35
1 Secondary Air System Component Modelling For Engine Performance Simulations A. Alexiou & K. Mathioudakis Laboratory of Thermal Turbomachines National Technical University of Athens Secondary Air System Component Modelling For Engine Performance Simulations A. Alexiou & K. Mathioudakis

Secondary Air System Component Modelling For Engine Performance Simulations · 2008. 6. 20. · ¾Describe an object-oriented approach for modelling Secondary Air Systems ¾Present

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Laboratory of Thermal TurbomachinesNational Technical University of Athens

    Secondary Air System Component Modelling For Engine Performance Simulations

    A. Alexiou &

    K. Mathioudakis

  • 2Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Paper Objectives

    Describe an object-oriented approach for modelling Secondary Air Systems

    Present the detailed modelling of some typical Secondary Air System components

    Validate the modelling against publicly available experimental and/or computational results

    Demonstrate the integration of such components in a whole engine performance model

  • 3Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    SECONDARY AIR SYSTEM MODELLINGCOMPONENT MODELS

    o Generic Componento Orifice Componento Labyrinth Seal Component

    IMPLEMENTATION & VALIDATIONo Simulation Environment Overviewo Test Cases

    Pre-Swirl ChamberRotating CavitiesRotating HolesPre-swirl System with Labyrinth Seals

    o Whole Engine ModelSUMMARY & CONCLUSIONS

    Contents

  • 4Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Secondary Air System Schematic

    ORIFICESROTATING

    DISC CAVITIESLABYRINTH

    SEALS

    PRE-SWIRL SYSTEM

    DRIVE CONE CAVITY

    RIM SEAL

    ORIFICESROTATING

    DISC CAVITIESLABYRINTH

    SEALS

    PRE-SWIRL SYSTEM

    DRIVE CONE CAVITY

    RIM SEAL

  • 5Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Secondary Air System Modelling: Current Approach

    Dedicated Air System Model

    Engine Performance Model

    Values

    for Bleeds & Returns for particular engine running conditions

    DisadvantagesThe Secondary Air System is a “black box” for the

    performance engineer.The Air System designer cannot assess autonomously the

    system performance as part of the whole engine model.Increased scope for error during data exchange.

  • 6Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Secondary Air System Modelling: Proposed Approach

    AdvantagesIndividual components or entire air systems can be integrated

    transparently in whole engine performance models.Different air system design configurations can be constructed and

    compared in a generic, flexible and intuitive manner.Component changes visible during model exchanging.

    Secondary Air System (SAS) components directly integrated in

    engine model. Boundary conditions (IN/OUT m, Pt, Tt, Vφ) communicated

    through appropriate Ports.SAS component

    (pre-swirl system)SAS Port

  • 7Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    SECONDARY AIR SYSTEM MODELLINGCOMPONENT MODELS

    o Generic Componento Orifice Componento Labyrinth Seal Component

    IMPLEMENTATION & VALIDATIONo Simulation Environment Overviewo Test Cases

    Pre-Swirl ChamberRotating CavitiesRotating HolesPre-swirl System with Labyrinth Seals

    o Whole Engine ModelSUMMARY & CONCLUSIONS

    Contents

  • 8Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Component Models

    Using the advantages of object-oriented modelling (such as encapsulation, inheritance, abstraction aggregation and polymorphism), it is possible to create secondary air system models for a variety of engine configurations using three main components: generic, orifice

    and labyrinth seal.

    For a specified component geometry, the inlet flow conditions (m, Pt, Tt, Vφ) are linked to the outflow ones through the conservation equations for mass flow, energy, axial and angular momentum.

    The component’s performance can be calculated for any valid combination of input/output variables and component characteristics.

  • 9Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Generic Component Model

    rK

    , AKrm

    r

    zin out

    rN

    , AN

    rJ

    , AJ

    mix

    STATOR

    ROTOR

    Q

    Arbitrary geometry (discs, cones, cylinders)J Input flows and N output flowsFully mixed flowWork and heat transfer from surrounding K surfacesSAS examples: pre-swirl system chamber, compressor inter-disc cavities,

    drive-cone cavity

  • 10Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Generic Component Equations (I)

    ( )∑ ∑= =

    φφ =⋅⋅−⋅⋅J

    1j

    K

    1kkj,in,j,inj,inmix,mmix MVrmVrm

    ( )mix,kmix,kmixkkk,mk VrVrArC5.0M φφ −⋅Ω⋅−⋅Ω⋅ρ⋅⋅⋅⋅=

    ( )∑ ∑= =

    ⋅Ω+=⋅⋅−⋅⋅J

    1j

    K

    1kkj,in,tj,pj,inmix,tmix,pmix MQTCmTCm

    Angular Momentum Conservation Equation → Vφ,mix

    Energy Conservation Equation → Tt,mix

    Moment exerted by fluid on each surrounding surface, Mk (from drag force equation):

  • 11Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Generic Component Equations (II)

    Mixing total pressure, Pt,mix

    ( )refSSav TTAhQ −⋅⋅=

    Axial momentum equation → Ps,mix

    :

    Convective heat transfer, Q:

    ( ) ( )( )⎥⎥⎥

    ⎢⎢⎢

    ⎡ζ+⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛ ⋅−⋅ζ−⋅=

    −γγ

    1

    mix,s

    Pmixmix,tmix,smix,t T

    CmQT1PP

    ( )( )mix,tis,mix,t

    mix

    mix,zmix

    J

    1jj,inj,in,sj,in,zj,in

    mix,s PPA

    VmAPVmP −−

    ⋅−⋅+⋅=∑=

  • 12Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Orifice Component Model

    α

    L

    rf

    U

    V

    Vrel

    φ

    z1

    2

    d

    ir

    α

    L

    rf

    U

    V

    Vrel

    φ

    z1

    2

    d

    ir

    Axial & radial holesRotating & stationary

    is

    hD m

    mC =

    Discharge Coefficient CD

    corrected through correlations for:

    Hole Reynolds numberInlet corner radiusHole lengthPressure ratioIncidence angle

    ( ) i:DRe:D3'dL,2dr,21D CC1ffff1C f Δ+−⋅⋅⋅⋅−=

  • 13Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Orifice Component Equations

    ( )

    21

    22,1,12,2

    1

    1,t

    2,s

    1,t

    1,t1

    1,t

    2,s1,this

    VVrVr2

    PP

    1P

    12

    PP

    Am

    ⎪⎪

    ⎪⎪

    ⎪⎪

    ⎪⎪

    −⋅−⋅⋅Ω⋅+

    ⎥⎥⎥

    ⎢⎢⎢

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−⋅

    ρ⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛−γγ⋅

    ⋅⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅ρ⋅=

    φφφ

    γ−γ

    γ

    α−⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛α⋅

    −= φ−

    cosVVU

    taniis

    1,1 α−⎟⎟⎟

    ⎜⎜⎜

    α⋅

    +−= φ−

    cosVV)VU(

    taniis

    21,z

    21,1

    Incidence Angle DefinitionAxial Holes Radial Holes

    1-D, isentropic, compressible expansion of a perfect gas from the upstream total pressure to the downstream static pressure and considering the work transfer to the fluid:

  • 14Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Labyrinth Seal Component Model

    1 2

    cp

    STATOR

    ROTOR

    FIN

    1 2

    cp

    STATOR

    ROTOR

    FIN

    )PR1ln(nPR1

    TR

    PCAm

    t

    2t

    1,t

    1,tD +

    −⋅

    ⋅⋅Γ⋅⋅=

    02.0pcpc

    n1n1

    1

    +⋅

    −−

    For flow through straight, staggered and stepped labyrinth seals

    CD

    = 0.71 for 1.3 < c/t

    < 2.3

  • 15Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    SECONDARY AIR SYSTEM MODELLINGCOMPONENT MODELS

    o Generic Componento Orifice Componento Labyrinth Seal Component

    IMPLEMENTATION & VALIDATIONo Simulation Environment Overviewo Test Cases

    Pre-Swirl ChamberRotating CavitiesRotating HolesPre-swirl System with Labyrinth Seals

    o Whole Engine ModelSUMMARY & CONCLUSIONS

    Contents

  • 16Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Simulation Environment Overview

    libraries

    palette

    Output Window

    Engine Diagram(schematic view)

