Section 5 TB super slides meteorology

Embed Size (px)

Citation preview

  • 7/28/2019 Section 5 TB super slides meteorology

    1/81

    CAE NLS sect5 TB 1

    5. Airmasses and fronts

  • 7/28/2019 Section 5 TB super slides meteorology

    2/81

    CAE NLS sect5 TB 2

    Air mass and source region

    Definition : An air mass is a large body of air whose physical properties, especially temperature and vertical lapse rate,moisture content and vertical distribution of moisture are moreor less uniform horizontally.

    Horizontal dimensions of an air mass are in the order of

    1000 km, vertical dimensions in the order of at least 1 km.

  • 7/28/2019 Section 5 TB super slides meteorology

    3/81

    CAE NLS sect5 TB 3

    Air masses are formed over so-called source regions .

    Extensive* surface of uniform temperature andhumidity:

    i.e. oceans, deserts, snow covered areas.

    If air stays for several days over an uniform area, itstemperature becomes the temperature of that area. Theair also takes the moisture properties of the source area.

    High pressure areas are often permenant* for a longer period and therefore most favorite to form airmasses.

  • 7/28/2019 Section 5 TB super slides meteorology

    4/81

  • 7/28/2019 Section 5 TB super slides meteorology

    5/81

    CAE NLS sect5 TB 5

    Geographical classification of air masses

    0

    30

    30

    45

    45

    70

    70

    A

    A

    A = arctic air

    P

    P

    P = polar air

    T

    T

    T = tropical air

    E

    E

    E = equatorial air

  • 7/28/2019 Section 5 TB super slides meteorology

    6/81

    CAE NLS sect5 TB 6

    Geographical classification Continental or maritime

    if the source region is land the air mass will become

    less moist/drier continental air

    if the source region is water the air mass will become

    more moist/humid maritime airi.e.: continental polar air = cP (dry Polar air)

    maritime polar air = mP (moist Polar air)

    This classification is important for the humidity but also for thetemperature. A continental air mass has greater extremetemperatures in winter and summer than a maritime air mass.

  • 7/28/2019 Section 5 TB super slides meteorology

    7/81CAE NLS sect5 TB 7

    Air masses

    1) Arctic air 2) Polar air 3) Tropical air 4) Equatorial air

    Can be continental or m aritime

    So we have 8 airmasses:

    cA mA, cP mP, cT mT, cE mE

  • 7/28/2019 Section 5 TB super slides meteorology

    8/81CAE NLS sect5 TB 8

    Air mass modification is called transformation

    air mass that leaves its source region will change intemperature

    and humidity thermodynamic changes: (warming/ cooling)

    dynamic changes (wind/turbulent mixing)

    moisture changes: (evaporation/ condensation)

    i.e.: mT-air cP-air (after a long period)

  • 7/28/2019 Section 5 TB super slides meteorology

    9/81

  • 7/28/2019 Section 5 TB super slides meteorology

    10/81

    CAE NLS sect5 TB 10

    Thermodynamic classification of air masses

    Definition:

    An air mass has warm mass properties when thetemperature at 1.5 m height is higher than the temperatureof the underlying earth's surface.

    An air mass has cold mass properties when the temperatureat 1.5 m height is lower than the temperature of theunderlying earth's surface.

  • 7/28/2019 Section 5 TB super slides meteorology

    11/81

    CAE NLS sect5 TB 11

    Warm and cold mass properties

    Stability??? Stable Unstable

  • 7/28/2019 Section 5 TB super slides meteorology

    12/81

    CAE NLS sect5 TB 12

    WEATHER PHENOMENON

    COLD MASSPROPERTIES

    WARM MASSPROPERTIES

    stability

    unstable stable

    convection

    yes no

    low clouds

    - dry air: 0/8-2/8 Cu- moist air: 4/8-7/8 Cu/Cb

    - dry air: 0/8-18 St/Sc- moist air: 7/8-8/8 St/Sc

    precipitation

    showeryrisk of TSrisk of hail

    steadylight (to mod) RA/DZno TS, no hail

    visibility

    good/very goodexcept in showers

    moderate/poor

    weather

    breaks and showers fog, mist, haze, RA/DZ

    turbulence

    turbulent, gusty windssevere turbulence possible

    laminar windmainly light turbulence at SFC

    surface wind

    direction: gustyspeed: variable with gusts

    direction: steadyspeed: steady

    angle between surface windand wind above frictionlayer

    Small ca 10-30 gr Large up to 70 gr

    veering of wind withincreasing height (NH)

