65
 1 Maurizio Pierini SLAC experimental Seminar 2/14/06 Searching for New Physics  at a B-factory: Why, Where and How Maurizio Pierini University of Wisconsin, Madison

Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   1Maurizio Pierini

SLAC experimental Seminar 2/14/06

Searching for New Physics

 at a B­factory: Why, Where and How

Maurizio PieriniUniversity of Wisconsin,

Madison

Page 2: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   2Maurizio Pierini

SLAC experimental Seminar 2/14/06

Outline

Why: We have several reasons to consider

the Standard Model as an effective theory. But switching on new physics we generate the flavor problem

Where: all FCNC processes are loop induced in 

the SM. New Physics can contribute as virtual states. We can learn a lot on where this is possible fromthe over­constraint of the CKM matrix. UTfit in and beyond the Standard Model

How: two possible scenarios from present bounds:

Minimal Flavor Violation: interplay between K and B physics at high luminosity facilitiesLarge Flavor Violation in 2­3 sector:(time dependent and time integrated) studies of bs decays

natural in many flavour models, given the strong 

breaking of family SU(3)

Page 3: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   3Maurizio Pierini

SLAC experimental Seminar 2/14/06

Why New Physics at all?

   Hierarchy problem: Renormalization of Higgs mass gives contributions ~Plank, but we want it to be few hundreds GeV.  We don't want fine­tuning, so we need something (a symmetry?) that protects mH

Dark Matter: Standard Model does not provide a satisfactory candidate for dark matter ('s are not enough)

Grand Unification: coupling constants of weak, strong and electro­magnetic interactions do not cross in a single point if we assume the Standard Model. They do in NPscenarios (SUSY)

Page 4: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   4Maurizio Pierini

SLAC experimental Seminar 2/14/06

Going Beyond: Flavor Problem

 

 EW scale 

NP contribution to EW precision, FCNC processes, CPV, etc. 

The SM works beautifully up to a few hundredGeV's, but it must be an effective theory validup to a scale Mplanck

L(MW)=2H†H+(H†H)2+Lgauge+LYukawa+L5/+L6/2SM SM

The new contributions in general introduce new sources of CP violation and flavor mixing. The consistency of the Standard Model becomes a puzzle in this framework.We should see some discrepancy!!!! 

NP contribution to g­2, bs, etc 

Page 5: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   5Maurizio Pierini

SLAC experimental Seminar 2/14/06

CP Violation in the SM

V CKM=Vud Vus VubVcd Vcs VcbVtd Vts Vtb ≃ 1−

2

2 A3 − i

− 1−2

2A2

A31− − i − A2 1 

The mass eigenstates are not the eigenstates of weak 

interaction. This feature of the SM Hamiltonian produces the 

(unitary) mixing matrix VCKM

Since there are three families of quark, there is onephase that cannot be reabsorbed into the definition of the quark fields. This phase allows CP violation in the SM. 

u

d

c t

s b

5

Page 6: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   6Maurizio Pierini

SLAC experimental Seminar 2/14/06

Testing SM: Unitarity Triangle

The unitarity of the matrix can be visualized as a triangle in a complex plane

normalized:

+i

several experimentalobservables depend 

on ρ and η:

normalized:

1­ +i

Page 7: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   7Maurizio Pierini

SLAC experimental Seminar 2/14/06

|Vub|

|Vcb|

Unitarity Triangle Analysis

    Adding the “Classic”        constraints...

K

∆md εK

∆md

∆ms

http://www.utfit.org/

M.Bona, M.Ciuchini, E.Franco, V.Lubicz, 

G.Martinelli, F.Parodi, M.P., 

P.Roudeau, C.Schiavi, 

L.Silvestrini, A.Stocchi 

hep­ph/0501199

Page 8: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   8Maurizio Pierini

SLAC experimental Seminar 2/14/06

sin2β

...to the new     bounds from     B factories

γ α

cos2β

β from D0π0

2β+γ

sin2β

Unitarity Triangle Analysis

http://www.utfit.org/

Page 9: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   9Maurizio Pierini

SLAC experimental Seminar 2/14/06

Unitarity Triangle fit

Vub/Vcb + ∆md + ∆md/∆ms + εK + cos2β + β + + + 2β+γ + sin2β

η = 0.342 ± 0.022 [0.300, 0.385] @ 95% Prob. 

