 22.0

    014 0940 14.72 1020 23.0T4 0930 e.02T6 0940 e.01T8 0950 e.01Tl1 1005 4.19

    015 1020 10.64 1050 22.0Tl3 1035 .05Tl4 1040 e.01Tl5 1100 3.29R3 1110 e.02

    69

  • Table 4.--Measurements made along the Draper Irrigation Canal--Continued

    Site: R. inflow; T. diversion.Discharge: e. estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (oC)cm at 250C)

    R4 7-21-83 1120 0.14016 1100 10.37 1010 22.0DI6A 0810 19.35 580 14.0TI6 0830 2.93TI7 0815 1.29

    017 0850 16.10 590 16.0R5 0900 e.01018 0930 14.52 610 16.0019 1010 15.2G 620 16.5TI8 0930 6.27

    TI9 1000 3.2GT20 1030 4.75T21 1045 e.1DIlO 1050 1. 59 590 18.0

    70

  • Table 5.--~easurements made along the East Jordan Canal

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    EJ1 6-15-83 0310 221.16 1040 18.0EJ2 0950 212.25 1040 18.0EJ3 1120 218.46 1040 18.0EJ4 1310 221. 74' 1050 18.5EJ5 0800 149.61 1060 18.0

    TI 0740 5.81T2 0805 .11EJ6 0900 146.58 950 18.5T3 0820 .14T4 0835 .04

    EJ7 0950 145.03 970 18.5EJ8 '1040 144.51 930 19.0EJ9 1120 137.07 940 19.0TIl 0925 e.03TI2 0945 e1.0

    TI3 1150 e.1TI4 1130 e3.5EJ10 1240 124.53 990 19.0EJ10 0830 128.73 1050 17.5TI5 1110 3.52

    R3 1050 3.32R4 1040 e.06R5 1040 .14TI6 1010 4.11R6 1000 e.07

    EJll 0950 107.74 1030 18.0TI8 0725 1.44R8 0820 .46R9 0825 .13T20 0835 3.90

    RIO 0840 .05EJ12 1110 106.33 1010 19.0R12 0850 1.52T23 1020 11.72T25 1100 7.48

    71

  • Table 5.--Measurements made along the East Jordan Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3js) (micromllos per (DC)cm at 250C)

    EJ13 6-15-83 1250 97.99 970 18.5T27 1130 3.32EJ14 1410 93.91 950 19.0T29 1225 4.05EJ15 1540 86.38 940 19.5

    EJ15 0745 101.48 920 16.0R14 1240 e.5T32 1250 2.94R15 1325 .02EJ16 0920 93.67 920 16.5

    T34 0310 e4.0135 0835 .13T36 0855 .97EJ17 1050 79.71 830 16.0137 0915 1. 75

    T38 0950 3.59T40 1050 .22T41 1100 1.44EJ18 1210 71. 91 780 16.0T43 1150 1.26

    T44 1255 8.86T45 1350 20.45T46 1420 3.55EJ19 1330 57.64 800 16.5EJ1 6-29-83 0840 219.53 1040 20.0

    EJ2 0950 212.11 1040 20.0EJ3 1150 220.13 1060 20.5EJ4 1330 224.80 1040 21. 5EJ5 0800 182.58 970 20.5Tl 0800 2.33

    T2 0825 .10RO 0830 e.06EJ6 0910 167.01 950 21.013 0840 1.13T4 0845 1. 73

    72

  • Table 5.--Measurements made along the East Jordan Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 250 C)

    EJ7 6-29-83 1015 154.95 960 21. 0T5 0855 e.04EJ8 1100 152.09 980 20.5T7 0920 2.30EJ9 1200 148.42 970 21.0

    T9 0950 2.65T11 1000 e2.6T12 1025 1.6R1 1025 .10TI3 1045 e.06

    TI4 1050 1. 64EJ10 1250 143.40 930 21. 0EJ10 0345 147.86 1000 20.0R2 1110 e.13T15 1150 2.46

    T16 1120 1.68EJll 0950 121. 90 980 20.0TI7 0710 e4.0TI8 0720 1. 58T19 0755 3.03

    R8 0840 e.01R9 0345 .89EJ12 1055 124.90 980 20.0T23 0925 13.55T24 1030 4.15

    T25 0920 .06R12 0920 e1.0EJ13 1210 102.72 960 20.5T27 1000 2.69T28 1010 e.03

    EJ14 1310 93.86 970 20.0T29 1055 2.99no 1105 e.03EJ15 1420 83.89 970 21.0EJ15 0840 77.34 940 18.0

