17
AGU Fall 2011 B13J03 (Desai) Seasonal controls on regional methane and carbon dioxide exchange observed from a very tall eddy covariance tower in a wetlandrich landscape Ankur R Desai Atmospheric and Oceanic Sciences University of WisconsinMadison 5 December 2011

Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Seasonal  controls  on  regional    methane  and  carbon  dioxide  exchange  observed  from  a    very  tall  eddy  covariance  

tower  in  a    wetland-­‐rich  landscape  

Ankur  R  Desai  Atmospheric  and  Oceanic  Sciences  University  of  Wisconsin-­‐Madison  

5  December  2011  

Page 2: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Methane  concentraJons  conJnue  to  rise  

Source:  NOAA  ESRL  

Source:  Park  Falls  TCCON  (P.  Wennberg)  

Page 3: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Sources  and  sinks  of  methane  are    not  well  quanJfied    

Spahni  et  al.  (2011)  Biogeosciences  

Page 4: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Wetlands  are  a  primary  source  of  methane  emissions  in  temparate/boreal  regions  

Buffam  et  al  (2011)  Global  Change  Biology  

Page 5: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

EvaluaJon  of  regional  fluxes  difficult  with  small  towers  and  chambers  

Credit:  P.  Weishampel   Credit:  B.  Rychter  

Source:  Cook  et  al  (2008)  AGU  Poster    

Page 6: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Tall  towers  offer  novel  approach  to  esJmaJng  regional  fluxes  

Source:  B.  Cook  Credit:  M.  Rydzik  

Page 7: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Long  term  CO2  flux  record  reveals  moisture  controls  on  regional  flux  

Desai  et  al  (2010)  JGR-­‐G  

Page 8: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Long-­‐term  conJnuous  CH4  eddy  covariance  is  now  feasible  

Credit:  M.  Rydzik  

396  m  

122  m  

30  m  

CO2/H2O  flux  Picarro  G1301-­‐f  CH4/CO2  (H2O)  

122  m  

Not  shown:  Los  Gatos  for  CH4  profile/storage  flux  LI-­‐7000  (NOAA)  for  CO2  profile/storage  

Page 9: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

New  instrument  CO2  and  H2O  fluxes  compare  well  to  exisJng  instruments  

Picarro   Licor-­‐In  Situ   Licor-­‐Trailer  

Page 10: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Comparison  of  CH4  and  CO2  fluxes  reveal  stark  differences  by  season  

15  Oct  2010-­‐  14  Oct  2011  

Page 11: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Large  winterJme  CH4  emissions  influence  cumulaJve  exchange  

Page 12: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Modeled  CH4  fluxes  for  this  region  do  not  show  these  large  emissions  

Novel approaches to estimating regional CH4 !uxes from a very tall tower Ankur R Desai1,*, Jennifer C Welch1, Bjorn Brooks1, Kristine Jimenez1, Gretchen Keppel-Aleks2, Debra Wunch2, Paul O Wennberg2, Bruce D Cook3, Peter Weishampel4, Jennifer King51University of Wisconsin-Madison, Center for Climatic Research, 2California Institute of Technology, Environmental Science and Engineering, 3NASA Goddard Space Flight Center, 4Northland College, Natural Resources, 5U. California - Santa Barbara, Geography

*Corresponding author contact: Ankur R Desai, Dept of Atmospheric & Oceanic Sciences, 1225 W Dayton St, Madison, WI USA 53706, [email protected], http://!ux.aos.wisc.edu

1.74

1.76

1.78

1.80

1.82

1.84

1.86

2005 2006 2007 2008 2009 2010Year

370

375

380

385

390

395

pp

m

a) CH4

b) CO2

Total Column

Troposphere

-3

-2

-1

0

1

2

� ��������������

2005 2006 2007 2008 2009 2010Year

-4

-2

0

2

4

dCH 4��

����������������

dCO2 /dt (ppm

14_day-1��

dCO2/dt NEE CO2

dCH4/dt

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2dCO2/dt

-3

-2

-1

0

1

2

NE

E_

CO

2

NEE_CO2 = -0.26 + 0.89 dCO2/dt (r2�����

-4

-2

0

2

4

CH

4 N

EE

mg

C m

-2 d

ay-

1

CO

2 N

EE

gC

m-2 d

ay-

1

2005 2006 2007 2008 2009Year

-200

-150

-100

-50

0

50

CH

4 N

EE

mg

C m

-2 y

r-1

CO

2 N

EE

gC

m-2 y

r-1

NEE CO2 Chamber CH4NEE CH4

7 21 35 49 63 77 91 105119133147161175189203217231245259273287301315329343357

Day of Year

-2

-1

0

1

CH

4 N

EE

mgC

m-2 d

ay-

1

CO

2 N

EE

gC

m-2 d

ay-

1

NEE CO2NEE CH4

0 5 10 15 20 25 30 35 40 45 50-12

0

12

24

36

48

60

Week of Year

CH

4 Fl

ux (m

g m

-2 d

-1)

1997

NEE CHNEE CO

k dCHdt

k dCOdt

CH

CO

__

4

2

4

2

4

2

� NEE CH NEE_ _4 �

CCOdCOdt

dCHdt

2

2

4

���

���

IntroductionCan we estimate regional CH4 land surface !ux with:

(a) Column CO2 and CH4 observations from the Total Carbon Column Observatory Network (TCCON) solar spectroscopic FT-IR instrument? (b) Tall eddy covariance !ux tower (WLEF) net ecosystem ex-change (NEE) of CO2 observations?

in a heterogeneous upland-wetland-lake landscape where CH4 !uxes are likely to be signi"cant but poorly constrained?

Observations

MethodsNeglecting entrainment, the time rate of change in atmospheric column should be pro-portional to !ux. Assuming this proportion is the same for CO2 and CH4, we can write a simple equation for NEE CH4:

Daytime averaged column observations of CO2 and CH4 from 2005-2009 in Park Falls, WI USA re!ect global and regional sources and sinks (left).

Total column CH4 observations (red points) were corrected for stratospheric in!uence to estimate troposphere-only CH4 (black points) using HF column (Washenfelder et al., 2003)

Fossil fuel signal was removed by simple linear "t (green line) and gaps "lled with spline inter-polation (blue line) for both CO2 and CH4.

Entrainment can be neglected when averaged over multiple synoptic cycles (Helliker et al., 2004) and by using total column observations. Time derivative of 14-day average CO2 (bottom left) shows pattern that re!ects !ux. Term in bracket above was estimated from slope of NEE to dCO2/dt "t (bottom right), which shows strong correlation.

ResultsEstimated regional CH4 !ux (right, red line) has a seasonal pattern of uptake in winter and emissions in late summer, in contrast to NEE CO2 (blue line).

CH4 !uxes are of similar magnitude to cham-ber observations of CH4 e#ux (green crosses) measured at three wetlands in tower foot-print in 2006-2007, but seasonality is o$set.

Annual CH4 !ux (right, red stars) has high in-terannual variability, alternating from sink to source, but is positively correlated to CO2 !ux interannual variability (blue crosses).

DiscussionSeasonal uptake of CO2 NEE (bottom left, blue line) appears to lag CH4 NEE uptake (red line) by 3-6 months and CH4 maximum e#ux occurs in late summer. While seasonal NEE of CO2 and CH4 are anti-correlated, annual !uxes of CO2 and CH4 are positively correlated. These results imply complex biogeochemical mechanisms occuring at regional scale.

CH4 !ux magnitudes were at lower bounds of those estimated by modi"ed-Bowen ratio technique (bottom right, black line) and nocturnal column accumulation (black dots) from tower GC observations of CH4 and CO2 in 1997 (Werner et al., 2003). Dual peak pattern of CH4 emissions seen in Werner et al. (2003) not apparent in our results.

