27
Eur. Phys. J. C (2019) 79:564 https://doi.org/10.1140/epjc/s10052-019-7058-z Regular Article - Experimental Physics Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at s = 13 TeV CMS Collaboration CERN, 1211 Geneva 23, Switzerland Received: 3 March 2019 / Accepted: 18 June 2019 / Published online: 3 July 2019 © CERN for the benefit of the CMS collaboration 2019 Abstract A search is presented for a heavy pseudoscalar boson A decaying to a Z boson and a Higgs boson with mass of 125 GeV. In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z boson decays either into a pair of electrons, muons, or neu- trinos. The analysis is performed using a data sample corre- sponding to an integrated luminosity of 35.9 fb 1 collected in 2016 by the CMS experiment at the LHC from proton– proton collisions at a center-of-mass energy of 13TeV. The data are found to be consistent with the background expec- tations. Exclusion limits are set in the context of two-Higgs- doublet models in the A boson mass range between 225 and 1000 GeV. 1 Introduction The discovery of a Higgs boson at the CERN LHC [1, 2] and the measurement of its mass, spin, parity, and couplings [3, 4] raises the question of whether the Higgs boson sector consists of only one scalar doublet, which results in a single physical Higgs boson as expected in the standard model (SM), or whether additional bosons are involved in electroweak (EW) symmetry breaking. The two-Higgs-doublet model (2HDM) [5] provides an extension of the SM Higgs boson sector introducing a second scalar doublet. The 2HDM is incorporated in supersymmetric models [6], axion models [7], and may introduce additional sources of explicit or spontaneous CP violation that explain the baryon asymmetry of the universe [8]. Various formu- lations of the 2HDM predict different couplings of the two doublets to right-handed quarks and charged leptons: in the Type-I formulation, all fermions couple to only one Higgs doublet; in the Type-II formulation, the up-type quarks cou- ple to a different doublet than the down-type quarks and lep- tons; in the “lepton-specific” formulation, the quarks couple to one of the Higgs doublets and the leptons couple to the other; and in the “flipped” formulation, the up-type fermions e-mail: [email protected] and leptons couple to one of the Higgs doublets, while the down-type quarks couple to the other. The two Higgs doublets entail the presence of five phys- ical states: two neutral and CP-even bosons (h and H, the latter being more massive), a neutral and CP-odd boson (A), and two charged scalar bosons (H ± ). The model has two free parameters, α and tan β , which are the mixing angle and the ratio of the vacuum expectation values of the two Higgs dou- blets, respectively. If tan β 5, the dominant A boson pro- duction process is via gluon–gluon fusion, otherwise asso- ciated production with a b quark-antiquark pair becomes significant. The diagrams of the two production modes are shown in Fig. 1. At small tan β values the heavy pseudoscalar boson A may decay with a large branching fraction to a Z and an h boson, if kinematically allowed [5]. These models can be probed either with indirect searches, by measuring the cross section and couplings of the SM Higgs boson [9], or by performing a direct search for an A boson. This paper describes a search for a heavy pseudoscalar A boson that decays to a Z and an h boson, both on-shell, with the Z boson decaying to + ( being an electron or a muon) or to a pair of neutrinos, and the h boson to b ¯ b. The h boson is assumed to be the 125 GeV boson discovered at the LHC. In this search, the candidate A boson is reconstructed from the invariant mass of the visible decay products in events when the Z boson decays to charged leptons, or is inferred through a partial reconstruction of the mass using quantities measured in the transverse plane when the Z boson decays to neutrinos. The signal would emerge as a peak above the SM continuum of the four-body invariant mass (m Zh ) spectrum for the for- mer decay mode and the transverse mass (m T Zh ) for the latter. The signal sensitivity is maximized by exploiting the known value of the h boson mass to rescale the jet momenta and significantly improve the m Zh resolution. In addition, selec- tions based on multivariate discriminators, exploiting event variables such as angular distributions, are used to optimize the signal efficiency and background rejection. This search is particularly sensitive to a pseudoscalar A boson with a mass smaller than twice the top quark mass and for small 123

Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79:564https://doi.org/10.1140/epjc/s10052-019-7058-z

Regular Article - Experimental Physics

Search for a heavy pseudoscalar boson decayingto a Z and a Higgs boson at

√s = 13 TeV

CMS Collaboration∗

CERN, 1211 Geneva 23, Switzerland

Received: 3 March 2019 / Accepted: 18 June 2019 / Published online: 3 July 2019© CERN for the benefit of the CMS collaboration 2019

Abstract A search is presented for a heavy pseudoscalarboson A decaying to a Z boson and a Higgs boson withmass of 125 GeV. In the final state considered, the Higgsboson decays to a bottom quark and antiquark, and the Zboson decays either into a pair of electrons, muons, or neu-trinos. The analysis is performed using a data sample corre-sponding to an integrated luminosity of 35.9 fb−1 collectedin 2016 by the CMS experiment at the LHC from proton–proton collisions at a center-of-mass energy of 13 TeV. Thedata are found to be consistent with the background expec-tations. Exclusion limits are set in the context of two-Higgs-doublet models in the A boson mass range between 225 and1000 GeV.

1 Introduction

The discovery of a Higgs boson at the CERN LHC [1,2] andthe measurement of its mass, spin, parity, and couplings [3,4]raises the question of whether the Higgs boson sector consistsof only one scalar doublet, which results in a single physicalHiggs boson as expected in the standard model (SM), orwhether additional bosons are involved in electroweak (EW)symmetry breaking.

The two-Higgs-doublet model (2HDM) [5] provides anextension of the SM Higgs boson sector introducing a secondscalar doublet. The 2HDM is incorporated in supersymmetricmodels [6], axion models [7], and may introduce additionalsources of explicit or spontaneous CP violation that explainthe baryon asymmetry of the universe [8]. Various formu-lations of the 2HDM predict different couplings of the twodoublets to right-handed quarks and charged leptons: in theType-I formulation, all fermions couple to only one Higgsdoublet; in the Type-II formulation, the up-type quarks cou-ple to a different doublet than the down-type quarks and lep-tons; in the “lepton-specific” formulation, the quarks coupleto one of the Higgs doublets and the leptons couple to theother; and in the “flipped” formulation, the up-type fermions

� e-mail: [email protected]

and leptons couple to one of the Higgs doublets, while thedown-type quarks couple to the other.

The two Higgs doublets entail the presence of five phys-ical states: two neutral and CP-even bosons (h and H, thelatter being more massive), a neutral and CP-odd boson (A),and two charged scalar bosons (H±). The model has two freeparameters, α and tan β, which are the mixing angle and theratio of the vacuum expectation values of the two Higgs dou-blets, respectively. If tan β � 5, the dominant A boson pro-duction process is via gluon–gluon fusion, otherwise asso-ciated production with a b quark-antiquark pair becomessignificant. The diagrams of the two production modes areshown in Fig. 1. At small tan β values the heavy pseudoscalarboson A may decay with a large branching fraction to a Zand an h boson, if kinematically allowed [5]. These modelscan be probed either with indirect searches, by measuring thecross section and couplings of the SM Higgs boson [9], orby performing a direct search for an A boson.

This paper describes a search for a heavy pseudoscalar Aboson that decays to a Z and an h boson, both on-shell, withthe Z boson decaying to �+�− (� being an electron or a muon)or to a pair of neutrinos, and the h boson to bb. The h boson isassumed to be the 125 GeV boson discovered at the LHC. Inthis search, the candidate A boson is reconstructed from theinvariant mass of the visible decay products in events whenthe Z boson decays to charged leptons, or is inferred througha partial reconstruction of the mass using quantities measuredin the transverse plane when the Z boson decays to neutrinos.The signal would emerge as a peak above the SM continuumof the four-body invariant mass (mZh) spectrum for the for-mer decay mode and the transverse mass (mT

Zh) for the latter.The signal sensitivity is maximized by exploiting the knownvalue of the h boson mass to rescale the jet momenta andsignificantly improve the mZh resolution. In addition, selec-tions based on multivariate discriminators, exploiting eventvariables such as angular distributions, are used to optimizethe signal efficiency and background rejection. This searchis particularly sensitive to a pseudoscalar A boson with amass smaller than twice the top quark mass and for small

123

Page 2: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 2 of 27 Eur. Phys. J. C (2019) 79 :564

Fig. 1 Representative Feynman diagrams of the production in the2HDM of a pseudoscalar A boson via gluon–gluon fusion (upper) andin association with b quarks (lower)

tan β values. In this region of the 2HDM parameter space,the A boson cross section is larger than 1 pb, and the A bosondecays predominantly to Zh [5].