    73

  • Table 5.--Measurements made along the East Jordan Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 250C)

    T31 6-29-83 1120 5.37T32 1150 2.91133 1210 e2.5EJ16 0930 65.38 940 18.5T34 0740 e.1

    136 0800 5.82EJ17 10lD 62.38 910 18.0137 0830 7.32138 0900 2.06R19 0930 4.74

    T40 10lD .11T41 1020 1.48R22 1030 e.01EJ1B 1050 59.55 820 17.5R23 1045 e.15

    T42 1045 e.1T43 1105 1. 39T44 1125 15.42T45 1200 11. 93T46 1315 6.08

    EJ19 1150 49.61 810 17.5EJ19A 1510 8.93R24 1350 .27R25 1405 .17EJ20 1540 10.45 730 17.5

    T47 1435 2.63EJ21 1605 8.04 680 18.0EJ1 7-20-83 0905 212.81 1070 23.0EJ2 1030 210.65 1070 23.0EJ3 1150 214.69 1060 23.5

    EJ4 1320 221. 52 1060 24.0EJ5 0810 157.37 1030 23.0TO 0940 3.72T1 10lD 3.42T2 1030 .97

    74

  • Table 5.--Measurements made along the East Jordan Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discl1arge conductance Temperature

    (ft3/s) (micromhos per (OC)cm at 25°C)

    RO 7-20-83 1200 3.74EJ6 0930 151.62 1030 23.0T3 1100 .38EJ7 1040 151.59 1000 24.0EJ8 1130 148.41 1010 24.5

    T6 1150 1. 56T7 1210 6.80T3 1230 3.81EJ9 1220 123.47 1010 24.5T9 1305 5.17

    TlO 1330 e.16Tl1 1330 e.14Tl2 1430 5.93Tl4 1500 e2.0EJ10 1310 114.30 1000 24.5

    EJ10 0940 109.59 1090 23.0Tl5 1645 5.60Tl6 1540 4.93EJll 1035 93.63 1060 23.0Tl7 0740 4.2

    Tl8 0750 .53R9 0815 .02RIO 0825 .03EJ12 1150 86.63 1080 23.5T21 0830 e.2

    T22 0330 e.2T23 0845 13.87T24 0940 4.61T25 0955 8.27T26 1020 2.28

    EJ13 1250 64.46 1080 23.5T27 1030 3.89T28 1040 e1.0EJ14 1340 59.14 1060 24.0T29 1050 6.47

    75

  • Table 5.--Measurements made along the East Jordan Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (oC)cm at 250C)

    EJ15 7-20-83 1425 46.76 1070 24.0EJ15 0820 54.10 980 21. 5131 1120 4.72T32 1140 3.16R15 1150 e.02

    133 0800 9.60EJ16 0945 35.84 990 22.5134 0815 e.02T36 0835 5.28EJ17 1110 38.63 900 21.0

    137 0855 4.05138 0915 .11R18 0935 e.5R19 0950 3.33139 0955 .04

    R20 1010 .05R21 1010 .15T40 1020 .11T41 1030 3.73EJ18 1220 33.76 840 22.0

    T43 1120 .87T44 1400 12.59T45 1430 13.34T46 1450 5.11EJ19 1345 8.00 760 22.5

    EJ19A 1500 5.44 750 22.0R24 1515 .84R25 1520 .01EJ20 1610 6.'34 670 21. 5T47 1540 1. 33

    R26 1550 e.02EJ21 1730 4.43 700 22.5EJ1 8-24-83 0925 185.21 1090 21.0EJ2 1055 184.41 1100 21. 5

    76

  • Table 5.--Measurements made along the East Jordan Canal--Conti~ued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Specifi cSite Date Time Discharge conductance Temperature