ρ = 0.216 ± 0.036 [0.143, 0.288] @ 95% Prob. 

sides+Kaon physics+ 

angles ρ

  η

Page 10: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   10Maurizio Pierini

SLAC experimental Seminar 2/14/06

Tension in the fit? inclusive from HFAG  Vub=(4.38±0.19±0.27)10­3  

 exclusive: BRs from HFAG;form factor from quenched LQCD 

Vub=(3.80±0.27±0.47)10­3

incl.+excl.

Vub = (4.22 ± 0.20) 10-3

from all the other inputs:

Vub = (3.48 ± 0.20) 10-3

Page 11: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   11Maurizio Pierini

SLAC experimental Seminar 2/14/06

sin2 =0.7910.034from indirect determination 

sin2=0.6870.0320.013From direct measurement

If we take it seriously,we want to go beyond the SM

The discrepancy remainseven including the model independentestimation of 

theoretical erroron sin2

(Ciuchini,M.P,Silvestrini

hep­ph/0507290)

Tension in the fit

Page 12: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   12Maurizio Pierini

SLAC experimental Seminar 2/14/06

ρ = ± 0.18 ± 0.11η = ± 0.41 ± 0.05

Assuming no NP at tree level the effect of the D0­D0 

  mixing to   is negligible   wrt the present error

 semileptonic decays are clean

We have a NP free 

determination ofρ andη

 First Step: NP­independent fit

 referencestarting point for NP model

building

M.Bona, M.Ciuchini, E.Franco, V.Lubicz, G.Martinelli, F.Parodi, 

M.P., P.Roudeau, C.Schiavi, L.Silvestrini, A.Stocchi, V.Vagnoni hep­ph/0509219

Page 13: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   13Maurizio Pierini

SLAC experimental Seminar 2/14/06

  J. M. Soares and L. Wolfenstein, Phys. Rev.  D 47 (1993) 1021;  N. G. Deshpande, B. Dutta and S. Oh, Phys.  Rev. Lett. 77 (1996) 4499  [arXiv:hep­ph/9608231]  J. P. Silva and L. Wolfenstein, Phys. Rev. D  55 (1997) 5331 [arXiv:hep­ph/9610208]  A. G. Cohen et al., Phys. Rev. Lett. 78 (1997)   2300 [arXiv:hep­ph/9610252]  Y. Grossman, Y. Nir and M. P. Worah,  Phys. Rev. Lett. B 407 (1997) 307  [arXiv:hep­ph/9704287] 

                         |εK|EXP = Cε⋅|εK|SM

 ∆mdEXP = Cd⋅∆md

SM

  model independent assumptions

∆msEXP = Cs⋅∆ms

SM

 ACP(J/ψK0) = sin (2β + 2φBd)

   not yet available

 5 unknowns

αEXP =  αSM - φBd

   6 available constraints

 Second Step: Fit to NP

Page 14: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   14Maurizio Pierini

SLAC experimental Seminar 2/14/06

The UTfit beyond the SM

large NP witharbitrary phase(~4.3% Prob.)

SM or small NP witharbitrary phase 

or large NP with SM phase (~95.7% Prob.)

“SM” η = 0.379 ± 0.039 ”NP” [­0.398, ­0.381] @ 95% Prob. 

“SM” ρ = 0.246 ± 0.053 “NP” [­0.230, ­0.212] @ 95% Prob. 