With respect to the CMS search performed at√s =

8 TeV [10], this analysis benefits from the increased center-of-mass energy and integrated luminosity, includes finalstates with invisible decays of the Z boson, increases the sen-sitivity to b quark associated production, and extends the Aboson mass (mA) range from 600 to 1000 GeV. At largermA,the angular separation between the b quarks becomes small,and the Higgs boson is reconstructed as a single large-conejet; the corresponding CMS analysis presents limits on the2HDM from 800 GeV to 2 TeV [11]. The ATLAS Collabora-tion has published a search probing Zh resonances with simi-lar event selections based on a comparable data set, observinga mild excess near 440 GeV in categories with additional bquarks [12].

2 The CMS detector

A detailed description of the CMS detector, together witha definition of the coordinate system used and the relevantkinematic variables, can be found in Ref. [13].

The central feature of the CMS apparatus is a supercon-ducting solenoid of 6 m internal diameter, providing a mag-

netic field of 3.8 T. Within the solenoid volume are a sil-icon pixel and strip tracker, a lead tungstate crystal elec-tromagnetic calorimeter (ECAL), and a brass and scintilla-tor hadron calorimeter (HCAL), each composed of a bar-rel and two endcap sections. Forward calorimeters extendthe pseudorapidity coverage provided by the barrel and end-cap detectors. Muons are detected in gas-ionization cham-bers embedded in the steel flux-return yoke outside thesolenoid.

The silicon tracker measures charged particles within thepseudorapidity range |η| < 2.5. It consists of 1440 siliconpixel and 15,148 silicon strip detector modules. For noniso-lated particles with transverse momenta of 1 < pT < 10 GeVand |η| < 1.4, the track resolutions are typically 1.5% inpT and 25–90 (45–150)µm in the transverse (longitudinal)impact parameter [14]. The ECAL provides coverage up to|η| < 3.0, and the energy resolution for unconverted or late-converting electrons and photons in the barrel section is about1% for particles that have energies in the range of tens ofGeV. The dielectron mass resolution for Z → e+e− decayswhen both electrons are in the ECAL barrel is 1.9%, andis 2.9% when both electrons are in the endcaps [15]. Themuon detectors covering the range |η| < 2.4 make use ofthree different technologies: drift tubes, cathode strip cham-bers, and resistive-plate chambers. Combining muon trackswith matching tracks measured in the silicon tracker resultsin a pT resolution of 2–10% for muons with 0.1 < pT < 1TeV [16].

The first level of the CMS trigger system [17], composedof custom hardware processors, uses information from thecalorimeters and muon detectors to select the most inter-esting events in a fixed time interval of less than 4µs.The high-level trigger (HLT) processor farm decreases theevent rate from around 100 kHz to about 1 kHz, before datastorage.

3 Event reconstruction

A global event reconstruction is performed with a particle-flow (PF) algorithm [18], which uses an optimized combina-tion of information from the various elements of the detectorto identify stable particles reconstructed in the detector as anelectron, a muon, a photon, a charged or a neutral hadron.The PF particles have to pass the charged-hadron subtraction(CHS) algorithm [19], which discards charged hadrons notoriginating from the primary vertex, depending on the longi-tudinal impact parameter of the track. The primary vertex isselected as the vertex with the largest value of summed p2

Tof the PF particles, including charged leptons, neutral andcharged hadrons clustered in jets, and the associated miss-ing transverse momentum �pmiss

T , which is the negative vectorsum of the �pT of those jets.

123

Page 3: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 3 of 27 564

Electrons are reconstructed in the fiducial region |η| < 2.5by matching the energy deposits in the ECAL with chargedparticle trajectories reconstructed in the tracker [15]. Theelectron identification is based on the distribution of energydeposited along the electron trajectory, the direction andmomentum of the track, and its compatibility with the pri-mary vertex of the event. Electrons are further requiredto be isolated from other energy deposits in the detec-tor. The electron relative isolation parameter is defined asthe sum of transverse momenta of all the PF candidates,excluding the electron itself, divided by the electron pT.The PF candidates are considered if they lie within ΔR =√

(Δη)2 + (Δφ)2 < 0.3 around the electron direction,where φ is the azimuthal angle in radians, and after the con-tributions from pileup and other reconstructed electrons areremoved [15].

Muons are reconstructed within the acceptance of theCMS muon systems using tracks reconstructed in both themuon spectrometer and the silicon tracker [16]. Additionalrequirements are based on the compatibility of the trajectorywith the primary vertex, and on the number of hits observed inthe tracker and muon systems. Similarly to electrons, muonsare required to be isolated. The muon isolation is computedfrom reconstructed PF candidates within a cone of ΔR < 0.4around the muon direction, ignoring the candidate muon, anddivided by the muon pT [16].

Hadronically decaying τ leptons are used to reject W →τν background events, and are reconstructed by combin-ing one or three hadronic charged PF candidates with upto two neutral pions, the latter also reconstructed by thePF algorithm from the photons arising from the π0 → γ γ

decay [20].Jets are clustered using the anti-kT algorithm [21,22] with

a distance parameter of 0.4. The contribution of neutral par-ticles originating from pileup interactions is estimated to beproportional to the jet area derived using the FastJet pack-age [22,23], and subtracted from the jet energy. Jet energycorrections, extracted from both simulation and data in mul-tijet, γ +jets, and Z+jets events, are applied as functions of thepT and η of the jet to correct the jet response and to accountfor residual differences between data and simulation. The jetenergy resolution amounts typically to 15–20% at 30 GeV,10% at 100 GeV, and 5% at 1 TeV [24].

Jets that originate from b quarks are identified with a com-bined secondary vertex b-tagging algorithm [25] that usesthe tracks and secondary vertices associated with the jets asinputs to a neural network. The algorithm provides a b jettagging efficiency of 70%, and a misidentification rate in asample of quark and gluon jets of about 1%. The b taggingefficiency is corrected to take into account a difference atthe few percent level in algorithm performance for data andsimulation [25].

4 Data and simulated samples

The data sample analyzed in this search corresponds to anintegrated luminosity of 35.9 fb−1 of proton–proton (pp) col-lisions at a center-of-mass energy of 13 TeV collected withthe CMS detector at the LHC. Data are collected using trig-gers that require either the presence of at least one isolatedelectron or isolated muon with pT > 27 GeV, or alterna-tively a pmiss

T or HmissT larger than 90–110 GeV, the value

depending on the instantaneous luminosity. The pmissT is the

magnitude of �pmissT , and Hmiss

T is defined as the momentumimbalance of the jets in the transverse plane [17].

The pseudoscalar boson signal is simulated at leadingorder (LO) with the MadGraph5_amc@nlo 2.2.2 matrixelement generator [26] in both the gluon–gluon fusionand b quark associated production modes according to the2HDM [5], assuming a narrow signal width. The h bosonmass is set to 125 GeV, and the A boson mass ranges between225 and 1000 GeV. The A → Zh decay is simulated withMadSpin [27]. The Higgs boson is forced to decay to bb,and the vector boson to a pair of electrons, muons, τ leptons,or neutrinos. In the gluon–gluon fusion production mode, upto one additional jet is included in matrix element calcula-tions, and only the top quark contributes to the loop shown inFig. 1 (upper). The 2HDM cross sections and branching frac-tions are computed at next-to-next-to-leading order (NNLO)with 2hdmc 1.7.0 [28] and SusHi 1.6.1 [29], respectively.The parameters used in the models are: mh = 125 GeV,mH = mH± = mA, the discrete Z2 symmetry is broken as inthe minimal supersymmetric standard model (MSSM), andCP is conserved at tree level in the 2HDM Higgs sector [5].The branching fractions of the Z boson are taken from themeasured values [30].

The SM backgrounds in this search consist of the inclu-sive production of a vector boson in association with otherjets (V+jets, with V = W or Z, and V decaying to finalstates with charged leptons and neutrinos), and top quarkpair production (tt). V+jets events are simulated at LO withMadGraph5_amc@nlo with up to four partons included inthe matrix element calculations and using the MLM match-ing scheme [31]. The event yield is normalized to the NNLOcross section computed with fewz v3.1 [32]. The V bosonpT spectra are corrected to account for next-to-leading order(NLO) quantum chromodynamics (QCD) and EW contribu-tions [33]. The tt and single top quark in the t channel andtW production are simulated at NLO with powheg v2 gen-erator [34–36]. The number of events for the top quark pairproduction process is rescaled according to the cross sec-tion computed with Top++ v2.0 [37] at NNLO+NNLL, andthe transverse momenta of top quarks are corrected to matchthe distribution observed in data [38]. Other SM processes,such as SM vector boson pair production (VV), SM Higgsboson production in association with a vector boson (Vh),

123

Page 4: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 4 of 27 Eur. Phys. J. C (2019) 79 :564

single top quark (t + X) production in the s channel, and topquark production in association with vector bosons, are sim-ulated at NLO in QCD with MadGraph5_amc@nlo usingthe FxFx merging scheme [39]. The multijet contribution,estimated with the use of samples generated at LO with thesame generator, is negligible after analysis selections.