    (ft3js) (micromhos per (oC)cm at 250 C)

    EJ3 8-24-83 1220 191. 24 1080 22.0EJ4 1350 194.92 1070 22.5EJ5 0840 132.43 1050 22.0T1 0820 .55T2 0835 .22

    EJ6 0925 121. 69 980 22.5T3 0840 .88EJ7 0910 128.47 1040 22.5EJ8 1055 123.03 1020 23.0EJ9 1145 125.60 1020 23.0

    R1 0940 .02T14 1025 e4.5EJ10 1225 117.81 1030 23.0EJ10 0820 117.56 1060 21. 0T16 1005 .46

    R7 0950 .60EJ11 0930 126.08 1070 21.0T17 0805 e4.0T18 0820 .18RIO 0840 .02

    EJ12 1050 105.64 1070 22.0T23 0900 9.67T25 0920 8.97EJ13 1220 98.75 1050 23.0EJ14 1410 94.36 1050 23.0

    T29 1000 4.55EJ15 1510 95.41 1060 24.0EJ15 0930 85.85 1070 21. 0T31 1015 5.89T32 1050 2.58

    RI5 1115 e.01T33 1120 e.3EJ16 1025 79.30 1060 21. 5T34 0900 e.07RI6 0900 e.13

    77

  • Table 5.--Measurements made along the East Jordan Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Discharge conductance Temperature

    (ft3js) (micromhos per (°C)cm at 25°C)

    R17 8-24-83 0900 eO.26EJ17 1120 79.68 1080 20.5T37 0930 1. 33EJ18 1220 82.89 1030 20.0T43 1020 2.98

    R23 1040 .52T44 1200 .10T45 1215 12.74T46 1245 5.22EJ19 1345 65.77 1040 22.0

    EJ19A 1430 18.78 1040 22.0EJ20 1500 19.04 1040 22.0T47 1500 2.16EJ21 1550 14.70 960 21. 0

    78

  • Table 6.--t,1easurements made along the Jordan and Salt Lake CityCana 1

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    Spec ifi cSite Date Time Discharge conductance Temperature

    (ft3/s) (micromhos per (OC)em at 250C)

    JSLl 9-16-83 0805 26.00 1110 19.0Tl 0830 17.76JSL2 0845 5.63 1110 19.0R1 0900 e

  • Table 6.--Measurements made along the Jordan and Salt Lake City Canal--Continued

    Site: R, inflow; T, diversion.Discharge: e, estimated.

    SpecificSite Date Time Di sc~arge conductance Temperature

    (ft /s) (micromhos per (OC)cm at 25°C)

    JSL5 9-19-83 1035 4.60 1210 15.0R3 1100 4.79R4 1105 e.1JSLG 1130 9.49 1170 15.0R6 1145 .18

    R7 1150 e.5JSL7 1205 10.54 1220 15.0JSL7 0805 8.66 1060 15.0R8 0820 3.00R9 0810 4.85

    RIO 0835 3.01JSL8 0835 16.92 1060 17.0JSL9 0900 19.02 1060 17.0T2 0915 9.11JSLlO 0925 8.87 1120 17.0

    JSLl1 1010 9.23 1180 16.5JSLl2 1035 11. 25 1080 17.0R14 1010 .53R15 1040 e.06R17 1045 e.5

    JSLl3 1100 14.12 1080 17.0JSLl4 1130 13.14 1060 17.0JSLl 9-23-83 0820 28.52 1110 16.0T1 0840 21.66JSL2 0900 6.01 1110 16.0

    JSL3 0930 5.56 1110 16.0R2 0945 e.02JSL4 1000 5.31 1060 18.0JSL5 1035 7.08 1210 15.0R3 1050 e.05

    R5 1055 e.02JSL6 1120 6.87 1290 16.0JSL7 1200 7.30 1310 16.0JSL7 0910 7.80 1220 14.5R8 0900 .54

    80

  • 81

  • Table 7.--Gains or losses determined fran seepage measuranents for reaches ofthe canals

    Reach Length(ft)

    Graphic averages(from figs. 13-18)