Page 15: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   15Maurizio Pierini

SLAC experimental Seminar 2/14/06

Bounds on NP parameters

CBd = 1.27 ± 0.44 φBd = ­4.7 ± 2.3oPresent determination

Impact of B factories for 2008 on NP bound

now

2008

Page 16: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   16Maurizio Pierini

SLAC experimental Seminar 2/14/06

 New sources of CPV in b→s transitions are – much less (un­)constrained by the UT fit– natural in many flavour models, given the strong breaking of family SU(3)

Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero et al; …

Where do we go from here?

Completing the physics program for'08 BaBar can testboth the scenarios

MFVmodels

LargeFV

models

New sources of CPV in s→d and/or b→d   transitions are

• strongly constrained by the UT fit • “unnecessary”, given the great success    and consistency of the fit

Page 17: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   17Maurizio Pierini

SLAC experimental Seminar 2/14/06

First Case: New Physicsis Minimal 

Flavor Violating in thebd sector. No

additional CP violation

Page 18: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   18Maurizio Pierini

SLAC experimental Seminar 2/14/06

We can determine  and  in a universal way for (MFV) NP and SM. εK and ∆md are not used.

ρ = 0.258 ± 0.066 UUTfit 

 Buras et al. hep­ph/0007085

η = 0.319 ± 0.039 UUTfit 

The Starting Point

18

Page 19: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   19Maurizio Pierini

SLAC experimental Seminar 2/14/06

From UT to Rare decays

 Dimension 4 operators: FCNC   effective Z vertex   C=CSM+∆C  (constrained by BR(B → Xsl

+l­) 

  and BR(K++))

 Dimension 5 operators: (chromo)magnetic penguin

   C7eff=(C7

eff)SM+∆C7eff (constrained by BR(B→Xsγ))

 Dimension 6 operators: penguins, boxes sub­leading NP contributions to rare decays

Rare decaysSM functions + ∆C, ∆C7eff

 C.Bobeth, M.Bona, A.J.Buras, T.Ewerth, M.P., L.Silvestrini, A.Weiler, hep­ph/0505110

Page 20: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   20Maurizio Pierini

SLAC experimental Seminar 2/14/06

SM like solution

Oppositesign of C

Oppositesign of C7

eff

Constraint on NP contributions

20

Page 21: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   21Maurizio Pierini

SLAC experimental Seminar 2/14/06

In MFV models (at low/moderate tanβ) rare decays can be only slightly enhanced w.r.t the SM. Strong suppressions still possible at present.

The Lesson from MFV

If this is the case, we need very high statistics

Page 22: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   22Maurizio Pierini

SLAC experimental Seminar 2/14/06

Second Case: New Physicsbrings additional CP violation in the

bs sector   We will restrict to   SUSY in what follows

Page 23: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   23Maurizio Pierini

SLAC experimental Seminar 2/14/06

In general, SUSY generates additional processesthat can contribute to bs transitions

In this case thetransition is generatedby a strong interactionWe gain a factor gs/gW

that can compensate the suppression of the propagator

~1/mq~2

SUSY & bs decays

Page 24: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   24Maurizio Pierini

SLAC experimental Seminar 2/14/06

m11

m12

m13

m21

m22

m23

m31

m32

m33 md

00

0ms

0

00

m b

m112

m122

m132

m 212

m222

m 232

m312

m322

m332

ABm d

2

00

0ms

2

0

00

m b2

AB

m q2 0

12AB

13AB

12∗BA

023

AB

13∗BA

23∗BA

0 quark rotation( generating CKM matrix)

Effective interaction(mass insertion)

between second and third family

chirality of incoming and outgoing squarks (LL,LR,RL,RR)

average squark mass

Mass Insertions

24

Page 25: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   25Maurizio Pierini

SLAC experimental Seminar 2/14/06

gluinos contribute to rare decays only through(chromo)magnetic penguins; (electro) penguin operators are suppressed 

Strong bounds from the combination of bsll and bsγWe can impose the experimental results to bound thesize of the δ's

Bertolini et al., NPB353; Gabbiani et al., NPB477;     Buras, Romanino, Silvestrini, NPB520