All the simulated processes use the NNPDF 3.0 [40]parton distribution functions (PDFs), and are interfacedwith pythia 8.205 [41,42] for the parton showering andhadronization. The CUETP8M1 underlying event tune [43]is used in all samples, except for top quark pair production,which adopts the CUETP8M2T4 tune [44].

Additional minimum bias pp interactions within the sameor adjacent bunch crossings (pileup) are added to the sim-ulated processes, and events are weighted to match theobserved average number of interactions per bunch crossing.Generated events are processed through a full CMS detectorsimulation based on Geant4 [45] and reconstructed with thesame algorithms used for collision data.

5 Event selection

Events are classified into three independent categories (0�,2e, and 2μ), based on the number and flavor of the recon-structed leptons. Events are required to have at least two jetswith pT > 30 GeV and |η| < 2.4 to be suitable candidatesfor the reconstruction of the h → bb decay. If more thantwo jets fulfill the requirements, the ones with the largest btagging discriminator value are used to reconstruct the Higgsboson candidate. The efficiency of the correct assignment ofthe reconstructed jets to initial quarks originating from theHiggs boson decay varies between 80 and 97%, after apply-ing the event selections, depending on the category and finalstate.

In the 0� category, no isolated electron or muon with pT >

10 GeV is allowed. Events containing isolated hadronicdecays of the τ leptons with pT > 18 GeV are vetoed as well.A selection is applied on the reconstructed pmiss

T , which isrequired to be larger than 200 GeV, such that the pmiss

T triggeris at least 95% efficient. In order to select a topology wherethe Z boson recoils against the Higgs boson, a Lorentz boostrequirement of 200 GeV on the pT of the Higgs boson can-didate, pbb

T , is applied.Multijet production is suppressed by requiring that the

minimum azimuthal angular separation between all jetsand the missing transverse momentum vector must satisfyΔφ(jet, �pmiss

T ) > 0.4. The multijet simulation is validatedin a region obtained by inverting the Δφ selection, findinga good description of data. When the Z boson decays toneutrinos, the resonance mass mA cannot be reconstructeddirectly. In this case,mA is estimated by computing the trans-verse mass from the �pmiss

T and the four-momenta of the two

jets used to reconstruct the Higgs boson candidate, definedas mT

Zh =√

2pmissT ph

T [1 − cos Δφ(h, �pmissT )], which has to

be larger than 500 GeV. The efficiency of these selectionsfor signal events with mA � 500 GeV is small, because thepT of the Z boson is not sufficient to produce a pmiss

T largeenough to pass the selection; thus, the contribution of the 0�

category is significant only for large mA.In the 2e and 2μ categories, events are required to have

at least two isolated electrons or muons within the detectorgeometrical acceptance. The pT threshold on the lepton isreferred to as p�

T, and is set to 30 GeV for the lepton withhighest pT, and to 10 GeV for the lepton with next-highestpT. The Z boson candidate is formed from the two highestpT, opposite charge, same-flavor leptons, and must have aninvariant mass m�� between 70 and 110 GeV. The m�� selec-tion lowers the contamination from tt dileptonic decays, andsignificantly reduces the contribution from Z → ττ decays.The reconstructed pmiss

T also has to be smaller than 100 GeVto reject the tt background. In order to maximize the signalacceptance, no Lorentz boost requirement is applied to theZ and h boson candidates in the dileptonic categories. TheA boson candidate is reconstructed from the invariant massmZh of the Z and h boson candidates.

If the two jets originate from a Higgs boson, their invariantmass is expected to peak close to 125 GeV. Events with a dijetinvariant mass mjj between 100 and 140 GeV enter the signalregions (SRs); otherwise, if mjj < 400 GeV, they fall in dijetmass sidebands, which are used as control regions (CRs) toestimate the contributions of the main backgrounds. Signalregions are further divided by the number of jets passing theb tagging requirement (1, 2, or at least 3 b tags). The 3 b tagcategory has been defined to select the additional b quarksfrom b quark associated production. In this region, at leastone additional jet, other than the two used to reconstruct theh boson, has to pass the kinematic selections and b taggingrequirements. The fraction of signal events passing the mjj

selection in the SR is 66–82% and 45–65% in the 1 and 2b tag categories, respectively. Control regions for the Z+jetsbackground share the same selections as the correspondingSR, except for the mjj mass window.

Dedicated CRs are defined to estimate the tt and W+jetsbackgrounds, which may enter the 0� SR if the lepton origi-nating from the W decay is outside the detector geometricalacceptance or is not reconstructed. Two W+jets CRs share thesame selection as in the 0� categories, but require exactly oneelectron or one muon passing the same trigger and selectionsof the leading lepton in the 2� categories. In order to mimicthe kinematics of leptonic W decays, where the lepton is out-side the geometrical acceptance or is not reconstructed in thedetector, the pmiss

T is recalculated by removing the contri-bution of the lepton. The min(Δφ) requirement is removed,and the dijet invariant mass selection is not applied, as the

123

Page 5: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 5 of 27 564

signal is absent in 1� final states. Events are required to havethree or fewer jets, none of them b tagged, to reduce the ttcontribution.

Four different CRs associated with the production ofevents containing top quarks are defined by inverting spe-cific selections with respect to the SR definition. Dileptonictt control regions require the same selections as the 2e and2μ categories with two b tags, but the dilepton invariantmass region around the nominal Z boson mass is vetoed(50 < m�� < 70 GeV or m�� > 110 GeV), and the mjj selec-tion is dropped. Two additional top quark CRs are definedspecifically for tt events where only one of the two W bosonsdecays into an electron or a muon, and the lepton is notreconstructed. These events contribute to the tt contamina-tion in the 0� categories. The two single-lepton top quarkCRs have the same selections as the two W+jets CRs, but inthis case the jet and b tag vetoes are inverted to enrich the ttcomposition.

An important feature of the signal is that the two b jetsoriginate from the decay of the h boson, whose mass is knownwith better precision than that provided by the bb invariantmass resolution. The measured jet pT values are thereforescaled according to their corresponding uncertainty given bythe jet energy scale corrections to constrain the dijet invari-ant mass to mjj = 125 GeV. The kinematic constraint onthe h boson mass improves the relative four-body invari-ant mass resolution from 5–6 to 2.5–4.5% for the smallestand largest values of mA, respectively. Similarly, in the 2�

channels, the electron and muon pT are scaled to a dileptoninvariant mass m�� = mZ. The effect on the mA resolutionof the kinematic constraint on the leptons is much smallerthan the one of the jets, because of their better momentumresolution.

In the 2e and 2μ categories, the A boson decay chain yieldsan additional characteristic, which helps distinguish it fromSM background. Five helicity-dependent angular observ-ables fully describe the kinematics of the A → Zh → ��bbdecay: the angle between the directions of the Z boson andthe beam in the rest frame of the A boson (cos θ∗); the decayangle between the direction of the negatively charged lep-ton relative to the Z boson momentum vector in the restframe of the Z boson (cos θ1), which is sensitive to the trans-verse polarization of the Z boson along its momentum vector;the angle between a jet from the h boson and the h bosonmomentum vector in the h boson rest frame (cos θ2); theangle between the Z and h boson decay planes in the restframe of the A boson (Φ); the angle between the h bosondecay plane and the plane where the h boson and the beamdirections lie in the A boson rest frame (Φ1). The discrim-inating power and low cross-correlation make these anglessuitable as input to a likelihood ratio multivariate discrimi-nator. This angular discriminant is defined as:

D(x1, . . . , xN ) =∏N

i=1si (xi )

∏N

i=1si (xi ) +

∏N

i=1bi (xi )

(1)

where the index i runs from 1 to 5 and corresponds to thenumber N of angular variables xi , and si and bi are the signaland Z+jets background probability density functions of thei-th variable, respectively. A selection of D > 0.5 is appliedin all 2e and 2μ SRs and CRs, except those with three btags due to the low event count. This working point retains80% of the signal efficiency and rejects 50% of the Z+jetsbackground.