    Gain (+) or Loss (-)

    ft3/s ft3/s/mi

    utah and sal t Lake canal

    USLl-USI3 10,aiO 0USL3-USL6 14,620 -t6 .0USL6-USL7 3,680 0USL7-USL12 28,690 -7.0USL12-USL15 10, aiO -1.5USLl5-USL20 18,790 -4.0USL20-USL23 15,610 -3.0

    Total. · . . . • 103,110 -9.5Utah Lake Distributing canal

    ULDI-ULD3 12,970 -5.0ULD3-ULD5 14,950 -4.0ULD5-ULD7 11,190 0ULD7-ULD8 4,600 -1.5ULD&-ULDI0 11,000 +1.5ULDI0-ULD13 13,400 -2.0

    Total. · . . . . 68,270 -11.0PrOlJo Rese rvoi r canal

    PRl-Pro 9,950 -5.0PR3-PR6 13,260 0PR6-PR8 11,450 -4.5PR&-PRlO 11,420 -6.0PRlO-PRl6 26,600 -5.0

    Total. · . . . · 72,600 -20.5Drap:!r Irrigation canal

    DIl-DI2 6,360 -1.5DI2-DI6 27,460 0DI6A-DIlO 20,500 0

    Total. · . . . · 54,320 -1.5

    o+2.2o

    -1.3-0.7-1.1-1.0

    -2.0-1.4o

    -1.7-Hl.7-0.8

    -2.7o

    -2.1-2.8-1.0

    -1.2oo

    82

  • Table 7.--Gains or losses determined fran seepage measuranents for reaches ofthe canals--CDntinued

    Reach Length(ft)

    Graphic averages(fran figs. 13-18)

    Gain (+) or Loss (-)

    ElI-EJ2EJ2-EJ4El5-ElI0EJI0-EJllEll1-El15EJl5-EJ19Ell9-El21

    Total.

    East Jordan canal

    5,5208,260

    27,9105,560

    24,34025,04010,100

    106,730

    ft3/s

    -5.0+11.0-13 .0-5.0o

    +8.0o

    -4.0

    ft3/s/rni

    -4.8+7.0-2.5-4.7o

    +1.7o

    Jordan and salt Lake City canal

    JSLI-JSL2 6,260 -2.5JSL2-JSL3 6,660 -0.5JSL3-JSL7 23,260 +1.5JSL7-JSL8 6,810 +1.5JSL8-JSLIO 11,360 i{) .5JSLIo-JSL14 22,560 +5.5

    Total. . . . . . 76,910 f6 .0

    -2.1-0.4i{) .3+1.2i{) .2+1.3

    83

  • IUBLICATIONS OF '!HE UTAH DEPARTMENT OF NA'IURAL RESOURCES,DIVISION OF WA'l'ER RIGHTS

    (*)-Dut of Print

    TEQINICAL PUBLICATIONS

    *No.1. underground leakage fran artesian wells in the Flavell area, nearFillmore, Utah, by Penn Livingston and G. B. Maxey, u.s. Geo-logical Survey, 1944.

    No.2. The Ogden Valley artesian reservoir, Werer County, Utah, by He E.'!hanas, u.S. Geological Survey, 1945.

    *No.3. Ground water in Pavant Valley, Millard County, utah, by P. E.Dennis, G. B. Maxey and H. E. Thomas, U.S. Geological Survey,1946.

    *No.4. Ground water in Tooele Valley. Tooele County, utah, by H. E.Thomas, u.S. Geological Survey, in Utah State Engineer 25thBiennial Re:r:x:>rt, p. 91-238, pIs. 1-6,1946.

    *No.5. Ground water in the East Shore area, Utah: Part I, BountifulDistrict, Davis County, Utah, by H. E. ThomasandW. B. Nelson,U.S. Geological Survey, in utah State Engineer 26th BiennialRe:r:x:>rt, p. 53-206, pIs. 1-2, 1948.

    *No.6. Ground water in the Escalante Valley, Beaver, Iron, and WashingtonCounties, Utah, by P. F. Fix, W. B. Nelson, B. E. Lofgren, and R.G. Butler, u.S. Geological Survey, in Utah State Engineer 27thBiennial Re:r:x:>rt, p. 107-210, pIs. 1-10, 1950.