Ciuchini et al, PRD67;   Hiller, PRD69; Gambino,Haisch,Misiak, PRL94

Effect of SM operators

The new amplitudes have arbitrary phases.We are going to look for them in CPViolating processes

Page 26: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   26Maurizio Pierini

SLAC experimental Seminar 2/14/06

Re(d23)LLvsIm(d23)LL

No bsllWith bsll

Re(d23)RRvsIm(d23)RR

Re(d23)LRvsIm(d23)LRRe(d23)RLvsIm(d23)RL

Constraints on δ's

26

tanβ = 10 mg = mq = ­µ =

 350 GeV, ~ ~

Page 27: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   27Maurizio Pierini

SLAC experimental Seminar 2/14/06

The Effect of δRL on S

SKvs Im(d23)RLSkvs Im(d23)RL

Skvs Im(d23)RLSk'vs Im(d23)RL

Using BR's and direct CP asymmetry(as for the SM fit)Switching on onlyone of the four 

chiralities

27

Page 28: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   28Maurizio Pierini

SLAC experimental Seminar 2/14/06

Accessing the δ's with Exp.

mixing

decay

decay

B0

B0

fCP

f CP=

qp⋅

A f CP

A f CP

=∣ f CP∣⋅e− 2iCP

mixing

decay

AfCP=

Bphys0 tfCP− Bphys

0 tfCP

Bphys0 tfCPBphys

0 tfCP=CfCP

cosmdtSfCPsinmdt

C f CP=

1− ∣ f CP∣2

1∣ f CP∣2

S f CP=−

2CP ℑ f CP

1∣ f CP∣2

With only one CKM term in the decay (A = A)

C=0 ; S=sin2

Standard Model predictions

Page 29: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   29Maurizio Pierini

SLAC experimental Seminar 2/14/06

sidebands

signal region

MeV

GeV/c2

The beam­energy substituted mass

The energy difference(half­CM energy)

BoostLab frame CM frame

two largely independent analysis variables

dominated by beam energy spread

dominated by energy resolution

B Candidate Reconstruction

mES=Ebeam∗2 − pB

∗2

E=E beam∗ − s /2

Ebeam∗ = s /2

P=E ,p P∗=E∗ ,p∗

mES≈2.6 MeV /c2

E≈10÷40 MeV /c2

Page 30: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   30Maurizio Pierini

SLAC experimental Seminar 2/14/06

e+e­

(βγ)Υ(4s) = 0.56

B mesons pair oscillating in a coherent state

l +

K+

π+

φΚ+

Κ−

K0S

π−

π+

z

t≈z

c∣ z∣~200m

Breco

BtagY(4S)

Vertex Reconstruction

Page 31: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   31Maurizio Pierini

SLAC experimental Seminar 2/14/06

log scaleMixedevents

∆t p.d.f.(from data)

∆t = trec­ttag

log scaleUnmixedevents

We can fit directly on data the parameterization of the Vertex resolution function, using a sample of fully 

reconstructed B events

Page 32: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   32Maurizio Pierini

SLAC experimental Seminar 2/14/06

  Separately  determine D for each tag   category. 

τΒ=1.6 ps

Overall taggingperformance

Mistag (ω) measurement (from data) 

Amix=NoMix t − Mix t NoMix t Mix t

f UnmizedMixed

={e− ∣t∣/B

4B

[1 1− 2cos md t ]} R t

∆md = 0.501ps­1 (fixed to PDG'04)

D=(1­2ω)<1 due to mistagsT=2π/∆md

ε=(74.90.2)%

  Q = ε(1­2ω)2

    = (300.4)%)

Page 33: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   33Maurizio Pierini

SLAC experimental Seminar 2/14/06

The BC Vertexing (I)

y

xπ0

π+ π­

Ks

~4 µm

γ

~200 µm

γ

~30 µm

   Several of these channels do not have charged tracks from the B vertex. But we can extrapolate back the KS:  Using the constraint of the beam 

  spot on the transverse plane Requiring the KS to decay in the 

  inner part of the SVT

Beam spot constraint on transverse plane  

e+e­

γ

Ks

π+

π ­yz

Btag

Breco

γ

Beam

Page 34: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   34Maurizio Pierini