Considering that top quark pair production may be as largeas 50% of the total background in certain regions of theparameter space, a second likelihood ratio discriminator isbuilt specifically to reject the tt events. This discriminatoruses only the m�� and pmiss

T variables. The background prob-ability density function considers only the top quark back-ground in order to achieve the maximum separation betweenevents with a genuine leptonically decaying Z boson recoil-ing against a pair of jets and the more complex topologiessuch as tt decays. Selecting events with a discriminator out-put larger than 0.5 rejects 75% of the tt events with a signalefficiency of 85%. This selection is applied to the dileptonicSRs and to the Z+jets CRs.

The SRs and CRs selections are summarized in Table 1.The product of the signal acceptance and selection efficiencyas a function of mA is presented in Fig. 2 separately forthe gluon–gluon fusion and b quark associated productionmodes.

6 Systematic uncertainties

The uncertainties in the trigger efficiency and the electron,muon, and τ lepton reconstruction, identification, and iso-lation efficiencies are evaluated through studies of eventswith dilepton invariant mass around the Z boson mass, andthe variation of the event yields with respect to the expec-tation from simulation amount to approximately 2–3% forthe categories with charged leptons, and 1% in the 0� cat-egories [15,16,20]. The impact of the lepton energy andmomentum scale and resolution is small after the kinematicconstraint on m��. The jet energy scale and resolution [24]affect both the selection efficiencies and the shape of thepmiss

T and mTZh distributions, and are negligible in the 2�

channels after the kinematic constraint on the dijet mass hasbeen applied. The jet four-momentum is varied by the cor-responding uncertainties, and the effect is propagated to thefinal distributions. The jet energy scale is responsible for a2–6% variation in the numbers of background and signalevents; the jet energy resolution contributes an additional 1–2% uncertainty. The effects of jet energy scale and resolution

123

Page 6: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 6 of 27 Eur. Phys. J. C (2019) 79 :564

Table 1 Definition of the signal and control regions. In 2� regions, the leptons are required to have opposite electric charge. The entries markedwith † indicate that the pmiss

T is calculated subtracting the four momentum of the lepton

Region 0� SR 0� Z CR 1� W CR 1� t CR 2� SR 2� Z CR 2� t CR

Leptons e, μ, τ veto 1e or 1μ 2e or 2μ

p�T ( GeV) – > 55 >55, 20

m�� ( GeV) – – – – 70<m��< 110 < 70,> 110

pmissT ( GeV) > 200 > 200 > 200† > 200† < 100 < 100 –

Jets ≥ 2 or 3 ≥ 2 ≤ 3 ≥ 4 ≥ 2 or 3 ≥ 2 ≥2

b-tagged jets 1, 2, or 3 0, 1, 2, or 3 0 ≥ 1 1, 2, or 3 0, 1, 2, or 3 ≥ 2

pbbT ( GeV) > 200 > 200 > 200 > 200 – – –

mjj ( GeV) > 100,< 140 < 100,> 140 – – > 100,< 140 <100,> 140 –

Δϕ(j, �pmissT ) < 0.4 < 0.4 – – – – –

Angular D – – – – > 0.5 > 0.5 –

Top quark D – – – – > 0.5 > 0.5 –

(GeV)Am200 300 400 500 600 700 800 900 1000

effi

cien

cy×

Acc

epta

nce

3−10

2−10

1−10

10l, 1 b tag 0l, 2 b tag 0l, 3 b tag2l, 1 b tag 2l, 2 b tag 2l, 3 b tag

(13 TeV)

CMSSimulation

,ll)bbνν (→ Zh →A

)τν,μν,eν) or (τ,μ with l=(e, ll)→(ZgenN ll)→(ZSRN

= ε

, ll)bbνν (→ Zh → A →pp

(GeV)Am200 300 400 500 600 700 800 900 1000

effi

cien

cy×

Acc

epta

nce

3−10

2−10

1−10

10l, 1 b tag 0l, 2 b tag 0l, 3 b tag2l, 1 b tag 2l, 2 b tag 2l, 3 b tag

(13 TeV)

CMSSimulation

,ll)bbνν (→ Zh →bbA

)τν,μν,eν) or (τ,μ with l=(e, ll)→(ZgenN ll)→(ZSRN

= ε

, ll)bbνν (→ Zh → bbA →pp

Fig. 2 Product of the signal acceptance and selection efficiency ε foran A boson produced via gluon–gluon fusion (left) and in associationwith b quarks (right) as a function of mA. The number of events passing

the signal region selections is denoted as NSR, and N gen is the numberof events generated before applying any selection

uncertainties, as well as the energy variation of the unclus-tered objects in the event, are propagated to the pmiss

T andmT

Zh distributions. The b tagging uncertainty [25] in the sig-nal yield depends on the jet pT and thus on the mass of theresonance, and the impact on the event yield ranges from 2to 4% in the 1 b tag category, 4 to 8% in the 2 b tag category,and 8 to 12% in the 3 b tag category.

The signal and background event yields are affected bythe uncertainties on the choice of PDFs [46] and the factor-ization and renormalization scale uncertainties. The formerare derived with SysCalc [47], and the latter are estimatedby varying the corresponding scales up and down by a fac-tor of two [48]. The effect of both these uncertainties canbe as large as 30% depending on the generated signal mass.The effect of the PDF uncertainties on the signal and back-ground lepton acceptance is estimated to be an average of 3%

per lepton. The top quark background is also affected by theuncertainty associated with the simulated pT spectrum of topquarks [38], which results in up to a 14% yield uncertainty.The V+jets backgrounds are affected by the uncertainties onthe QCD and EW NLO corrections, as described in Sect. 4.

A systematic uncertainty is assigned to the interpolationbetween the two mass sidebands to the SR, defined as thedifference in the ratio between data and simulated back-ground in the lower and upper sidebands, and ranges between2 and 10% depending on the channel. The extrapolation tothe 3 b tag regions is covered by a large uncertainty (20–46%) assigned to the overall background normalization, andderived by taking the ratio between data and the simulationin the 3 b tag control regions. In the dilepton categories, adedicated uncertainty is introduced to cover for minor mis-modeling effects. The background distribution is reweighted

123

Page 7: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 7 of 27 564

Table 2 Summary of statistical and systematic uncertainties for backgrounds and signal. The uncertainties marked with � are also propagated tothe mZh and mT

Zh distributions

Shape Main backgrounds Other backgrounds Signal(V+jets, tt) (t+X, VV, Vh)

Lepton and trigger efficiency � – 2–3% 2–3%

Jet energy scale � – 5% 2–6%

Jet energy resolution � – 2% 1–2%

b tagging � – 4% 4–12%

Unclustered pmissT � – 1% 1%

Pileup � – 1% 1%

PDF � – 3–5% 4–8%

Top quark pT modeling � 8–14% (only tt) – –

Fact. and renorm. scale � – 2–6% 6–14%

Monte Carlo modeling � 1–15 % –

Monte Carlo event count � 1–20% –

Interpolation to SR 2–10% –

Extrapolation to ≥ 3 b tag SR 20–46% (≥ 3 b tag only) –

Cross section – 2–10% –

Integrated luminosity – 2.5% 2.5%

Table 3 Scale factors for the main backgrounds, as derived by thecombined fit in the background-only hypothesis, with respect to theevent yield from simulated samples

Background Scale factor

Z+jets 0.993 ± 0.018

Z+b 1.214 ± 0.021

Z+bb 1.007 ± 0.025

tt 0.996 ± 0.014

W+jets 0.980 ± 0.023

with a linear function of the event centrality (defined as theratio between the sums of the pT and the energy of the twoleptons and two jets in the rest frame of the four objects) inall simulated events, and the effect is propagated to the mZh

distributions as a systematic uncertainty.Additional systematic uncertainties affect the event yields

of backgrounds and signal come from pileup contributionsand integrated luminosity [49]. The uncertainty from the lim-ited number of simulated events is treated as in Ref. [50].A summary of the systematic uncertainties is reported inTable 2.

7 Results and interpretation

The signal search is carried out by performing a combinedsignal and background maximum likelihood fit to the num-ber of events in the CRs, and the binned mZh or mT

Zh dis-tributions in the SRs. Systematic uncertainties are treated asnuisance parameters and are profiled in the statistical inter-

Eve

nts

210

310

410

510

610Data Z(ll) + jets Z(ll) + b bZ(ll) + b

) + jetsννZ( ) + bννZ( b) + bννZ( ) + jetsνW(ltt t+X VV, VH Fit unc.