    Experiment EL file(Simulation View)

    Experiment Results(Simulation View)

    Component EL file(Code View)

  • 17Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Pre-Swirl Chamber

    ( )2RH

    2RH,rel,tPN,tP

    rTTC2

    ⋅Ω

    −⋅⋅=Θ

    Adiabatic Effectiveness

    PN

    in,in r

    V⋅Ω

    =β φ

    Inlet Swirl ratio

    2RH

    S

    2

    RH

    PNin rm

    M21rr2

    ⋅Ω⋅⋅

    −−⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅β⋅=Θ

    Theoretical value of Θ

    ( )P

    RH,mix,RH2

    RHmix,tRH,rel,t C2

    Vr2rTT

    ⋅⋅Ω⋅−⋅Ω+= φ

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Relative Total Temperature

  • 18Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Pre-Swirl Chamber

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    βin

    Θ Present WorkTheoreticalComputed

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Lewis et al, ASME GT-2006-90132

  • 19Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Pre-Swirl Chamber

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    0.0 0.5 1.0 1.5 2.0 2.5 3.0βin

    β mix

    Present WorkComputed

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Lewis et al, ASME GT-2006-90132

  • 20Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Pre-Swirl Chamber

    Geis

    et al, J. Eng. Gas Turbine and Power, 126 (4), pp. 809-815

    0.97

    0.98

    0.99

    1

    1.01

    1.02

    1.03

    0 0.5 1 1.5 21/βmix

    T t,re

    l,RH /

    T t,P

    N

    Measured (PR=1.10) Present Work (PR=1.10)Measured (PR=1.35) Present Work (PR=1.35)

    Tt,rel,RHTt,PN

  • 21Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Pre-Swirl Chamber

    Geis

    et al, J. Eng. Gas Turbine and Power, 126 (4), pp. 809-815

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0 0.5 1 1.5 21/βmix

    MR [N

    m]

    Measured (PR=1.10) Present Work (PR=1.10)Measured (PR=1.35) Present Work (PR=1.35)

    ROTOR

  • 22Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Pre-Swirl Chamber

    Geis

    et al, J. Eng. Gas Turbine and Power, 126 (4), pp. 809-815

    50

    100

    150

    200

    250

    0 50 100 150 200Ωrm [m/s]

    V φ,m

    ix [

    m/s

    ]

    Present WorkMeasuredIsentropic

  • 23Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Rotating Cavities

    Alexiou et al, Int. J. Experimental Heat Transfer, 13, pp. 299-328

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0 2 4 6 8 10 12 14Bo

    ΔT/

    T

    Present WorkMeasured

    SHAFT

    DISCSSHROUD

    CA

    VITY

    SHAFT

    DISCSSHROUD

    CA

    VITY

  • 24Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Rotating Holes –

    Axial

    Dittmann

    et al, J. Eng. Gas Turbine and Power, 127, pp. 383-388

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 5 10 15 20 25 30 35 40 45Incidence Angle, i (deg)

    CD

    Present WorkMeasured

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    L/d=5.66r/d=0.2α=0°NRH

    =24

  • 25Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Rotating Holes –

    Axial

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8βmix

    CD

    Present WorkCFDMeasured

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Lewis et al, ASME GT-2006-90132

    L/d=1.25r/d=0α=0°NRH

    =60

  • 26Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6βmix

    CD

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Test Cases: Rotating Holes –

    Axial

    Chew et al, ASME GT-2003-38084

    L/d=0.86r/d=0α=0°NRH

    =72

  • 27Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    20 25 30 35 40 45Incidence Angle, i (deg)