    No.7. Status of developnent of selected ground-water basins in Utah, byH. E. Thanas, W. B. Nelson, B. E. Lofgren, and R. G. Butler, u.S.Geological Survey, 1952.

    *No. 8. Conspumptive use of water and irrigation requirements of crops inUtah, by C. O. Roskelly and W. D. Criddle, Utah State Engineer'sOffice, 1952.

    No.8. (Revised) Consumptive use and water requirements for Utah, by W.D. Criddle, Karl Harris, and L. S. Willardson, Utah StateEngineer's Office, 1962.

    No.9. Progress report on selected ground water basins in Utah, by H. A.Waite, W. B. Nelson, and others, u.S. Geological Survey, 1954.

    *No. 10. A compilation of chemical quality data for ground and surfacewaters in utah, by J. G. Connor, C. G. Mitchell, and others, u.S.Geological Survey, 1958.

    84

  • *No. 11. Ground water in northern utah Valley f utah: A progress report forthe period 1948-63, by R. M. Cordova and Seymour Subitzky, u.s.Geological Survey, 1965.

    *No. 12. Reevaluation of the ground-water resources of Tooele Valley, utah,by J.S. Gates, u.S. Geological Survey, 1965.

    *No. 13. Ground-water resources of selected resins in southwestern utah, l¥G. W. sandterg, u. S. Geological Survey, 1966.

    *No. 14. Water-resources appraisal of the Snake Valley area, Utah andNevada, by J. W. Hood and F. E. Rush, U.S. Geological Survey,1966.

    *No. 15. Water from tedrock in the Coloraoo Plateau of utah, l¥ R. D.Feltis, u.S. Geological Survey, 1966.

    *No. 16. Ground-water ronditions in cedar Valley, Utah County, Utah, l::¥ R.D. Feltis, u.S. Geological Survey, 1967.

    *No. 17 • Ground-water resources of northern Juab Valley, utah" l¥ L. J.Bjorklund, U. S. Geological Survey, 1968.

    No. 18. Hydrologic reconnaisssance of Skull Valley, Tooele County, utah byJ. W. Hood and K. M. Waddell, u. S. Geological Survey, 1968.

    No. 19. An appraisal of the quality of surface water in the Sevier Lakebasin, Utah, by D. C. Hahl and J. C. Mundorff, u.S. GeologicalSurvey, 196 8.

    No. 20. Extensions of streamflCM records in utah, l¥ J. K. Reid, L. E.carreon, and G. E. Pyp:!r, u.S. Geological Survey, 1969.

    No. 21. Sunrnary of rnaximun discharges in utah streams, l¥ G. L. Whitaker,u.S. Geological Survey, 1969.

    No. 22. Reronnaissance of the ground-water resources of the \.lI?p:!r FranontRiver valley, Wayne County, utah, by L. J. Bjorklund, u. S.Geological Survey, 1969.

    No. 23. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah, l¥J. W. Hood, Don Price, and K. M. Waddell, U.S. Geological Survey,1969.

    No. 24. Hydrologic reconnaissance of Deep Creek valley, Tooele and JuabCounties, Utah, and Elko and White Pine Counties, Nevada, by J. W.Hood and K. M. Waddell, u.s. Geological Survey, 1969.

    No. 25. Hydrologic reronnaissance of Curle.w Valley, utah and Idaho, by E.L. BoIke and Don Price, u.s. Geological Survey, 1969.

    85

  • No. 26. Hydrologic reconnaissance of the Sink Valley area, Tooele and BoxElder Counties, Utah, by Don Price and E. L. BoIke, U.S.Geological Survey, 1970.

    No. 27. water resources of the Heber-Kamas-Park City area, north-centralUtah, by C. H. Baker, Jr., U.S. Geological Survey, 1970.

    No. 28. Ground-water oonditions in southern utah Valley and Goshen Valley,Utah, by R. M. Cordova, u.S. Geological Survey, 1970.