SLAC experimental Seminar 2/14/06

KS x­y decay length 

# insufficienthits in the SVT

 

signal MC DistributionBC vertexing resolutionposition of  SVT layers

∆t resolution

    We split our sample in 4 KS classes

 Class I: 1 z & 1 φ hit in SVT layers             1­3 for both  π±    Class II: not Class I events with             1 z & 1φ  SVT hit for both  π±     Class III: 1 SVT hit on both π±

 Class IV:  no SVT hit

 

Class I&II determine S

All classes determine C

The BC Vertexing (II)

34

Page 35: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   35Maurizio Pierini

SLAC experimental Seminar 2/14/06

z resolution vs. Ks x­y decay 

length

∆t resolution vs. cos θ

     Validation on  J/ψ Ks(standard vtx. vs BC vtx). 

Comparison data vs. MC to parameterize ∆t: ~1% difference in the outliers fraction (quoted systematic  effect for BC vtx) 

The BC Vertexing (III)

Page 36: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   36Maurizio Pierini

SLAC experimental Seminar 2/14/06

Signal

Bkg

qq Background rejection                    Main source of background      from e+e­ →qq. We can use the    different    topology to    reject them

 

  Several possible topology variables     (|cos(θSPH)| , L2/L0, Fisher F(p,θ), NN)

  Cut in the selection (80­90% eff. on signal)  Residual discriminating power

  in the likelihood fit

|cos(θSPH)|

F(p,θ)

L2/L0

Signal

Bkg

 B produced  ~ at rest   isotropic  topology

qq events  jet­like

36

Page 37: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   37Maurizio Pierini

SLAC experimental Seminar 2/14/06

K*00 K00

|cos(HEL)| for  

mφ bkg

             Final states with same multiplicity but different resonances ( vs. f0)

  We use helicity and invariant mass  

 Final states with higher multiplicity Strongly suppressed by lower cut on E

m(KK)

∆E

BB Background rejection

Irreducible and combinatoric background is taken into account in the likelihood

Page 38: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   38Maurizio Pierini

SLAC experimental Seminar 2/14/06

Structure of the Likelihood

Shape ofKinematicVariables

=e− N SNqq N BB∏j

N TOT

NS⋅PSj mES ⋅ PS

j E ⋅ PSj f L2, L0 ,... ⋅ PS

j m , H ⋅ PSj t

N qq⋅Pqqj mES ⋅Pqq

j E ⋅ Pqqj f L2, L0 , ...⋅ Pqq

j m , H ⋅ Pqqj t

N BB⋅PBBj mES ⋅PBB

j E ⋅ PBBj f L2, L0 , ...⋅ PBB

j m , H ⋅ P BBj t

Shape ofTopologicalVariables 

(Fisher, NN, ...)

Additional Variables(mass, helicity, ...)for BB bkg rejection

t information(to measures S and C)

L

Signal

qq Background

BB Background

Poisson factor for Extended 

Maximum Likelihood Fits 

Page 39: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   39Maurizio Pierini

SLAC experimental Seminar 2/14/06

Fit of B0φK0 events

S=0.50±0.25− 0.040.07

C=0.00±0.23±0.05

KS

11412 events

KL

9818 events

KL

KSACP

ACP

Page 40: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   40Maurizio Pierini

SLAC experimental Seminar 2/14/06

Fit of B0KSπ0 events

bkgsig t

S=0.35− 0.330.30 ±0.04

C=0.06±0.18±0.03

30023 events

Phys.Rev. D71 (2005) 111102

ACP

Page 41: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   41Maurizio Pierini

