27
Search Search for Nucleon for Nucleon decays decays M.Miura M.Miura Kamioka Observatory, ICRR Kamioka Observatory, ICRR BLV 2011, Gatlinburg BLV 2011, Gatlinburg

Search for Nucleon decays

Embed Size (px)

DESCRIPTION

Search for Nucleon decays. M.Miura Kamioka Observatory, ICRR BLV 2011, Gatlinburg. Contents. Introduction Super-Kamiokande detector p -> e + + p 0 , m + + p 0 mode p -> K + + n mode Other modes Summary. 1. Introduction. Nucleon decay experiment is the direct probe for GUTs. - PowerPoint PPT Presentation

Citation preview

SearchSearch for Nucleon decays for Nucleon decays

M.MiuraM.Miura

Kamioka Observatory, ICRRKamioka Observatory, ICRR

BLV 2011, GatlinburgBLV 2011, Gatlinburg

ContentsContents

1)1) IntroductionIntroduction

2)2) Super-Kamiokande detectorSuper-Kamiokande detector

3)3) p -> ep -> e++++00 , , ++++00 mode mode

4)4) p -> Kp -> K++++ mode mode

5)5) Other modesOther modes

6)6) SummarySummary

• Nucleon decay experiment is the direct probe for GUTs.• p e+0 (non-SUSY GUTs), p K+ (SUSY-GUTs) are regarded as the dominant mode.• Need large number of nucleons Need large detectors.• Super-Kamiokande data: 22.5kton = 7 x 1033 protons x 10 years run Good detector to investigate nucleon decay !

u

dp

3

~

c~

W

sc

c

~

u uK+

Minimal SU(5) model SUSY SU(5) model

d

u

u e+

d

dc

X

p0

1. Introduction1. Introduction

-

Current Nucleon lifetime limits

Main topics in this talk

pe+0

p+0

pK+-

2. Super-Kamiokande Detector2. Super-Kamiokande DetectorLocation: Kamioka mine, Japan. ~1000 m under ground.Size: 39 m (diameter) x 42 m (height), 50kton water. Optically separated into inner detector (ID) and outer detector (OD, ~2.5 m layer from tank wall.)Photo device: 20 inch PMT (ID), 8 inch PMT (OD, veto cosmic rays).Mom. resolution: 3.0 % for e 1 GeV/c (4.1%: SK-2).Particle ID: Separate into EM shower type (e-like) and muon type (-like) by Cherenkov ring angle and ring pattern.

-like () e-like (e

Nucleon Decay Experiment

96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

Accident reconstruction electronics upgrade

SK-4 (~11’Mar 1)Live Time: 763 daysExposure: 46.5kton ・ yr

History of Super-Kamiokande

SK-3Live time: 518 daysExposure: 31.9kton ・ yrID PMT:11146Photo coverage: 40 %

e+0 paper 2007: > 8.2x1033 years (141kton ・year)

This talk: 220 kton ・ year exposure in total

Same

SK-1Livetime: - 1489.2 daysExposure:- 91.7 kton·yrInner PMT: 11146Photo coverage:40 %

SK-2Livetime:- 798.6 daysExposure:- 49.2 kton·yrInner PMT:5182Photo coverage:19 %

K+ paper 2005: > 2.3x1033 years (92kton ・ year)

MC simulations

Proton decay MC <= Efficiency 8 bounded protons in O:

Fermi momentum, binding energy, various nuclear effects are taken into account.

2 free protons: simple two body decay.Atmospheric MC <= BKG for proton decay Flux : Primary cosmic rays make and e.

M.Honda et .al., Phys.Rev. D75 043006(2007)

interaction: NEUT Y.Hayato, Nucl.Phys.Proc.Suppl. 112,171(2002)

3. p3. pee++00 , ,++00 mode mode

0

P

e+ or +

Event features;• e+ ,+and 0 are back-to-back (459 MeV/c) •0 2 s : all particles can be detectable. Reconstruct proton mass and momentum.

Selection;• Fully contained, VTX in fiducail volume.• 2 or 3 ring

e+0 case;• all e-like, w/o decay-e.

+0 case;• one -like with decay-e.

• 85 < M0 < 185 MeV (for 3-ring event) .• 800 < MP < 1050 MeV & Ptot < 250 MeV/c

Selected by simple cuts!

Tot

al m

omen

tum

(M

eV/c

)

No candidate observed.

Blue: PDK MCGreen: ATM MCRed: Data

p+0

pe+0

Open data: Mtot vs Ptot

Mtot

Results of p->e+0, +0

pe+0 p+0

Exp.(kton ・yr)

Eff(%) BKG Data Eff(%) BKG Data

SK1 91.7 44.6±0.7 0.20 0 35.5±0.7 0.23 0

SK2 49.2 43.5±0.7 0.11 0 34.7±0.6 0.11 0

SK3 31.9 45.2±0.7 0.06 0 36.3±0.7 0.08 0

SK4 46.9 45.0±0.7 0.08 0 43.9±0.7 0.17 0

Total 219.7 0.45 0 0.59 0

Lifetime limit (90%C.L,)pe+0: 1.3x1034 years, p+0: 1.1x1034 years

Note 1: In SK2, photo coverage was a half of other periods, but efficiency was almost same.Note 2: In SK4, new electronics was installed and Michel electron tagging was improved. As a result, the efficiency of +0 in SK4 was increased.

e+e

16O->15N

6.3MeV

K+

+

A) K+ -> ++

t

T(dN/dt=max)

Tstart

12ns window

e

Hits

Event features;• K+ is invisible, stops and 2 body decay (P = 236 MeV/c).

Excess in P.• Proton in 16O decays and excited nucleus emits 6 MeV (Prob. 41%, not clear ring).

=> Tag to eliminate BKG.Selection:• 1 -like ring with decay-e.• 215 < P < 260 MeV/c• Search Max hit cluster by sliding time window (12ns width); - 8 < N < 60 hits for SK-1,3,4 4 < N < 30 hits for SK-2 & - T-T < 75 nsec

visibleinvisible

4. p4. p + K+ K++ mode mode-

Open dataBlack: DataRed: ATM MCBlue: PDK MC

No candidates and no excess in P.

Exp.(kton ・yr)

Eff(%) BKG Data

SK1 91.7 7.2±0.1 0.16 0

SK2 49.2 5.8±0.1 0.08 0

SK3 31.9 7.3±0.1 0.04 0

SK4 46.9 8.2±0.1 0.07 0

Total 219.7 0.35 0

N (except SK2)

Black: DataRed: ATM MCBlue: PDK MC

Sys.error (%)

-emission prob. 20.0

Energy scale 2.7

Tstart 8.3

PID 0.6

Ring count 1.4

Water parameter 1.9

Fiducial volume 3.0

Total 22.3

B) K+ -> ++

K+

+

e+

0

+

e

205 MeV/c

Event features;• Br. 21 %.•and are back-to-back and have 205 MeV/c.•P+ is just above Č thres.(not clear ring).

=> Search for monochromatic 0 with backward activities.

Selection:• 2 e-like rings with decay-e.• 85 < M0 < 185 MeV.• 175 < P0 < 250 MeV/c.• Ebk: visible energy sum in 140-180 deg. of 0 dir, Eres: in 90-140 deg. 7< Ebk < 17 MeV & Eres < 12 MeV

Eres

Ebk

M0 P0

Black: Data (w/o dcy-e cut)

Red: Atm. MC

visibleinvisible

No candidates.

Blue: PDK MCRed: ATM MCBlack: Data

Exp.(kton ・yr)

Eff(%) BKG Data

SK1 91.7 6.5±0.1 0.46 0

SK2 49.2 5.3±0.1 0.33 0

SK3 31.9 6.6±0.1 0.14 0

SK4 46.9 7.9±0.1 0.31 0

Total 219.7 1.24 0

Ebk vs EresOpen data

Ebk

Black: DataRed: ATM MCBlue: PDK MC

Sys. error (%)

-N crs in water 5.0

Energy scale 2.5

PID 2.1

Ring count 4.0

Water parameter 2.8

Fiducial volume 3.0

Total 8.3

p K+ Combined lifetime limit (90% CL): > 4.0 x1033 yrs @219.7 ktont ・ yr

-

5. Other modes5. Other modes

n

0

e+

+

-

+

p

Nucleon => lepton + meson(using 141 kt ・ year data)

•Consistent with BKG for all modes.•Most of them give the most stringent limits in the world.