    No. 29. Hydrologic reoonnaissance of Grouse Creek valley, Box ElderCounty, Utah, by J. W. Hood and D:m Price, u.S. Geological Survey,1970.

    No. 30. Hydrologic reconnaissance of the Park Valley area, Box ElderCounty, Utah, by J. W. Hood, u.S. Geological Survey, 1971.

    No. 31. water resources of Salt Lake County, Utah, by A. G. Hely, R. W.MQoler, and C. A. Harr, u.S. Geological Survey, 1971.

    No. 32. Geology and water resources of the Sp:mish Valley area, Grand andsan Juan Counties, Utah, by C. T. SlI\lsion, u.S. Geological Survey,1971.

    No. 33. Hydrologic reconnaissance of Hansel Valley and northern RozelFlat, Box Elder County, Utah, by J. W. Hood, U.S. GeologicalSurvey, 1971.

    No. 34. SlIllIIlary of water resources of Salt Lake County, Utah, by A. G.Hely, R. W. MQoler, and C. A. Harr, U.S. Geological Survey, 1971.

    No. 35. Ground-water conditions in the East Shore area, Box Elder, Davis,and Weber Counties, Utah, 1960-69, by E. L. BoIke and K. M.Waddell, u.S. Geological Survey, 1972.

    No. 36. Ground-water resources of cache Valley, Utah and Idaho, by L. J.Bjorklund and L. J. McGreevy, U.S. Geological Survey, 1971.

    No. 37. Hydrologic reconnaissance of the Bl~ Creek Valley area, Box ElderCounty, Utah, by E. L. BoIke and Don Price, u.S. GeologicalSurvey, 1972.

    No. 38. Hydrologic reconnaissance of the Pranontory Mountains area, BoxElder County, Utah, by J. W. Hood, u.S. Geological Survey, 1972.

    No. 39. Reconnaissance of chanical quality of surface water and fluvialsediment in the Price River Basin, Utah, by J. C. Mundorff, u.S.Geological Survey, 1972.

    No. 40. Ground-water oonditions in the central Virgin River basin, Utah,by R. M. Cordova, G. W. sandberg, and Wilson McCbnkie, U.S. Geo-logical Survey, 1972.

    86

  • No. 41. Hydrologic reconnaissan~ of Pilot Valley, utah and N€'ITada, by J.C. Stephens and J. W. Hood, U.S. Geological Survey, 1973.

    No. 42. Hydrologic reconniassance of the northern Great Salt Lake Desertand surrrrnary hydrologic reoonnaissance of northvestern Utah, by J.C. Stephens, U.S. Geological Survey, 1973.

    No. 43. Water resources of the Milford area, utah, with emIbasis on groundwater, by R. W. Mower and R. M. Cordova, U.S. Geological Survey,1974.

    No. 44. Ground-water resources of the lower Bear River drainage resin, BoxElder County, utah, by L. J. Bjorklund and L. J. McGreevy, U.S.Geological Survey, 1974.

    No. 45. Water resources of the Curlew Valley drainage resin, utah andIdaho, by C. H. Baker, Jr., u.S. Geological Survey, 1974.

    No. 46. Water-quality reconnaissan~ of surface infla.v to Utah Lake, by J.C. Mundorff, u.S. Geological Survey, 1974.

    No. 47. Hydrologic reconnaissance of the Wah Wah Valley drainage resin,Millard and Beaver Counties, Utah, by J. C. stephens, U.S.Geological Survey, 1974.

    No. 48. Estimating mean streamfla.v in the Duchesne River resin, Utah, byR. W. Cruff, u.S. Geological Survey, 1974.

    No. 49. Hydrologic reconnaissance of the southern Uinta Basin, utah andColorado, by Don Price and L. L. Miller, U.S. Geological Survey,1975.

    No. 50. Seerage study of the Rocky Point canal and the Grey Mountain-Pleasant Valley canal systems, Duchesne County, Utah, by R. W.Cruff and J. W. Hood, U.S. Geological Survey, 1976.

    No. 51. Hydrologic reoonnaissance of the Pine Valley drainage resin,Millard, Beaver, and Iron Counties, utah, by J. C. Stephens, u.S.Geo