    little veering wind veers strongly

    windspeed in the frictionlayer

    slow increase with height rapid increase with height atinversion heigt

  • 7/28/2019 Section 5 TB super slides meteorology

    13/81

    CAE NLS sect5 TB 13

    Diurnal variability and differences sea-land

    daytime/cold * mass/unstable nighttime/warm mass/stable

    cold sea/warm mass/stable warm land/cold mass/unstable

    warm sea/cold mass/unstable cold land/warm mass/stable

  • 7/28/2019 Section 5 TB super slides meteorology

    14/81

    CAE NLS sect5 TB 14

    Equatorial air can not reach w-europe

  • 7/28/2019 Section 5 TB super slides meteorology

    15/81

    CAE NLS sect5 TB 15

    LOKALE CLASSIFICATIE

    s zomers kms winters wm

    mPL

    mPL

    mTL

    cTLcTL

    cPL

    cAL

    cALmAL

    voorn. in winter en vroege

    voorjaar

    s zomers wms winters km

    altijd km m e

    e s t a l k m

    s z o

    m e r s

    s o m s w m

    altijd wm

    meestal km

    meestal wms zomers

    soms km

    s zomers wms winters km

    cTL

  • 7/28/2019 Section 5 TB super slides meteorology

    16/81

    CAE NLS sect5 TB 16

    Air masses(and fronts)

  • 7/28/2019 Section 5 TB super slides meteorology

    17/81

    CAE NLS sect5 TB 17

    ZWARE VLOEISTOF of LUCHT DRINGT ONDER LICHTERE:Het grensvlak is het frontvlak

    WATER

    OLIE

    Potentile energie gaat over in kinetische

    energie, beweging van de lucht: WINDDe wind verplaatst de fronten.

    Koude lucht dringt onder warme lucht!

  • 7/28/2019 Section 5 TB super slides meteorology

    18/81

    CAE NLS sect5 TB 18

    De Aarde (NH)

    Warm

    Koud

    De basis van alles* !! De koud-warm verdeling zorgtvoor fronten.

    Fronten gaan golven*! Er ontstaan depressies en die zorgenvoor Wind .

    Zo ontstaat de verdeling van Hoge en Lage drukgebieden!

    L

    Front

  • 7/28/2019 Section 5 TB super slides meteorology

    19/81

    CAE NLS sect5 TB 19

    FRONTS

    Definitions:

    The frontal surface is the boundary between 2 air masses. (100 to 2000 m thick)

    A front is the intersection line of a frontal surface withthe earth.

    The frontal slope ( ) is the angle between the frontalsurface and the earth.

  • 7/28/2019 Section 5 TB super slides meteorology

    20/81

    CAE NLS sect5 TB 20

    When the warmer air moves towards the colder air, whenthe warmer* mass is replacing the colder, the front iscalled a warm front . (WF)

    Frontal slope 1:100-200

  • 7/28/2019 Section 5 TB super slides meteorology

    21/81

    CAE NLS sect5 TB 21

    Embedded CB

    Movement of front

    ColdWarm FZL

  • 7/28/2019 Section 5 TB super slides meteorology

    22/81

    CAE NLS sect5 TB 22

    When the colder air moves towards the warmer air, whenthe colder air is gaining ground, the front is named a cold

    front . (CF)

