Section1-s13

Embed Size (px)

Citation preview

  • 8/11/2019 Section1-s13

    1/38

    1

    1. Some Introductory Concepts

    1.1 Definition of Compressibility

    constant all substances are compressible (especially gases)

    if constant incompressible flow (Bernoullis eq. holds)

  • 8/11/2019 Section1-s13

    2/38

    2

    if pressure is increased volume will change (decrease)

    compressibility

    dp

    d

    1

    (1.1)

    ( specific volume)

    usually temperature (T) increases, too

    assume isothermal process: (T = constant)

    TT

    p

    1

    (1.2)

  • 8/11/2019 Section1-s13

    3/38

    3

    assume isentropic process (adiabatic + reversible):

    ss

    p

    1

    (1.3)

    liquids have low compressibility:

    N

    m105

    210

    T at 1 atm for water

    gases have higher compressibility

    N

    m10

    25

    T at 1 atm for air

  • 8/11/2019 Section1-s13

    4/38

    4

    use

    dpd11

    (1.4)

    dpd (1.5)

    for low velocities d)3.0M( small 0

    constantflowibleincompress

    for higher velocities d)3.0M( is larger

    compressible )ct(

  • 8/11/2019 Section1-s13

    5/38

    5

    1.2

    Flow Regimes

    (Incompressible if M < 0.3)

    a

    u

    M

    soundofspeed

    magnitudevelocity

    NumberMach

  • 8/11/2019 Section1-s13

    6/38

    6

    Flow Regimes

  • 8/11/2019 Section1-s13

    7/38

    7

    Flow Regimes

  • 8/11/2019 Section1-s13

    8/38

    8

    Flow Regimes

  • 8/11/2019 Section1-s13

    9/38

    9

    Why are reentry vehicles blunt?

  • 8/11/2019 Section1-s13

    10/38

    10

    Knudsen number:

    nk (1.6)

    mean free path of a gas molecule

    characteristic body dimension

    if 01.0kn continuous flow

    1kn rarefied gas (e.g. at 300,000 ft: 1ft1ft, )

    10kn free molecular flow

  • 8/11/2019 Section1-s13

    11/38

    11

    1.3

    Brief Review of Thermodynamics

    p RT (1.7)

    R= specific gas constantk.kg

    J287 =1716 ft lb/(slug R)

    Or p (1.8)

    specific volume =

    this is accurate ( %1 error) for low pressures )atm1(

    moderate temperatures )k273(

  • 8/11/2019 Section1-s13

    12/38

    12

    For high pressures and cold temperatures molecules are more

    closely packed together: Van der Wads equation

    RT)bv(v

    ap

    2

    (1.9)

    a, b are constants depending on the type of gas

    internal energy: )v,T(ee (1.10)

    enthalpy: pve)p,T(hh (1.11)

  • 8/11/2019 Section1-s13

    13/38

    13

    thermally perfect gas:

    dTcdhdT,cde pv (1.12)

    for vp c,c constant

    calorically perfect gas

    Tce v where:v

    vT

    ec

    (1.13)

    Tch p where:p

    pT

    hc

    (1.14)

  • 8/11/2019 Section1-s13

    14/38

    14

    v

    pvp

    c

    cRcc (1.15)

    n+2 =

    n = 1.4 for diatomic gases

    = 1.67 for triatomic gases

    pp

    c

    c

    c

    R11

    c

    R1

    p

    v

    pc (1.16)

    vc (1.17)

  • 8/11/2019 Section1-s13

    15/38

    15

    First Law of Thermodynamics:

    system (fixed mass)

    energyinchangeewq (1.18)

    q heat added, w work done, e change in energy

  • 8/11/2019 Section1-s13

    16/38

    16

    process: no heat added or taken away

    process: no dissipative phenomena occur

    process: adiabatic + reversible

    for a reversible process

    pdvw (1.19)

    incremental change of volume due to boundary displacement

    pdvq (1.20)

    (alternative form of 1stlaw)

  • 8/11/2019 Section1-s13

    17/38

    17

    Examples of Reversible processes

  • 8/11/2019 Section1-s13

    18/38

    18

    Examples of irreversible processes

  • 8/11/2019 Section1-s13

    19/38

    19

    Entropy and second law

    Entropy is

    ds (1.21)

    s = entropy, revq amount of heat added reversibly

    q = amount of heat

    T = system temperature

    irrevdsT

    qds

    (1.22)

    0dsirrev (1.23)

    (if 0dsirrev reversible process)

  • 8/11/2019 Section1-s13

    20/38

    20

    2ndlaw:

    Tqds (1.24)

    for an adiabatic process:

    0ds (1.25)

    First law: you cannot

    Second law: you always

  • 8/11/2019 Section1-s13

    21/38

    21

    Calculation of entropy:

    depdTdsTdsq rev

    (using 1.20)

    pddeTds (1.26)

    use enthalpy peh

    dppddedh

    dpdhTds (1.27)

    1.26 and 1.27 are alternative forms of 1stlaw

  • 8/11/2019 Section1-s13

    22/38

    22

    for a thermally perfect gas: dTcdh p (1.12)

    T

    dp

    T

    dTcds p

    RTp

    1

    2T

    Tp12p

    p

    plnR

    T

    dTcss

    p

    dpR

    T

    dTcds

    2

    1

    for a calorically perfect gas ( pc constant)

    12 ss (1.28)

  • 8/11/2019 Section1-s13

    23/38

    23

    similarly:

    12 ss (1.29)

    Isentropic relations

    put 21 ss in (1.28)

    1

    2p

    1

    2

    1

    2

    1

    2p

    T

    Tln

    R

    c

    p

    pln

    p

    plnR

    T

    Tlnc0

    1

    2

    p

    p

  • 8/11/2019 Section1-s13

    24/38

    24

    from (1.18)

    1Rcp

    1

    2

    p

    p

    (1.30)

    similarly:

    1

    2v

    1

    2

    1

    2

    1

    2v

    T

    Tln

    R

    c

    v

    vlnlnR

    T

    Tlnc0

  • 8/11/2019 Section1-s13

    25/38

    25

    )1(1

    1

    2

    1

    2R

    c

    1

    2

    1

    2

    T

    T

    T

    Tv

    (1.31)

    1

    2

    (1.32)

    in summary:

    )1(

    1

    2

    1

    2p

    p

    T

    T

    1

    2

    (1.33)

    (energy relation for an isentropic process) many processes can be

    assumed isentropic, irreversible effects are usually constrained in

    the boundary layer.

  • 8/11/2019 Section1-s13

    26/38

    26

    Governing equations [review from 301]

    incompressible flow: (= constant, T also constant)

    Continuity: (1.34)

    Momentum:2DV

    p Dt V f (1.35)

    Unknowns:

    Equations:

  • 8/11/2019 Section1-s13

    27/38

    27

    Energy:p v

    DTC (k T)Dt

    (1.36)

    Bernoullis equation: p + = (1.37)

    Assumptions: 1. Inviscid

    2.

    Steady

    3.

    Incomressible4.

    5.

  • 8/11/2019 Section1-s13

    28/38

    28

    Compressible flow: is variable

    unknowns:

    need energy equation

    continuity: 0ddvt s

    sV (1.38)

    0t

    p

    V (1.39)

  • 8/11/2019 Section1-s13

    29/38

    29

    momentum:

    dvdp)d(dvt vsv

    f

    sVsVV (1.40)

    xf

    x

    p

    Dt

    Du

    (1.41)

    v y y

    w z z

  • 8/11/2019 Section1-s13

    30/38

    30

    energy:

    sV

    VV d2

    edv2

    et

    2

    s

    2

    v

    dv)(pdvq

    vsv

    VdsV

    f (1.42)

    )(.pq

    Dt

    2eD

    2

    VV

    V

    f (1.43)

  • 8/11/2019 Section1-s13

    31/38

    31

    Definition of total (stagnation) conditions

    Consider a fluid element: p, T, , M, V (static quantities); then

    move adiabatically to 0V

    (for incompressible flow: po= )

    To (total temperature)

    opo Tch (total enthalpycalorically perfect gas)

    for adiabatic flow )0q( , negligible body forces:

    the energy equation becomes

  • 8/11/2019 Section1-s13

    32/38

    32

    VpDt

    2

    veD

    2

    (1.44)

    using:

    ppp VVV

    (1.45)

    Dt

    Dp

    Dt

    DpDt/pDDt/Dp

    Dt

    )/p(D

    2

    definition ofDt

    D

  • 8/11/2019 Section1-s13

    33/38

    33

    using continuity: 0Dt

    D

    V

    VVV

    ppt

    pp

    Dt

    Dp (1.46)

    using (1.41), and adding (1.42) to (1.40):

    VVVVV

    pp

    t

    ppp

    2

    pe

    Dt

    D 2

    t

    p

    Dt

    2hD 2

    V

    (1.47)

  • 8/11/2019 Section1-s13

    34/38

    34

    hpve

    pe

    for steady flow:

    0Dt

    2

    hD2

    V

    2

    h2

    Vconstant along a streamline

    constanth2

    h o

    2

    V

    ; (stagnation enthalpy)

  • 8/11/2019 Section1-s13

    35/38

    35

    etemperaturstagnationconstantTTch oopo

    (for non-adiabatic process oo T,h change)

    for isentropic (= adiabatic + reversible) process to 0V

    oo,p,p (pressure and density)

    for non-isentropic flow (e.g. across a shock wave) oo ,p change,

    but Todoes not change, if adiabatic.

  • 8/11/2019 Section1-s13

    36/38

    36

    Problem 7.8: In the reservoir of a supersonic wind tunnel, the

    velocity is negligible, and the temperature is 1000K. The

    temperature at the nozzle exit is 600K. Assuming adiabatic flow

    through the nozzle, calculate the velocity at the exit.

    Reservoir:

    Exit:

    Adiabatic flow:

  • 8/11/2019 Section1-s13

    37/38

    37

    Problem 7.13: Bernoullis equation was derived in chapter 3 from

    Newtons second law; it is fundamentally a statement that

    force=mass x acceleration. However, the terms in Bernoulisequation have dimensions of energy per unit volume, which

    prompt some argument that Bernoullis equation is an energy

    equation for incompressible flow. If this is so, then it should de

    derivable from the energy equation for compressible flow

    discussed in the present chapter. Starting with Equation (7.53) forinviscid, adiabatic, compressible flow, make the appropriate

    assumptions for an incompressible flow and see what you need to

    do to obtain Bernoullis equation

    Eq. 7.53:2Vh+ =constant

    2

    Rewrite enthalpy as:

  • 8/11/2019 Section1-s13

    38/38

    38

    Hence eq. 7.53 can be written as2V

    + =constant2

    For incompressible flow: