20
Sec. 6.6b

Sec. 6.6b. One reason for writing complex numbers in trigonometric form is the convenience for multiplying and dividing: T The product i i i involves

Embed Size (px)

Citation preview

Sec. 6.6b

One reason for writing complex numbers inOne reason for writing complex numbers intrigonometric form is the convenience for multiplyingtrigonometric form is the convenience for multiplyingand dividing:and dividing:

• The The product product involves the product of the involves the product of the moduli moduli and the sum of the and the sum of the argumentsarguments

• The The quotientquotient involves the quotient of the involves the quotient of the moduli moduli and the difference of the and the difference of the argumentsarguments

2 2 2 2cosθ sin θz r i

1 2 1 2 1 2 1 2cos θ θ sin θ θz z r r i

1 11 2 1 2

2 2

cos θ θ sin θ θz r

iz r

2 0r

1 1 1 1cosθ sin θz r i Let

and

1.

. Then

2. ,

1

π π25 2 cos sin

4 4z i

2

π π14 cos sin

3 3z i

π π

350 2 cos sin 478.109 128.10912 12

i i

Express the product of the given complex numbers instandard form:

Product:

1 2 2 cos135 sin135z i

2 6 cos300 sin 300z i

2cos 165 sin 165 0.455 0.122

3i i

Express the quotient of the given complex numbers instandard form:

Quotient:

1

3 33 cos sin

4 4z i

2

1cos sin

3 6 6z i

1 2

3 11 11cos sin

3 12 12z z i

Express the product of the given complex numbers intrigonometric form:

1 5 cos 220 sin 220z i

2 2 cos115 sin115z i

1

2

5cos105 sin105

2

zi

z

Express the quotient of the given complex numbers intrigonometric form:

Find the product and quotient of the given complex numbersin two ways, (a) using standard forms, and (b) using trig. forms.

1 2 3z i 2 1 3z i The product:

1 2 2 3 1 3z z i i 22 2 3 3 3 3i i i

2 3 3 2 3 3 i 3.196 6.464i

The quotient:

1

2

2 3

1 3

z i

z i

1 3

1 3

i

i

2 3 3 2 3 3

4

i

1.799 0.116i

Find the product and quotient of the given complex numbersin two ways, (a) using standard forms, and (b) using trig. forms.

1 2 3z i 2 1 3z i Next, find the trigonometric forms:

1 13 cos 0.983 sin 0.983z i 2 2 cos 3 sin 3z i

The product:

1 2 2 13 cos 0.983 3 sin 0.983 3z z i 3.196 6.464i The quotient:

1

2

13cos 0.983 3 sin 0.983 3

2

zi

z 1.799 0.116i

First, let’s look at a problem: cosθ sin θz r i

2 cosθ sin θ cosθ sin θz z z r i r i

2 cos θ θ sin θ θr i 2 cos 2θ sin 2θr i

RealAxis

ImaginaryAxis

z

z2

Graphically:Graphically: 2θ

θrr 2

Now, let’s find the cube of z:3 2z z z

2cosθ sin θ cos 2θ sin 2θr i r i

3 cos θ 2θ sin θ 2θr i

3 cos3θ sin 3θr i

4 4 cos 4θ sin 4θz r i

5 5 cos5θ sin5θz r i

And the pattern continues for higher powers:

De Moivre’s TheoremDe Moivre’s TheoremThis pattern is generalized to give:

Let

and let n be a positive integer. Then

cosθ sin θz r i

cos sinnnz r i

cos θ sin θnr n i n

31 3i

πθ

3

Find using De Moivre’s Theorem.

Begin witha graph:

Modulus r = 2

Argument

2 cos sin3 3

z i

31 3i

31 3 8i

Find using De Moivre’s Theorem.

Verify with your calculator!!! Verify with your calculator!!!

2 cos sin3 3

z i

3 32 cos 3 sin 3

3 3z i

8 cos sini 8 1 0i 8

8

2 2

2 2i

Find using De Moivre’s Theorem.

Convert to trig. form:3 3

cos sin4 4

z i

8 3 3cos 8 sin 8

4 4z i

cos6 sin 6i 1 0i 1

31 3 8i

8

2 21

2 2i

1 3i2 2

2 2i

The complex number

is a third root of –8

The complex number

is an eighth root of 1

15 15243 cos sin 243

2 2i i

53 3

3 cos sin2 2

i

Use De Moivre’s Theorem to find the indicated powerof the given complex number. Write your answer instandard form.

10 101296 cos sin 648 648 3

3 3i i

45 5

6 cos sin6 6

i

Use De Moivre’s Theorem to find the indicated powerof the given complex number. Write your answer instandard form.

20 205 cos18.546 sin18.546 5 0.954 0.299i i

203 4i

Use De Moivre’s Theorem to find the indicated powerof the given complex number. Write your answer instandard form.

205 cos0.927 sin 0.927i

cos sin 1i

3

1 3

2 2i

Use De Moivre’s Theorem to find the indicated powerof the given complex number. Write your answer instandard form.

3

cos sin3 3i