SLAC experimental Seminar 2/14/06

Fit of B0K0SK

0SK

0S events

all KS→π+π−

88±10 events

~100% w/ good vertex

*sPlot

all events

one KS→π0π0

45±7 events

one KS with both pions ≥4 SVT hits~97% w/ good vertex

S=0.63− 0.320.28 ±0.04

C=− 0.10±0.25±0.05

Phys.Rev.Lett. 95 (2005)011801

hep­ex/0507052

hep­ex/0507052

t

ACP

Page 42: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   42Maurizio Pierini

SLAC experimental Seminar 2/14/06

Fit of B0K*0γ events

tPhys.Rev. D72 (2005) 051103

S=− 0.21±0.40±0.05C=− 0.40±0.23±0.03

30023events

SK S

0 ≈− 2ms

mb

sin 2 ≈0

CK

S0 ≈0

in SM we expect

because ofhelicity suppression42

ACP

Page 43: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   43Maurizio Pierini

SLAC experimental Seminar 2/14/06

Where We Are Now...

Page 44: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   44Maurizio Pierini

SLAC experimental Seminar 2/14/06

And What It Means...

adding S measurements

extrapolationto 2008

Re(d23)RLvsIm(d23)RL

No bs time dep. With bs time dep. 

BaBar abd Belle will reduce the bulk of parameter space

Page 45: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   45Maurizio Pierini

SLAC experimental Seminar 2/14/06

we can do betterwith K* decays

Other smoking guns?

Puzzling situationin K BR's In SM we expect R~Rc~Rn~1

Still 1.5 includingradiative corrections

    E.Baracchini, M.Ciuchini, G.Isidori, M.P, L.Silvestrini 

in preparation

CP violation in K+­ has also implications on ACP of other decays, depending on the assumed hadronic model.  

In principle, we should get a bound on to compare to other determinationsMain Limitation: the presence of penguins imply hadronic uncertanties.

Page 46: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   46Maurizio Pierini

SLAC experimental Seminar 2/14/06

Using Dalitz: a new CKM bound

A(B0 → Κ∗+ π−) = Vts Vtb* × P1 - Vus Vub

* × {E1-P1GIM}

A(B+ → Κ∗0 π+) = - Vts Vtb* × P

1 + Vus Vub

* × {A1-P

1GIM}

A(B0 → Κ∗0 π0) = - Vts Vtb* × P1 - Vus Vub

* × {E2+P1GIM}

Vus Vub*~ λ4Charming Penguin ~ λ2

 Formally equivalent to BK   decays The hadronic parameters are 

  numerically different than for   K But we can access Abs and Arg of 

  the amplitudes through the   interference in Dalitz Plots

K*+(0)­ K*0(­)0

B0(­)

K+(0)­0

A(B+ → Κ∗+ π0) = Vts Vtb* × P

1 - Vus Vub

* × {E1+E

2+A

1-P

1GIM}

2⋅2⋅

46

M.Ciuchini, M.P. & L.Silvestrini, hep­ph/0601233

Page 47: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   47Maurizio Pierini

SLAC experimental Seminar 2/14/06

It is possible to experimentally access I=3/2 amplitude

A0=AK∗− 2 AK 00 =− V ub∗ V usE1E2

A=AK∗0 2 AK 0=− V ub∗ V us E1E2

from K+­0  Dalitz plot

from K0+0  Dalitz plot

Assuming (for the moment) no EW Penguins, the ratio of these quantities and their CP conjugatedmeasures 

R0=A0

A0 =V ub V us

V ub∗ V us

= e− 2i =A−

A =R∓Same argumentapplies to higherK* resonances

Cancellation of Penguins

Page 48: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   48Maurizio Pierini