    CD

    Measured: ΔΩ=0Present Work ΔΩ=0Measured: ΔΩ>0Present Work ΔΩ>0

    ROTOR

    SHAFT

    ROTOR

    SHAFT

    Test Cases: Rotating Holes –

    Radial

    Alexiou et al, Int. J. Heat and Fluid Flow, 21, pp. 701-709

    L/d=0.45r/d=0.067α=0°NRH

    =12

  • 28Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Test Cases: Pre-swirl System with Labyrinth Seals

    -0.5

    0

    0.5

    1

    1.5

    0 0.5 1 1.5

    βmix

    ΘPresent WorkMeasured

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Inner Labyrinth

    Seal

    Outer Labyrinth

    Seal

    Pre-swirlNozzles

    ReceiverHoles

    Pre-swirlChamber

    Inner Labyrinth

    Seal

    Outer Labyrinth

    Seal

    Chew et al, ASME GT-2003-38084

  • 29Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Whole Engine Model (I)

    Pre-Swirl System

    H.P.C. Air System

  • 30Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Whole Engine Model (II)

    0.964

    0.968

    0.972

    0.976

    0.98

    0.984

    0.988

    0.8 0.85 0.9 0.95 1 1.05 1.1βmix

    T t,re

    l,RH/T

    t,PN

    0.6

    0.62

    0.64

    0.66

    0.68

    0.7

    CD

  • 31Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    SECONDARY AIR SYSTEM MODELLINGCOMPONENT MODELS

    o Generic Componento Orifice Componento Labyrinth Seal Component

    IMPLEMENTATION & VALIDATIONo Simulation Environment Overviewo Test Cases

    Pre-Swirl ChamberRotating CavitiesRotating HolesPre-swirl System with Labyrinth Seals

    o Whole Engine ModelSUMMARY & CONCLUSIONS

    Contents

  • 32Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Summary & Conclusions

    An approach for modelling secondary air systems within an object-oriented environment for gas turbine engine performance simulations was presented.

    The modelling of selected components was presented in detail. The components were used to simulate various air system configurations and the predicted results are consistent with available experimental data and computational results.

    An example of adding parts of an air system to a whole engine performance model was given to demonstrate the benefits of this approach.

    The flexibility of the simulation environment and the generality of the component modelling approach allow easily different air system configurations to be constructed and evaluated, both on their own and as part of a complete engine performance model.

    Since the approach presented allows components to be represented in varied levels of detail, it is possible to create more realistic models early in the engine design process.

  • 33Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

  • 34Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Friction Coefficients

    ( ) 2.05

    o

    i8.0m Rer

    r1sin07288.0C −ϕ

    − ⋅⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−⋅θ⋅=

    fm CrL2C ⋅⋅π⋅=

    ( )[ ] 2f10f 6.0CRelog07.4C −ϕ −⋅⋅=

    For free disks or cones with non-zero inner radius and half angle θ:

    For a smooth cylinder of length L:

    where

  • 35Secondary Air System Component Modelling For Engine Performance SimulationsA. Alexiou & K. Mathioudakis

    Heat transfer Coefficient Correlations

    Natural Convection from a Vertical Plate:

    Natural Convection from Upper Surface of heated Plate:

    Forced Convection from a Flat Plate:

    Lk

    Pr492.01

    Ra67.068.0h 94

    169

    25.0

    av ⋅

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛+

    ⋅+=

    LkRa1.0h 31av ⋅⋅=

    for Ra < 109 for Gr > 109

    LkRa54.0h 25.0av ⋅⋅= L

    kRa15.0h 31av ⋅⋅=

    for 104

    Ra < 107 107

    Ra < 1011

    LkRePr036.0h 8.0z

    31av ⋅⋅⋅=

    LkRePr662.0h 5.0z

    31av ⋅⋅⋅=

    for Rez

    < 5×105 for Rez

    5×105

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35