B-L conserving mode

B-L violating mode

• ne-K+

e+e

e-

K+: =12ns

+

n

Search for e (330 MeV/c) and (236 MeV/c) with time difference.

Data: SK1~SK2, 141 kton ・ yearEff.: 11 % for SK1, 8.4 % for SK2BKG: 0.3 events OBS: 1 event

Lifetime limit: > 0.99x1033 years

• ppK+K+(B=2) - K+ can be seen (~800 MeV/c).-Distance of Vertices of K+ decay: ~2.6 m-Use Boosted Decision Tree technique.

Data: SK1, 91.6 kton ・ yearEff.: 12.6% BKG: 0.3 events OBS: 0 event

Lifetime limit: > 1.7x1032 years

+

K+ K+

6. Summary6. Summary• Fruitful nucleon decay results from Super-Fruitful nucleon decay results from Super-

Kamiokande.Kamiokande.• We could We could not find any evidences not find any evidences of nucleon decay.of nucleon decay.• We calculated nucleon lifetime limits with 90 % C.L.We calculated nucleon lifetime limits with 90 % C.L.

pp e e++00: > 1.3x10: > 1.3x103434 yrs yrs

++00: > 1.1x10: > 1.1x103434 yrs yrs

KK++: > 4.0x10: > 4.0x103333 yrs yrs• Other mode both (B-L) conserving and violating Other mode both (B-L) conserving and violating

modes are also studied.modes are also studied.

-

Future prospects• Need larger volume detector

(Megaton class).

Ex. Hyper-Kamiokande project (fiducail volume 0.56 Mton, 20 % photo coverage)

• Sensitivity with HK 10 years run;

e+0: 1.3x1035 year

K+: 2.5x1034 year

Cover most of major models!Cover most of major models!

pe+0

pK+

-

-

Letter of Intent: Hyper-Kaiokande Experiment arXiv:1109.3262 [hep-ex]

Backup

Q. What are BKG for e+0 mode ?Contribution to BG

CCQE 28%

CC single 32%

CC multi 19%

other CC 2%

NC 19%

+N -> lepton+N*; N*->N’+mesone CC case, e and ±, 0 are out-going particles.

+N -> lepton+Pe case, e and P are out-going particles and P interacts in water and make secondary 0.

Estimation from 1kt water detector by using K2K beam(~10Mton ・ year equivalent)

)()(63.1 45.051.0

42.033.0 sysstat

Phys.Rev.D77,032003(2008)

Background rate: 1.6±0.4 events/Mton ・ year by MC

Agree well !

Systematic error for e+0 (Efficiency)

Systematic error pe+0 p+0

-N effect 15 % 15 %

NN-correlation 7 % 7 %

Fermi motion 8 % 8 %

Detector 4.4 % 4.6 %

Total 19 % 19 %

Q. What are BKG for K+ mode ?

K+->++N -> lepton+N*; N*->N’+meson: 44%

Resonance N* decays into K+.

+N -> charged lepton+P: 17 %

Low P lepton, High P proton => VTX mis-reconstructed

K+->+

+N -> lepton+N*; N*->N’+meson: 63%

-Resonance N* decays into K+.- N* decays into 0 and charged lepton goes backward of 0.

Detail of ne-K+

e+e

e-

K+: =12ns

+

n

Selection:• FCFV 2R, e+ with decay-e• 250< Pe< 400 MeV/c,

200< P < 280 MeV/c,

• T-Te > 6 nsec

Detail of ppK+ K+

+

K+ K+

Distance between K+ decay points

K+ momentum

BDT output

nn oscillation in SK

• Exposure: 24.5x10Exposure: 24.5x103333 neutrons neutrons ・・ years years

(SK-1 data only) (SK-1 data only)

• No evidence.No evidence.

• Oscillation time for free neutron:Oscillation time for free neutron:

2.44x102.44x1088 sec sec

(theoretical suppression factor: 1.0x10(theoretical suppression factor: 1.0x102323 sec sec-1-1))

arXiv:1109.4227arXiv:1109.4227

-

Schematic view of the HK detector

Discovery potential with 3 ; pe+0: 5.7x1034 years pK+: 1.0x1034 years Sensitivity with 90 % C.L: pe+0: 1.3x1035 years pK+: 2.5x1034 years

p e+0