Pre-fit

(13 TeV)-135.9 fb

CMS

,ll)bbνν (→ Zh →A0l

, 0b,

Z C

R

0l, 1

b, Z

CR

0l, 2

b, Z

CR

1e, 0

b, W

CR

1e, 1

b, t

CR

, 0b,

W C

Rμ1

, 1b,

t C

Rμ1 2e, 0

b, Z

CR

2e, 1

b, Z

CR

2e, 2

b, Z

CR

2e, 2

b, t

CR

, 0b,

Z C

Rμ2

, 1b,

Z C

Rμ2

, 2b,

Z C

Rμ2

, 2b,

t C

Rμ2

Dat

a / B

kg

0.80.9

11.11.2

Fig. 3 Pre- (dashed gray lines) and post-fit (stacked histograms) num-bers of events in the different control regions used in the fit. The label ineach bin summarizes the control region definition, the selection on thenumber and flavor of the leptons, and the number of b-tagged jets. Thebottom panel depicts the ratio between the data and the SM backgrounds

pretation [51–53]. The asymptotic approximation [54] of themodified frequentist CLs criterion [51,52] is used to deter-mine limits on the signal cross section at 95% confidencelevel (CL). The background-only hypothesis is tested againstthe combined signal+background hypothesis in the nine cate-

123

Page 8: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 8 of 27 Eur. Phys. J. C (2019) 79 :564

Eve

nts

10

210

310

410Data

) + jetsννZ() + bννZ(

b) + bννZ() + jetsνW(l

ttt+XVV, VHFit unc.Pre-fit

= 700 GeVAm = 1000 GeVAm = 0.1 pbbbAσ

(13 TeV)-135.9 fb

CMS0l, 1 b tag, signal region

bbνν→ Zh →A

(GeV)TZhm

500 600 700 800 900 1000 1100 1200 1300 1400 1500

σ)/bk

g-N

data

(N

2−02

Eve

nts

1

10

210

310

410

DataZ(ll) + jetsZ(ll) + b

bZ(ll) + bttt+XVV, VHFit unc.Pre-fit

= 300 GeVAm = 500 GeVAm = 1000 GeVAm = 0.1 pbbbAσ

(13 TeV)-135.9 fb

CMS2l, 1 b tag, signal region

llbb→ Zh →A

(GeV)Zhm300 400 500 600 700 800 900 1000 1100 1200

σ)/bk

g-N

data

(N

2−02

Eve

nts

1

10

210

310

Data) + jetsννZ() + bννZ(

b) + bννZ() + jetsνW(l

ttt+XVV, VHFit unc.Pre-fit

= 700 GeVAm = 1000 GeVAm = 0.1 pbbbAσ

(13 TeV)-135.9 fb

CMS0l, 2 b tag, signal region

bbνν→ Zh →A

(GeV)TZhm

500 600 700 800 900 1000 1100 1200 1300 1400 1500

σ)/bk

g-N

data

(N

2−02

Eve

nts

1

10

210

310

410DataZ(ll) + jetsZ(ll) + b

bZ(ll) + bttt+XVV, VHFit unc.Pre-fit

= 300 GeVAm = 500 GeVAm = 1000 GeVAm = 0.1 pbbbAσ

(13 TeV)-135.9 fb

CMS2l, 2 b tag, signal region

llbb→ Zh →A

(GeV)Zhm300 400 500 600 700 800 900 1000 1100 1200

σ)/bk

g-N

data

(N

2−02

Eve

nts

1

10

210

310 Data) + jetsννZ() + bννZ(

b) + bννZ() + jetsνW(l

ttt+XVV, VHFit unc.Pre-fit

= 700 GeVAm = 1000 GeVAm = 0.1 pbbbAσ

(13 TeV)-135.9 fb

CMS0l, 3 b tag, signal region

bbνν→ Zh →A

(GeV)TZhm

500 600 700 800 900 1000 1100 1200 1300 1400 1500

σ)/bk

g-N

data

(N

2−02

Eve

nts

1

10

210

310 DataZ(ll) + jetsZ(ll) + b

bZ(ll) + bttt+XVV, VHFit unc.Pre-fit

= 300 GeVAm = 500 GeVAm = 1000 GeVAm = 0.1 pbbbAσ

(13 TeV)-135.9 fb

CMS2l, 3 b tag, signal region

llbb→ Zh →A

(GeV)Zhm300 400 500 600 700 800 900 1000 1100 1200

σ)/bk

g-N

data

(N

2−02

Fig. 4 Distributions of the mTZh variable in the 0� categories (left) and

mZh in the 2� categories (right), in the 1 b tag (upper), 2 b tag (cen-ter), and 3 b tag (lower) SRs. In the 2� categories, the contributionof the 2e and 2μ channels have been summed. The gray dotted linerepresents the sum of the background before the fit; the shaded area

represents the post-fit uncertainty. The hatched red histograms repre-sent signals produced in association with b quarks and correspondingto σAB(A → Zh)B(h → bb) = 0.1 pb. The bottom panels depict thepulls in each bin, (N data−N bkg)/σ , where σ is the statistical uncertaintyin data

123

Page 9: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 9 of 27 564

Table 4 Expected and observed event yields after the fit in the signalregions. The dielectron and dimuon categories are summed together.The “–” symbol represents backgrounds with no simulated events pass-ing the selections. The signal yields refer to pre-fit values correspond-

ing to a cross section multiplied by B(A → Zh)B(h → bb) of 0.1 pb(gluon–gluon fusion for mA = 300 GeV, and in association with bquarks for mA = 1000 GeV)

Signal region 0�, 1 b tag 0�, 2 b tag 0�, ≥3 b tag 2�, 1 b tag 2�, 2 b tag 2�, ≥3 b tag

Data 2452 ± 50 398 ± 20 45 ± 7 10,512 ± 103 2188 ± 47 129 ± 11

Z+jets 740 ± 12 48 ± 1 2.0 ± 0.2 4118 ± 15 175 ± 1 18 ± 1

Z+b 220 ± 6 13 ± 1 0.46 ± 0.06 4127 ± 18 365 ± 3 23 ± 1

Z+bb 134 ± 3 86 ± 2 2.5 ± 0.3 1547 ± 11 1113 ± 7 51 ± 2

t+X 74 ± 3 18 ± 1 3.0 ± 0.4 25 ± 0 10.0 ± 0.1 –

tt 750 ± 12 143 ± 3 31 ± 3 592 ± 3 473 ± 3 26 ± 1

VV, Vh 76 ± 2 32 ± 1 0.93 ± 0.11 139 ± 1 53 ± 1 3.5 ± 0.1

W+jets 458 ± 13 65 ± 3 2.4 ± 0.3 3.7 ± 0.1 – –

Total bkg. 2451 ± 26 405 ± 8 42 ± 5 10,552 ± 35 2189 ± 12 121 ± 3

Pre-fit bkg. 2467 ± 26 427 ± 8 28 ± 5 10,740 ± 35 2250 ± 12 100 ± 3

mA = 300 GeV – – – 3.1 ± 0.2 3.3 ± 0.2 0.10 ± 0.01

mA = 1000 GeV 27.3 ± 5.2 28.6 ± 5.4 3.5 ± 0.7 5.4 ± 1.0 6.1 ± 1.2 1.2 ± 0.2

(GeV)Am300 400 500 600 700 800 900 1000

bb)

(pb)

→(h

Β Z

h)

→(A

Β A

) →

(pp

σ

2−10

1−10

1

10

,ll)bbνν (→ Zh →A (13 TeV)-135.9 fb

CMS

)=0.1α-β=3, cos(βtanType-IType-II

95% CL upper limitsObservedExpected 1 std. dev.± 2 std. dev.±

2l expected0l expected

(GeV)Am300 400 500 600 700 800 900 1000

bb)

(pb)

→(h

Β Z

h)

→(A

Β b

bA)

→(p

2−10

1−10

1

10

,ll)bbνν (→ Zh →bbA (13 TeV)-135.9 fb

CMS

)=0.1α-β=3, cos(βtanType-IType-II

95% CL upper limitsObservedExpected 1 std. dev.± 2 std. dev.±

2l expected0l expected

Fig. 5 Observed (solid black) and expected (dotted black) 95% CLupper limits on σA B(A → Zh)B(h → bb) for an A boson producedvia gluon–gluon fusion (left) and in association with b quarks (right) asa function of mA. The blue dashed lines represent the expected limits ofthe 0� and 2� categories separately. The red and magenta solid curves

and their shaded areas correspond to the product of the cross sectionsand the branching fractions and the relative uncertainties predicted bythe 2HDM Type-I and Type-II for the arbitrary parameters tan β = 3and cos(β − α) = 0.1

gories, split according to the number and flavor of the leptonsand number of b-tagged jets. The normalizations of the mainbackgrounds (Z+jets, Z+b, Z+bb, tt, W+jets) are allowed tofloat in the fit, and are constrained in the CRs. The multiplica-tive scale factors for the main backgrounds determined by thefit are reported in Table 3, and the overall event yields in theCRs are shown in Fig. 3 before and after the fit. The expectedand observed number of events in the SRs are reported inTable 4, and the mZh and mT

Zh distributions are shown inFig. 4.

The data are well described by the SM processes. Upperlimits are derived on the product of the cross section for aheavy pseudoscalar boson A and the branching fractions for

the decays A → Zh and h → bb. The limits are obtainedby considering the A boson produced via the gluon–gluonfusion and b quark associated production processes sepa-rately, in the approximation where the natural width of theA boson ΓA is smaller than the experimental resolution, andare reported in Fig. 5. An upper limit at 95% CL on the num-ber of signal events is set on σA B(A → Zh)B(h → bb),excluding above 1 pb for mA near the kinematic threshold,≈0.3 pb for mA ≈ 2mt , and as low as 0.02 pb at the high end(1000 GeV) of the considered mass range. The sensitivity ofthe analysis is limited by the amount of data, and not by sys-tematic uncertainties. These results extend the search for a2HDM pseudoscalar boson A for mass up to 1 TeV, which

123

Page 10: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 10 of 27 Eur. Phys. J. C (2019) 79 :564

1− 0.5− 0 0.5 1)α-βcos(

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMSType-I 2HDM

= 300 GeVAm

ObservedExpected 1 std. dev.± 2 std. dev.±

1− 0.5− 0 0.5 1)α-βcos(

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMS

Type-II 2HDM

= 300 GeVAm

ObservedExpected 1 std. dev.± 2 std. dev.±

A/mAΓ> 2%

> 5%

> 10%

1− 0.5− 0 0.5 1)α-βcos(

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMS

Flipped 2HDM

= 300 GeVAm

ObservedExpected 1 std. dev.± 2 std. dev.±

A/mAΓ> 2%

> 5%

> 10%

1− 0.5− 0 0.5 1)α-βcos(

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMSLepton-specific 2HDM

= 300 GeVAm

ObservedExpected 1 std. dev.± 2 std. dev.±

A/mAΓ> 2%

Fig. 6 Observed and expected (with±1, ±2 standard deviation bands)exclusion limits for Type-I (upper left), Type-II (upper right), flipped(lower left), lepton-specific (lower right) models, as a function ofcos(β − α) and tan β. Contours are derived from the projection onthe 2HDM parameter space for the mA = 300 GeV signal hypothesis.

The excluded region is represented by the shaded gray area. The regionsof the parameter space where the natural width of the A boson ΓA iscomparable to the experimental resolution and thus the narrow widthapproximation is not valid are represented by the hatched gray areas

is a kinematic region previously unexplored by CMS in the8 TeV data analysis [10]. When mA is larger than 1 TeV, theCMS analysis with merged jets [11] retains a better sensitiv-ity. The sensitivity is comparable to the ATLAS search [12],which observed a mild local (global) excess of 3.6 (2.4) stan-dard deviations corresponding to mA ≈ 440 GeV in finalstates with 2μ and 3 or more b-tagged jets. A slight deficit isobserved by CMS in the corresponding region.

The results are interpreted in terms of Type-I, Type-II,“lepton-specific”, and “flipped” 2HDM formulations [5]. Inthe scenario with cos(β−α) = 0.1 and tan β = 3, an A bosonup to 380 and 350 GeV is excluded in 2HDM Type-I and

Type-II, respectively, as depicted in Fig. 5. These exclusionlimits are used to constrain the two-dimensional plane of the2HDM parameters [cos(β − α), tan β] as reported in Fig. 6,with fixed mA = 300 GeV in the range 0.1 ≤ tan β ≤ 100and −1 ≤ cos(β − α) ≤ 1, using the convention 0 < β −α < π . Because of the suppressed A boson cross section andB(A → Zh), the region near cos(β −α)≈0 is not accessiblein this search. On the other hand, B(h → bb) vanishes inthe diagonal regions corresponding to α close to 0 in Type-IIand flipped 2HDM, and α → ±π/2 in Type-I and lepton-specific scenarios. The exclusion as a function of mA, fixingcos(β − α) = 0.1, is also reported in Fig. 7.

123

Page 11: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 11 of 27 564

300 400 500 600 700 1000 (GeV)Am

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMSType-I 2HDM

) = 0.1α-βcos(

ObservedExpected 1 std. dev.± 2 std. dev.±

A/mAΓ> 2%

> 5%

> 10%

300 400 500 600 700 1000 (GeV)Am

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMS

Type-II 2HDM

) = 0.1α-βcos( ObservedExpected 1 std. dev.± 2 std. dev.±

A/mAΓ> 2%

> 5%

> 10%

300 400 500 600 700 1000 (GeV)Am

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMS

Flipped 2HDM

) = 0.1α-βcos( ObservedExpected 1 std. dev.± 2 std. dev.±

A/mAΓ> 2%

> 5%

> 10%

300 400 500 600 700 1000 (GeV)Am

1−10

1

10

210βta

n

(13 TeV)-135.9 fbCMSLepton-specific 2HDM

) = 0.1α-βcos(

ObservedExpected 1 std. dev.± 2 std. dev.±

A/mAΓ> 2%

> 5%

> 10%

Fig. 7 Observed and expected (with±1, ±2 standard deviation bands)exclusion limits for Type-I (upper left), Type-II (upper right), flipped(lower left), lepton-specific (lower right) models, as a function of mAand tan β, fixing cos(β − α) = 0.1. The excluded region is represented

by the shaded gray area. The regions of the parameter space where thenatural width of the A boson ΓA is comparable to the experimentalresolution and thus the narrow width approximation is not valid arerepresented by the hatched gray areas

8 Summary

A search is presented in the context of an extended Higgsboson sector for a heavy pseudoscalar boson A that decaysinto a Z boson and an h boson with mass of 125 GeV, with theZ boson decaying into electrons, muons, or neutrinos, andthe h boson into bb. The SM backgrounds are suppressed byusing the characteristics of the considered signal, namely theproduction and decay angles of the A, Z, and h bosons,and by improving the A mass resolution through a kine-matic constraint on the reconstructed invariant mass of theh boson candidate. No excess of data over the backgroundprediction is observed. Upper limits are set at 95% confi-

dence level on the product of the A boson cross sections andthe branching fractions σA B(A → Zh)B(h → bb), whichexclude 1 to 0.01 pb in the 225–1000 GeV mass range, andare comparable to the corresponding ATLAS search. Inter-pretations are given in the context of Type-I, Type-II, flipped,and lepton-specific two-Higgs-doublet model formulations,thereby reducing the allowed parameter space for extensionsof the SM with respect to previous CMS searches.

Acknowledgements We congratulate our colleagues in the CERNaccelerator departments for the excellent performance of the LHC andthank the technical and administrative staffs at CERN and at other CMSinstitutes for their contributions to the success of the CMS effort. Inaddition, we gratefully acknowledge the computing centers and per-sonnel of the Worldwide LHC Computing Grid for delivering so effec-

123

Page 12: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 12 of 27 Eur. Phys. J. C (2019) 79 :564

tively the computing infrastructure essential to our analyses. Finally, weacknowledge the enduring support for the construction and operation ofthe LHC and the CMS detector provided by the following funding agen-cies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq,CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS,MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES andCSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERCIUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Fin-land); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Ger-many); GSRT (Greece); NKFIA (Hungary); DAE and DST (India);IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic ofKorea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVES-TAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (NewZealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal);JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD(Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss FundingAgencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, andNSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR(Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individu-als have received support from the Marie-Curie program and the Euro-pean Research Council and Horizon 2020 Grant, contract No. 675440(European Union); the Leventis Foundation; the A.P. Sloan Founda-tion; the Alexander von Humboldt Foundation; the Belgian FederalScience Policy Office; the Fonds pour la Formation à la Recherchedans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschapvoor Innovatie door Wetenschap en Technologie (IWT-Belgium); theF.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science– EOS” – be.h project n. 30820817; the Ministry of Education, Youthand Sports (MEYS) of the Czech Republic; the Lendület (“Momen-tum”) Program and the János Bolyai Research Scholarship of theHungarian Academy of Sciences, the New National Excellence Pro-gram ÚNKP, the NKFIA research Grants 123842, 123959, 124845,124850, and 125105 (Hungary); the Council of Science and Indus-trial Research, India; the HOMING PLUS program of the Founda-tion for Polish Science, cofinanced from European Union, RegionalDevelopment Fund, the Mobility Plus program of the Ministry of Sci-ence and Higher Education, the National Science Center (Poland), con-tracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by QatarNational Research Fund; the Programa Estatal de Fomento de la Inves-tigación Científica y Técnica de Excelencia María de Maeztu, GrantMDM-2015-0509 and the Programa Severo Ochoa del Principado deAsturias; the Thalis and Aristeia programs cofinanced by EU-ESF andthe Greek NSRF; the Rachadapisek Sompot Fund for PostdoctoralFellowship, Chulalongkorn University and the Chulalongkorn Aca-demic into Its 2nd Century Project Advancement Project (Thailand);the Welch Foundation, contract C-1845; and the Weston Havens Foun-dation (USA).