SLAC experimental Seminar 2/14/06

Inclusion of EW Penguins     EW penguins are suppressed ~em respect to strong penguins but they are enhanced by ­2 respect to I=3/2 amplitude They provide an O(1) correction. We use 

to write

R becomes 

where

Q9=32Q1

suu− Q1scc3Q1

scc−12

Q3s ; Q10=

32Q2

suu− Q2scc3Q2

scc−12

Q4s

H eff ∝V ub∗ V usC1−

32

V tb∗ V ts C9 Q1

suu− Q1scc

V ub∗ V usC2−

32

V tb∗ V ts C10Q2

suu− Q2scc − V tb

∗ V ts H peng I =1/2

R0 = R∓ = e− 2i Arg 1EW

EW=−32

C9C10

C1C2

V tb∗ V ts

V ub∗ V us

=32

C9C10

C1C211− 2/2 2

2 i

Q7 and Q8 neglected

|C7,8|<<|C9,10|

48

Page 49: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   49Maurizio Pierini

SLAC experimental Seminar 2/14/06

Bound on CKM from Arg(R0)

    A measurement of B0K+­0 Dalitz exists, which determines both K* and K*(1430) and provides Arg(R0)with an error of 18o. We do not have K0 Dalitz plot yet, so the relative phase of B and B cannot be fixedWe can assume a perfect agreement to SM and ...

Possible improvements fitting directly for R

  (cancellation of systematics)  using all BaBar & Belle current data adding charged modes

The precision is already comparable to  from DK

crossing point

0=−32

C9C10

C1C2C9C10

1− 2 /22

2...20o    of error

...40o

   of error

BaBar, hep­ex/0408073

49

Same technique gives  with the Bs(M.Ciuchini, M.P.,

L.Silvestrini,in preparation)

Page 50: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   50Maurizio Pierini

SLAC experimental Seminar 2/14/06

What Next: A Linear SuperB?Using the present technology and the R&D for the ILC, we recently proposed a new kind of machine to build

A small version of the ILC that runs at the Y(4S), with a reduced boost (~0.2­0.3) and a better vertex resolution (thanks to smaller beam­spot and limited multiple scattering). Possible luminosity as large as ~35 1036 (now it is ~1034) Worse knowledge of the CM energy 

50

J.Albert et al., physics/0512235

Page 51: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   51Maurizio Pierini

SLAC experimental Seminar 2/14/06

even in this situation same∆z resoultion as now

Furthermore

Main Differences w.r.t. BaBar

More Energy spreadless B Less

Boost

BaBar

SuperB

51

Page 52: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   52Maurizio Pierini

SLAC experimental Seminar 2/14/06 52

Benefits of a better vtx detector

Still Under Investigation

Page 53: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   53Maurizio Pierini

SLAC experimental Seminar 2/14/06

How Things Will Look Like

S(K) vs Im(23)RL

S('K) vs Im(23)RL

assuming 50ab­1

Page 54: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   54Maurizio Pierini

SLAC experimental Seminar 2/14/06

Conclusions     The combination of current  constraints on  and  suggests Consistency of the SM  Stringent constraint on New Physics in bd (MFV)  No implication on bs (Large FV still possible)In MFV: NP can suppress, but not enhance, the ratesIn Large FV: We expect effects in bs decays Several channels studied, thanks to new techniques Current data show some pattern (S<sin2) but   errors are still largeAdditional information can come from rates and amplitudes on Dalitz  K puzzle New Bound on CKM from K*We need more data and interplay with LHC and ILCa new linear super B factory can say the last word on flavor physics

Page 55: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   55Maurizio Pierini

SLAC experimental Seminar 2/14/06

Backup Slides

Page 56: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   56Maurizio Pierini

SLAC experimental Seminar 2/14/06

DIRC (PID)144 quartz bars

11000 PMs

1.5T solenoid 

EMC6580 CsI(Tl) crystals

Drift Chamber40  layers

Instrumented Flux ReturnIron / Resistive Plate Chambers or Limited Streamer Tubes  (muon / 

neutral hadrons)

Silicon Vertex Tracker5 layers, double sided strips

e+ (3.1GeV)

e− (9GeV)

Asymmetric geometry (in order to optimize performances for the 

boost of the rest­frame respect to LAB)

Page 57: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   57Maurizio Pierini

SLAC experimental Seminar 2/14/06

The OPE and decay amplitudesSince mb~4GeV and mW~80GeV, weak interaction canbe replaced by an effective local theory, contracting the W propagator to a point (similarthing to be done with t quark)

1p2mW

2 O(     )1p2

mW2

This operation breaks the ultraviolet behaviour of the theory. 

To remove the  after integrating out the heavy degrees of freedomwe need to renormalize the theory, which introduces new operators and effective couplings, as a function of an unphysical regularization scale (µ). 

∫ d 4 p

p6≈ ∫ dp

p3 0 ∫ d 4 p

p4≈ ∫ dp

p∞

2 fermions 2 bosonsin the loop 2 fermions 

1 boson inthe loop

57

Page 58: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   58Maurizio Pierini

SLAC experimental Seminar 2/14/06

The effective Hamiltonian

After the renormalization of the effective theory we get

Penguinoperators

EW Penguinoperators

(cromo)magnetic operators

Tree level operators

Page 59: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   59Maurizio Pierini

SLAC experimental Seminar 2/14/06

Contractions of the Heff

Contracting (by Wick theorem) the effective Hamiltonian on certain initial and final states

AB0 K− =K − ∣H eff∣B0= ∑i=1,10

Ci K− ∣Qi∣B0

B π

K

π

K

B

All the perturbative physics (scale > µ) in the Wilson coeff.Ci(µ). All the non­perturbative physics (scale < µ) in thematrix elements. The unphysical dependence on µ has to cancelout. Every operator can produce several diagram topologies whencontracted on the initial and final states. For example, the tree level operators can be contracted into tree levelcontractions <Q>DE(µ) and <Q>CE(µ)

DE CE

59

Page 60: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   60Maurizio Pierini

SLAC experimental Seminar 2/14/06

The RGI combinations           One can rearrange the contractions of various            operators into Renormalization Group Invariant            combinations, that represent the physical           quantities defining the decay amplitude (Buras &Silvestrini, hep­ph/9812392). For example the tree level contributions T and C correspond to the RGI's E1 and E2 

E1=C1<Q1>DE+C2<Q2>CE E2=C1<Q1>CE+C2<Q2>DE  

Penguins are more complicated Every RGI correponds to a contraction of the JµJµ interaction term of the Standard Model (i.e. RGIs are the physical quantities)

Page 61: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   61Maurizio Pierini

SLAC experimental Seminar 2/14/06

B

B πc (c­u)

K,π

K, π

π

P1(GIM)

A2

Disconnected Annihilation

Charming and GIM penguins(c­u)

K, π

π

B Connected Annihilation

Page 62: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   62Maurizio Pierini

SLAC experimental Seminar 2/14/06

Preliminary

A comment about radiative effects

What we calculate is the weak decay amplitudeThe experimental measurement includes radiative effect

|A(Bf)|2      = |AW(Bf)|2  G()experimentalobservable

the calculated decay amplitude the QED

correction(dependent on the energy cut­off)

Baracchini & Isidorihep­ph/0508071

We have to correct each result according to the energy cut­off 

Page 63: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   63Maurizio Pierini

SLAC experimental Seminar 2/14/06

Predictions for Rare K and B Decays

63

Page 64: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   64Maurizio Pierini

SLAC experimental Seminar 2/14/06

 In SM the photon  is almost fully polarized: AR ~ ms/mb AL

 New Physics effects can  enhance AR

 CP Asimmetry from a final state   with mixed CP content.   In SM C~0, S~ 2ms/mb    •sin(2β)

bR sLbL

L

~mb

sLbL sR

R

~ms

helicity suppression

B0K*0γ In The SM 

Page 65: Searching for New Physics at a Bfactory: Why, Where and HowMaurizio Pierini 1 SLAC experimental Seminar 2/14/06 Searching for New Physics at a Bfactory: Why, Where and How Maurizio

   65Maurizio Pierini

SLAC experimental Seminar 2/14/06

Integrating

Taking the maximum

Both the methods have assumptions. At least in one case they are clear

(flat prior on P). And this is not a 2D Gaussian....