ConclusionFuture work is needed to test sensitivity of method to assumptions on averaging, fossil fuel estimate, entrainment, linearity of ratio of NEE to column change, di$erence in foot-print between tall tower NEE, column and chamber observations, and observation error.

New measurements of tall tower eddy covariance CH4 initiated in fall 2010 and ongoing model-based upscaling of chamber observations will provide independent estimates of magnitude and pattern of regional methane !ux and applicability of our technique.

Citations: Helliker et al. (2004) J Geophys. Res; Washenfelder et al. (2003) Geophys. Res. Lett.; Werner et al. (2003) Global Change Biol.

Acknowledgments: Analysis and tall tower operations supported by NSF CAREER DEB-0845166 and DOE NICCR Mid-west 050516Z19. Flux tower operations were aided by K. Davis (PSU), J. Thom (UW), J. Ko!er (NOAA), A. Andrews (NOAA), and R. Strand (WI ECB). US TCCON funding is provided by NASA’s Terrestrial Ecology Program, Orbiting Carbon Observatory program, and the DOE/ARM program.. We also acknowledge reprint of "gure from C. Werner.

a) TCCON

b) Tall !ux tower

Photos courtesy of: a) G. Keppel-Aleks, b) B.D. Cook

Desai  et  al  (2011)  NACP  Mtg.  Based  on  TCCON  column  observaJons  

Werner  et  al  (2003)  Based  on  tall  tower  flask/GC  concentraJon  gradient  

Spahni  et  al.  (2011)  Biogeosciences  Modeled  (LPJ)  zonal  seasonal  cycles  

Page 13: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Flux  magnitudes  similar  to  chamber-­‐based  emissions  made  in  nearby  fens  and  bogs  

Page 14: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Similarity  seen  in  diurnal  cycles  of  hourly  NEE  but    CO2/CH4  NEE  raJo  increases  from  winter  to  summer  

Page 15: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Environmental  controls  of    CH4  fluxes  vary  by  season  

•  Correlated  daily  CH4  flux  to:    –  Air  temperature  –  Incoming  PAR  –  PrecipitaJon  (summer  only)  

–  NEE  CO2  –  ER  and  GPP  –  COSMOS  regional  soil  moisture  (summer  only)  

•  Strongest  fits  shown  on  right  

Page 16: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Clearly,  more  invesJgaJon  is  needed  on  winterJme  CH4  emissions  

•  Need  to  assess  flux  computaJon,  correcJon  and  gap-­‐filling  rouJnes  for  CH4  flux  – Small  methane  fluxes  require  tests  on  limits  of  detecJon,  spectral  loss  

•  SpaJal  scale  likely  has  a  large  influence  on  observed  or  modeled  flux  

•  Chamber  flux  campaign  experiments  need  to  be  made  in  late  fall/winter  on  role  of  under  snow  CO2  and  CH4  emissions  

Page 17: Seasonalcontrolsonregional methaneandcarbondioxide ...co2.aos.wisc.edu/~adesai/documents/Desai-AGUFall11-B13J-03.pdf · 1University of Wisconsin-Madison, Center for Climatic Research,

AGU  Fall  2011  B13J-­‐03  (Desai)  

Thank  you!  

•  NSF  CAREER  DEB  #0845166  •  WLEF/  Park  Falls  (US-­‐PFa)  tall  tower  research  partners:  NOAA  ESRL  (A.  Andrews,  J.  Kofler),  USFS  NRS  (M.  Kubiske,  D.  Baumann),  Penn  State  (K.  Davis),  Cal  Tech  (P.  Wennberg),  COSMOS  (M.  Zreda),  NASA  GSFC  (B.  Cook),  WI  ECB  (J.  Ayers)  ,  Ameriflux  

•  Desai  lab  at  UW:  J.  Thom,  K.  Jimenez,  B.  Brooks  –  hip://flux.aos.wisc.edu  –  [email protected]  –  608-­‐218-­‐4208