    Frontal slope: 1:50-100

  • 7/28/2019 Section 5 TB super slides meteorology

    23/81

    CAE NLS sect5 TB 23

    Embedded CB

    Movement of front

    Cold Warm

    Makkelijker bij KF

  • 7/28/2019 Section 5 TB super slides meteorology

    24/81

    CAE NLS sect5 TB 24

    Frontal wave

    1) Low is onwave top

    2) Wave top is pointing tocold air

    3) Cold air ismoving S,warm air ismoving N

    (NH)*Cold air is heavier than warm air!!! *

    L

  • 7/28/2019 Section 5 TB super slides meteorology

    25/81

    CAE NLS sect5 TB 25

    VERTICALE DOORSNEDE DOOR EEN FRONTALE GOLF TOONT DE VERDELING VAN WARME EN KOUDE LUCHT

    h

    EN

    W

    S

    warme luchtkoudelucht koude

    lucht

  • 7/28/2019 Section 5 TB super slides meteorology

    26/81

    CAE NLS sect5 TB 26

    VERANDERING VAN HET ISOBARENPATROON ROND EENVORMENDE FRONTALE GOLF

    1005

    1010

    1010

    1005

    1000

  • 7/28/2019 Section 5 TB super slides meteorology

    27/81

    CAE NLS sect5 TB 27

    AFSTAND/HOOGTE-VERHOUDING BIJ EEN HELLING VAN1:200

    F R O N T V LA K

  • 7/28/2019 Section 5 TB super slides meteorology

    28/81

    CAE NLS sect5 TB 28

    The symbols along the front are always situated in thedirection of movement of the front.

    When there is little or no change in position, when thereis no movement of one air mass compared with the other,the front is said quasi-stationary or stationary .

  • 7/28/2019 Section 5 TB super slides meteorology

    29/81

    CAE NLS sect5 TB 29

    FRONTS and there MOVEMENTS

    SURFACE

    COLD WARM

    Which front?

    Coldfront!! (CF)

  • 7/28/2019 Section 5 TB super slides meteorology

    30/81

    CAE NLS sect5 TB 30

    FRONTS and there MOVEMENTS

    SURFACE

    COLD WARM

    Which front?

    Warmfront (WF)

  • 7/28/2019 Section 5 TB super slides meteorology

    31/81

    CAE NLS sect5 TB 31

    Oefening fronten kleuren

  • 7/28/2019 Section 5 TB super slides meteorology

    32/81

    CAE NLS sect5 TB 32

    Occlusions

    SURFACE

    COLD

    WARM

    1) Coldfront is less sloping than warmfront

    2) Coldfront is moving faster (in same gradient) than warmfront(more cold airmass properties, less friction)

    So warm sector becomes smaller

    COLD

  • 7/28/2019 Section 5 TB super slides meteorology

    33/81

    CAE NLS sect5 TB 33

    Occlusions

    SURFACE

    COLD

    WARM

    COLD

    CF overtakes WF Occlusion proces starts

    Resulting in two possibilities:

    1.

    CF occlusion WF occlusion

    2.

    W WCC CCC C

    Occlusions

  • 7/28/2019 Section 5 TB super slides meteorology

    34/81

    CAE NLS sect5 TB 34

    1.

    CF occlusion: sfc front is CF WF occlusion. sfc front is WF

    2.Occlusions

    CCCC

    CC

    CC

    CC

    CC

  • 7/28/2019 Section 5 TB super slides meteorology

    35/81

    CAE NLS sect5 TB 35

    When the coldest air (CC) is situated in advance of the warm front,the warm front remains on the surface, while the cold front is

    lifted along the warm frontal surface, with the formation of awarm front occlusion . The cold front becomes an upper cold

    front .

    Warm front occlusion

  • 7/28/2019 Section 5 TB super slides meteorology

    36/81

    CAE NLS sect5 TB 36

    When the coldest air (CC) is situated at the rear of the coldfront, the cold front remains in contact with the surface, whilethe warm front is lifted along the cold frontal surface, with theformation of a cold front occlusion . The warm front is now anupper warm front .

    Cold front occlusion

  • 7/28/2019 Section 5 TB super slides meteorology

    37/81

    CAE NLS sect5 TB 37

  • 7/28/2019 Section 5 TB super slides meteorology

    38/81

    CAE NLS sect5 TB 38

  • 7/28/2019 Section 5 TB super slides meteorology

    39/81

    CAE NLS sect5 TB 39

    Frontal inversion

  • 7/28/2019 Section 5 TB super slides meteorology

    40/81

    CAE NLS sect5 TB 40

    DE FRONTALE INVERSIE

    WARM

    KOUD

  • 7/28/2019 Section 5 TB super slides meteorology

    41/81

    CAE NLS sect5 TB 41

    Geographical classification of fronts

    030

    30

    45

    45

    70

    70

    A

    AA = arctic air

    P

    P

    P = polar air

    T

    T

    T = tropical air

    E

    E

    E = equatorial air

    Arctic front

    Arctic front

    Polar front

    Polar front

    Subtropical front

    Subtropical front

    Intertropical front*

  • 7/28/2019 Section 5 TB super slides meteorology

    42/81

    CAE NLS sect5 TB 42

    ARCTISCHE FRONTARCTISCHE FRONT arctische lucht en polaire luchtarctische lucht en polaire lucht

    POLAIRE FRONTPOLAIRE FRONT polaire lucht en tropische luchtpolaire lucht en tropische lucht

    TROPISCHE FRONTTROPISCHE FRONT tropische lucht en equatoriale luchttropische lucht en equatoriale lucht

    INTER TROPISCHE CONVERGENTIE ZONEINTER TROPISCHE CONVERGENTIE ZONE equatoriale lucht noordelijk halfrond en equatorialeequatoriale lucht noordelijk halfrond en equatoriale

    lucht zuidelijk halfrondlucht zuidelijk halfrond

    GEOGRAFISCHE INDELINGGEOGRAFISCHE INDELING

  • 7/28/2019 Section 5 TB super slides meteorology

    43/81

    CAE NLS sect5 TB 43

    Pressure and wind shift on fronts (page 5-15)

  • 7/28/2019 Section 5 TB super slides meteorology

    44/81

    CAE NLS sect5 TB 44

    Pressure falling at approaching warmfront due to replacement of cold (heavy) air by warm (light) air due to lifting of fast amounts of air

    Strong pressure drop

  • 7/28/2019 Section 5 TB super slides meteorology

    45/81

    CAE NLS sect5 TB 45

    Coldfront

    1010

    1015

    H igh pressure

    L ow pressure

    Wind?Wind?

    N

    SW

    W

  • 7/28/2019 Section 5 TB super slides meteorology

    46/81

  • 7/28/2019 Section 5 TB super slides meteorology

    47/81

  • 7/28/2019 Section 5 TB super slides meteorology

    48/81

    CAE NLS sect5 TB 48Sheet 48

  • 7/28/2019 Section 5 TB super slides meteorology

    49/81

    CAE NLS sect5 TB 49

    CONCLUSIONS:

    There is a kink of the isobars along the front towardshigher pressure.

    The wind veers at the passage of a front in the northern

    hemisphere.There is an isallobaric minimum and upgliding ahead of the warm front.

    There is an isallobaric maximum and subsidence at therear of the cold front.

  • 7/28/2019 Section 5 TB super slides meteorology

    50/81

    CAE NLS sect5 TB 50

    X G F E D C B A XX X X X X X X

    L

    H

    18.000

    6000FZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    21 j i 12 t Th l f

  • 7/28/2019 Section 5 TB super slides meteorology

    51/81

    CAE NLS sect5 TB 51

    X G F E D C B A XX X X X X X X

    L

    H

    6 km

    2 kmFZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    21 juni 12 utc The polar front

    pressure:

    A

    1021 hPaWind: 24005 kt.

    clouds: Cs/Cu

    precipetation:dry

    airmass: PL

    T/Td: 15/10 C

    visibility: good

    Stability: unstabele

    FZL: low

  • 7/28/2019 Section 5 TB super slides meteorology

    52/81

    CAE NLS sect5 TB 52

  • 7/28/2019 Section 5 TB super slides meteorology

    53/81

    CAE NLS sect5 TB 53

    21 juni 12 utc Th l f t

  • 7/28/2019 Section 5 TB super slides meteorology

    54/81

    CAE NLS sect5 TB 54

    X G F E D C B A XX X X X X X X

    L

    H

    6 km

    2 kmFZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    21 juni 12 utc The polar front

    pressure:

    B

    1018 hPaWind:18010 kt.

    clouds: As/Ns

    precipetation:rain

    airmass: PL

    T/Td: 14/11 C

    visibility: less

    Stability: Morestable

    FZL: low

  • 7/28/2019 Section 5 TB super slides meteorology

    55/81

    CAE NLS sect5 TB 55

    21 juni 12 utc Th l f t

  • 7/28/2019 Section 5 TB super slides meteorology

    56/81

    CAE NLS sect5 TB 56

    X G F E D C B A XX X X X X X X

    L

    H

    6 km

    2 kmFZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    21 juni 12 utc The polar front

    pressure:

    C

    1015 hPaWind:16015 kt.

    clouds: Sc/St

    precipetation: rain

    airmass: PL

    T/Td: 13/12 C

    visibility: bad

    Stability: stable

    FZL: high

  • 7/28/2019 Section 5 TB super slides meteorology

    57/81

    CAE NLS sect5 TB 57

    21 juni 12 utc the polar front

  • 7/28/2019 Section 5 TB super slides meteorology

    58/81

    CAE NLS sect5 TB 58

    X G F E D C B A XX X X X X X X

    L

    H

    6 km

    2 kmFZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    21 juni 12 utc the polar front

    pressure:

    D

    1012 hPaWind: 24012 kt.

    clouds: Sc/Ac

    precipetation:dry

    Airmass: TL

    T/Td: 20/15 C

    visibility: better

    Stability: unstable

    FZL: high

  • 7/28/2019 Section 5 TB super slides meteorology

    59/81

    CAE NLS sect5 TB 59

    21 juni 12 utc The polar front

  • 7/28/2019 Section 5 TB super slides meteorology

    60/81

    CAE NLS sect5 TB 60

    X G F E D C B A XX X X X X X X

    L

    H

    6 km

    2 kmFZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    21 juni 12 utc The polar front

    pressure:

    E

    1012 hPaWind: 24012 kt.

    clouds: St/Sc/As

    precipetation: rain

    airmass: TL

    T/Td: 19/16 C

    visibility: less

    Stability:More stable

    FZL: high

  • 7/28/2019 Section 5 TB super slides meteorology

    61/81

    CAE NLS sect5 TB 61

    21 juni 12 utc The polar front

  • 7/28/2019 Section 5 TB super slides meteorology

    62/81

    CAE NLS sect5 TB 62

    X G F E D C B A XX X X X X X X

    L

    H

    6 km

    2 kmFZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    21 juni 12 utc The polar front

    pressure:

    F

    1016 hPaWind:29010 kt.

    clouds: Ci Cu/Cb

    precipetation: dry showe

    airmass: PL

    T/Td: 10/05 C

    visibility: good bad

    Stability: unstable

    FZL: lowest

  • 7/28/2019 Section 5 TB super slides meteorology

    63/81

    CAE NLS sect5 TB 63

  • 7/28/2019 Section 5 TB super slides meteorology

    64/81

    21 juni 12 utc The polar front

  • 7/28/2019 Section 5 TB super slides meteorology

    65/81

    CAE NLS sect5 TB 65

    X G F E D C B A XX X X X X X X

    L

    H

    6 km

    2 kmFZL

    SFC

    1010

    1015

    1020

    10051000995

    X G F E D C B A XX X X X X X X

    j The polar front

    pressure:

    G

    1017 hPaWind: 18005 kt.

    clouds: Cu

    precipetation:dry

    airmass: PL

    T/Td: 11/05 C

    visibility: good

    Stability: unstable

    FZL: lowest

  • 7/28/2019 Section 5 TB super slides meteorology

    66/81

    CAE NLS sect5 TB 66

    At which airport is the following weather development taking place?TAF 060600Z 060716 25006KT 8000 BKN240 BECMG 0710 OVC200

  • 7/28/2019 Section 5 TB super slides meteorology

    67/81

    CAE NLS sect5 TB 67

    TAF 060600Z 060716 25006KT 8000 BKN240 BECMG 0710 OVC200BECMG 1013 23010KT 8000 OVC100 BECMG 1316 23014KT 6000RA SCT030 OVC050=

    SFC 06Z

    A B C D E F G

  • 7/28/2019 Section 5 TB super slides meteorology

    68/81

    CAE NLS sect5 TB 68

    A B C D E F G

    Pressure 1021 hPa 1018 hPa 1015 hPa 1012 hPa 1012 hPa 1016 hPa 1017 hPa

    Wind ZW 5kt ZZW10kt ZZO15kt ZW 12kt ZW 12kt WNW 10 Z 5kt

    Clouds Cs/Cu As/Ns Sc/St Sc/Ac St/Sc/As Cs Cu/Cb Cu

    precipetation Dry Rain Rain Dry Rain Dry/shower dry

    aitmass PL PL PL TL TL PL PL

    T/Td 15/10C 14/11 C 13/12 C 20/15 C 19/16 C 10/05 C 11/05 C

    stability unstablemoreStable Stable unstable More

    stableunstable unstable

    visibility Good Less bad better less Good/bad good

  • 7/28/2019 Section 5 TB super slides meteorology

    69/81

    CAE NLS sect5 TB 69

    Conclusions:

    approching warmfront: dropping pressure backing and increasing wind

    Lowering cloudbase

    starting to rain visibility decreasing

    Passing warmfront: veering of wind

    rising of temperature

    some breaks in clouds

  • 7/28/2019 Section 5 TB super slides meteorology

    70/81

    CAE NLS sect5 TB 70

    Conclusions:

    Approaching coldfront: clouds increasing fast

    greater intensity of rain

    Passing coldfront: pressure rising

    veering of wind

    breaking of clouds

    dry/shower

    falling of temperature

  • 7/28/2019 Section 5 TB super slides meteorology

    71/81

    CAE NLS sect5 TB 71

    Frontogenesis and frontolyse

    Definition:

    Frontogenesi s is the initial formation or the intensificationof a frontal surface or front.

    Frontolysis is the dissipation or weakening of a frontal surface or front.

  • 7/28/2019 Section 5 TB super slides meteorology

    72/81

    COL

  • 7/28/2019 Section 5 TB super slides meteorology

    73/81

    CAE NLS sect5 TB 73

    frontolyse

    H

    H

    LL

    COL

    Inflow axis

    Along Inflow axis !!!

    Fig 5.26 page 5.24

  • 7/28/2019 Section 5 TB super slides meteorology

    74/81

    CAE NLS sect5 TB 74

    MIND YOU 1: Warm land = Summer, Spring

    Cold land = Winter, fall

    MIND YOU 2 : relative temperatures!!

    Life cycle of a mid latitude low

  • 7/28/2019 Section 5 TB super slides meteorology

    75/81

    CAE NLS sect5 TB 75

  • 7/28/2019 Section 5 TB super slides meteorology

    76/81

    CAE NLS sect5 TB 76

    Een mooi simpel voorbeeld

  • 7/28/2019 Section 5 TB super slides meteorology

    77/81

    CAE NLS sect5 TB 77

    Back-bent occlusion (fig.5.31)

    Back-bent occlusion acts as a coldfront !

    I fl f i f l

  • 7/28/2019 Section 5 TB super slides meteorology

    78/81

    CAE NLS sect5 TB 78

    Influence of mountainous area on a frontal passage

    Influence of a mountain barrier on a warm front passage: The WF

    becomes a upper front!

    The cold air at the surface, is hard to remove*

    EEN WARMTEFRONT GLIJDT OVER EEN KOUDE

  • 7/28/2019 Section 5 TB super slides meteorology

    79/81

    CAE NLS sect5 TB 79

    PLAKLAAG

    KKKK KK KK

    H

    Often in winter: cold air is heavy, strong friction!

    Influence of mountainous area on a frontal passage

  • 7/28/2019 Section 5 TB super slides meteorology

    80/81

    CAE NLS sect5 TB 80

    Influence of a mountain barrier on a cold front passage:no or little influence!

  • 7/28/2019 Section 5 TB super slides meteorology

    81/81

    Depressie familie