Data Availability Statement This manuscript has no associated data orthe data will not be deposited. [Authors’ comment: Release and preser-vation of data used by the CMS Collaboration as the basis for publica-tions is guided by the CMS policy as written in its document “CMS datapreservation, re-use and open access policy” (https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=6032&filename=CMSDataPolicyV1.2.pdf&version=2).]

Open Access This article is distributed under the terms of the CreativeCommons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,and reproduction in any medium, provided you give appropriate creditto the original author(s) and the source, provide a link to the CreativeCommons license, and indicate if changes were made.Funded by SCOAP3.

References

1. ATLAS Collaboration, Observation of a new particle in the searchfor the Standard Model Higgs boson with the ATLAS detector atthe LHC. Phys. Lett. B 716, 1 (2012). https://doi.org/10.1016/j.physletb.2012.08.020. arXiv:1207.7214

2. CMS Collaboration, Observation of a new boson at a mass of125 GeV with the CMS experiment at the LHC. Phys. Lett.B 716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021.arXiv:1207.7235

3. ATLAS and CMS Collaborations, Combined measurement ofthe Higgs boson mass in pp collisions at

√s = 7 and 8 TeV

with the ATLAS and CMS experiments. Phys. Rev. Lett. 114,191803 (2015). https://doi.org/10.1103/PhysRevLett.114.191803.arXiv:1503.07589

4. ATLAS and CMS Collaborations, Measurements of the Higgsboson production and decay rates and constraints on its couplingsfrom a combined ATLAS and CMS analysis of the LHC pp colli-sion data at

√s = 7 and 8 TeV. JHEP 08, 045 (2016). https://doi.

org/10.1007/JHEP08(2016)045. arXiv:1606.022665. G.C. Branco et al., Theory and phenomenology of two-Higgs-

doublet models. Phys. Rept. 516, 1 (2012). https://doi.org/10.1016/j.physrep.2012.02.002. arXiv:1106.0034

6. S.P. Martin, A Supersymmetry primer. Adv. Ser. Direct.HEP 21, 1 (2010). https://doi.org/10.1142/9789814307505_0001.arXiv:hep-ph/9709356

7. J.E. Kim, Light pseudoscalars, particle physics and cos-mology. Phys. Rept. 150, 1 (1987). https://doi.org/10.1016/0370-1573(87)90017-2

8. L. Fromme, S.J. Huber, M. Seniuch, Baryogenesis in the two-Higgs doublet model. JHEP 11, 038 (2006). https://doi.org/10.1088/1126-6708/2006/11/038. arXiv:hep-ph/0605242

9. CMS Collaboration, Combined measurements of Higgs bosoncouplings in proton–proton collisions at

√s = 13 TeV (2018).

arXiv:1809.10733 (Submitted to EPJC)10. CMS Collaboration, Search for a pseudoscalar boson decaying into

a Z boson and the 125 GeV Higgs boson in �+�−bb final states.Phys. Lett. B 748, 221 (2015). https://doi.org/10.1016/j.physletb.2015.07.010. arXiv:1504.04710

11. CMS Collaboration, Search for heavy resonances decaying into avector boson and a Higgs boson in final states with charged leptons,neutrinos and b quarks at

√s = 13 TeV. JHEP 11, 172 (2018).

https://doi.org/10.1007/JHEP11(2018)172. arXiv:1807.0282612. ATLAS Collaboration, Search for heavy resonances decaying into

a W or Z boson and a Higgs boson in final states with leptonsand b-jets in 36 fb−1 of

√s = 13 TeV pp collisions with the

ATLAS detector. JHEP 03 (2018) 174. https://doi.org/10.1007/JHEP03(2018)174. arXiv:1712.06518

13. CMS Collaboration, The CMS experiment at the CERN LHC.JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004

14. CMS Collaboration, Description and performance of track andprimary-vertex reconstruction with the CMS tracker. JINST 9,P10009 (2014). https://doi.org/10.1088/1748-0221/9/10/P10009.arXiv:1405.6569

15. CMS Collaboration, Performance of electron reconstruction andselection with the CMS detector in proton-proton collisions at√s = 8 TeV. JINST 10, P06005 (2015). https://doi.org/10.1088/

1748-0221/10/06/P06005. arXiv:1502.0270116. CMS Collaboration, Performance of CMS muon reconstruction in

pp collision events at√s = 7 TeV. JINST 7, P10002 (2012). https://

doi.org/10.1088/1748-0221/7/10/P10002. arXiv:1206.407117. CMS Collaboration, The CMS trigger system. JINST 12,

P01020 (2017). https://doi.org/10.1088/1748-0221/12/01/P01020. arXiv:1609.02366

123

Page 13: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 13 of 27 564

18. CMS Collaboration, Particle-flow reconstruction and globalevent description with the CMS detector. JINST 12, P10003(2017). https://doi.org/10.1088/1748-0221/12/10/P10003.arXiv:1706.04965

19. CMS Collaboration, Pileup removal algorithms. CMS PhysicsAnalysis Summary CMS-PAS-JME-14-001, CERN (2014)

20. CMS Collaboration, Reconstruction and identification of τ

lepton decays to hadrons and ντ at CMS. JINST 11, P01019(2016). https://doi.org/10.1088/1748-0221/11/01/P01019.arXiv:1510.07488

21. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algo-rithm. JHEP 04, 063 (2008). https://doi.org/10.1088/1126-6708/2008/04/063. arXiv:0802.1189

22. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual.Eur. Phys. J. C 72, 1896 (2012). https://doi.org/10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097

23. M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets.JHEP 04, 005 (2008). https://doi.org/10.1088/1126-6708/2008/04/005. arXiv:0802.1188

24. CMS Collaboration, Jet energy scale and resolution inthe CMS experiment in pp collisions at 8 TeV. JINST12, P02014 (2017). https://doi.org/10.1088/1748-0221/12/02/P02014. arXiv:1607.03663

25. CMS Collaboration, Identification of heavy-flavour jets withthe CMS detector in pp collisions at 13 TeV. JINST13, P05011 (2018). https://doi.org/10.1088/1748-0221/13/05/P05011. arXiv:1712.07158

26. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching toparton shower simulations. JHEP 07, 079 (2014). https://doi.org/10.1007/JHEP07(2014)079. arXiv:1405.0301

27. P. Artoisenet, R. Frederix, O. Mattelaer, R. Rietkerk, Auto-matic spin-entangled decays of heavy resonances in MonteCarlo simulations. JHEP 03, 015 (2013). https://doi.org/10.1007/JHEP03(2013)015. arXiv:1212.3460

28. D. Eriksson, J. Rathsman, O. Stål, 2HDMC – two-Higgs-doubletmodel calculator physics and manual. Comput. Phys. Com-mun. 181, 189 (2010). https://doi.org/10.1016/j.cpc.2009.09.011.arXiv:0902.0851

29. R.V. Harlander, S. Liebler, H. Mantler, SusHi: a program for thecalculation of Higgs production in gluon fusion and bottom-quarkannihilation in the Standard Model and the MSSM. Comput. Phys.Commun. 184, 1605 (2013). https://doi.org/10.1016/j.cpc.2013.02.006. arXiv:1212.3249

30. Particle Data Group Collaboration, Review of particle physics.Phys. Rev. D 98, 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

31. J. Alwall et al., Comparative study of various algorithms for themerging of parton showers and matrix elements in hadronic colli-sions. Eur. Phys. J. C 53, 473 (2008). https://doi.org/10.1140/epjc/s10052-007-0490-5. arXiv:0706.2569

32. Y. Li, F. Petriello, Combining QCD and electroweak correctionsto dilepton production in FEWZ. Phys. Rev. D 86, 094034 (2012).https://doi.org/10.1103/PhysRevD.86.094034. arXiv:1208.5967

33. S. Kallweit et al., NLO QCD+EW predictions for V+jetsincluding off-shell vector-boson decays and multijet merging.JHEP 04, 021 (2016). https://doi.org/10.1007/JHEP04(2016)021.arXiv:1511.08692

34. P. Nason, A new method for combining NLO QCD with showerMonte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146

35. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computa-tions with parton shower simulations: the POWHEG method. JHEP11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070.arXiv:0709.2092

36. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework forimplementing NLO calculations in shower Monte Carlo programs:the POWHEG BOX. JHEP 06, 043 (2010). https://doi.org/10.1007/JHEP06(2010)043. arXiv:1002.2581

37. M. Czakon, A. Mitov, Top++: a program for the calculation ofthe top-pair cross-section at hadron colliders. Comput. Phys. Com-mun. 185, 2930 (2014). https://doi.org/10.1016/j.cpc.2014.06.021.arXiv:1112.5675

38. CMS Collaboration, Measurement of differential cross sections fortop quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV. Phys. Rev. D 95, 092001 (2017). https://doi.org/10.1103/PhysRevD.95.092001. arXiv:1610.04191

39. R. Frederix, S. Frixione, Merging meets matching in [email protected] 12, 061 (2012). https://doi.org/10.1007/JHEP12(2012)061.arXiv:1209.6215

40. NNPDF Collaboration, Parton distributions for the LHC Run II.JHEP 04, 040 (2015). https://doi.org/10.1007/JHEP04(2015)040.arXiv:1410.8849

41. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA8.1. Comput. Phys. Commun 178, 852 (2008). https://doi.org/10.1016/j.cpc.2008.01.036. arXiv:0710.3820

42. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics andmanual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175

43. CMS Collaboration, Event generator tunes obtained from underly-ing event and multiparton scattering measurements. Eur. Phys. J. C76, 155 (2016). https://doi.org/10.1140/epjc/s10052-016-3988-x.arXiv:1512.00815

44. CMS Collaboration, Investigations of the impact of the partonshower tuning in Pythia 8 in the modelling of tt at

√s = 8 and

13 TeV. CMS Physics Analysis Summary CMS-PAS-TOP-16-021,CERN (2016)

45. GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl.Instrum. Meth. A 506, 250 (2003) https://doi.org/10.1016/S0168-9002(03)01368-8

46. J. Butterworth et al., PDF4LHC recommendations for LHC Run II.J. Phys. G 43, 23001 (2016). https://doi.org/10.1088/0954-3899/43/2/023001. arXiv:1510.03865

47. A. Kalogeropoulos, J. Alwall, The SysCalc code: a tool to derivetheoretical systematic uncertainties (2018). arXiv:1801.08401

48. S. Catani, D. de Florian, M. Grazzini, P. Nason, Soft gluon resum-mation for Higgs boson production at hadron colliders. JHEP07, 028 (2003). https://doi.org/10.1088/1126-6708/2003/07/028.arXiv:hep-ph/0306211

49. CMS Collaboration, CMS luminosity measurement for the 2016data taking period. CMS Physics Analysis Summary CMS-PAS-LUM-17-001, CERN (2017)

50. R. Barlow, C. Beeston, Fitting using finite Monte Carlo samples.Comput. Phys. Commun. 77, 219 (1993). https://doi.org/10.1016/0010-4655(93)90005-W

51. T. Junk, Confidence level computation for combining searches withsmall statistics. Nucl. Instrum. Meth. A 434, 435 (1999). https://doi.org/10.1016/S0168-9002(99)00498-2. arXiv:hep-ex/9902006

52. A.L. Read, Presentation of search results: the CLs technique. J.Phys. G 28, 2693 (2002). https://doi.org/10.1088/0954-3899/28/10/313

53. ATLAS and CMS Collaborations, Procedure for the LHC Higgsboson search combination in Summer 2011. CMS Note CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, CERN (2011)

54. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formu-lae for likelihood-based tests of new physics. Eur. Phys. J. C 71,1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0.arXiv:1007.1727 (Erratum: 10.1140/epjc/s10052-013-2501-z)

123

Page 14: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 14 of 27 Eur. Phys. J. C (2019) 79 :564

CMS Collaboration

Yerevan Physics Institute, Yerevan, ArmeniaA. M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, AustriaW. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl,R. Frühwirth1, V. M. Ghete, J. Hrubec, M. Jeitler1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad,H. Rohringer, J. Schieck1, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann,C.-E. Wulz1, M. Zarucki

Institute for Nuclear Problems, Minsk, BelarusV. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, BelgiumE. A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, BelgiumS. Abu Zeid, F. Blekman, J. D’Hondt, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini,S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, BelgiumD. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart,R. Goldouzian, A. Grebenyuk, A. K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde,P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, BelgiumT. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke,B. Vermassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, BelgiumH. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco,G. Krintiras, V. Lemaitre, A. Magitteri, K. Piotrzkowski, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, BrazilF. L. Alves, G. A. Alves, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M. E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BrazilE. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, E. Coelho, E. M. Da Costa, G. G. Da Silveira4,D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo,M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W. L. Prado Da Silva, L. J. Sanchez Rosas, A. Santoro,A. Sznajder, M. Thiel, E. J. Tonelli Manganote3, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulistaa , Universidade Federal do ABCb, São Paulo, BrazilS. Ahujaa , C. A. Bernardesa , L. Calligarisa , T. R. Fernandez Perez Tomeia , E. M. Gregoresb, P. G. Mercadanteb,S. F. Novaesa , Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, BulgariaA. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, BulgariaA. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, ChinaW. Fang5, X. Gao5, L. Yuan

Institute of High Energy Physics, Beijing, ChinaM. Ahmad, J. G. Bian, G. M. Chen, H. S. Chen, M. Chen, Y. Chen, C. H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo,S. M. Shaheen6, A. Spiezia, J. Tao, Z. Wang, E. Yazgan, H. Zhang, S. Zhang6, J. Zhao

123

Page 15: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 15 of 27 564

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, ChinaY. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S. J. Qian, D. Wang

Tsinghua University, Beijing, ChinaY. Wang

Universidad de Los Andes, Bogota, ColombiaC. Avila, A. Cabrera, C. A. Carrillo Montoya, L. F. Chaparro Sierra, C. Florez, C. F. González Hernández,M. A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, CroatiaB. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, CroatiaZ. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, CroatiaV. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov7, T. Susa

University of Cyprus, Nicosia, CyprusM. W. Ather, A. Attikis, A. Ioannou, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P. A. Razis,H. Rykaczewski

Charles University, Prague, Czech RepublicM. Finger8, M. Finger Jr.8

Escuela Politecnica Nacional, Quito, EcuadorE. Ayala

Universidad San Francisco de Quito, Quito, EcuadorE. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High EnergyPhysics, Cairo, EgyptH. Abdalla9, A. A. Abdelalim10,11, A. Mohamed11

National Institute of Chemical Physics and Biophysics, Tallinn, EstoniaS. Bhowmik, A. Carvalho Antunes De Oliveira, R. K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, FinlandP. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, FinlandJ. Havukainen, J. K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti,T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, FinlandT. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, FranceM. Besancon, F. Couderc, M. Dejardin, D. Denegri, J. L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras,G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M. Ö. Sahin,M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, FranceA. Abdulsalam12, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher,A. Lobanov, J. Martin Blanco, C. Martin Perez, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, J. Rembser,R. Salerno, J. B. Sauvan, Y. Sirois, A. G. Stahl Leiton, A. Zabi, A. Zghiche

123

Page 16: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 16 of 27 Eur. Phys. J. C (2019) 79 :564

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, FranceJ.-L. Agram13, J. Andrea, D. Bloch, J.-M. Brom, E. C. Chabert, V. Cherepanov, C. Collard, E. Conte13, J.-C. Fontaine13,D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3,Villeurbanne, FranceS. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon,Villeurbanne, FranceS. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco,S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I. B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito,S. Perries, A. Popov14, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, GeorgiaT. Toriashvili15

Tbilisi State University, Tbilisi, GeorgiaZ. Tsamalaidze8

RWTH Aachen University, I. Physikalisches Institut, Aachen, GermanyC. Autermann, L. Feld, M. K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M. P. Rauch, C. Schomakers, J. Schulz,M. Teroerde, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, GermanyA. Albert, D. Duchardt, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann,K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej,H. Reithler, M. Rieger, A. Schmidt, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, GermanyG. Flügge, O. Hlushchenko, T. Kress, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl16

Deutsches Elektronen-Synchrotron, Hamburg, GermanyM. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke, U. Behrens,A. Bermúdez Martínez, D. Bertsche, A. A. Bin Anuar, K. Borras17, V. Botta, A. Campbell, P. Connor,C. Contreras-Campana, V. Danilov, A. De Wit, M. M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin,T. Eichhorn, A. Elwood, E. Eren, E. Gallo18, A. Geiser, J. M. Grados Luyando, A. Grohsjean, M. Guthoff, M. Haranko,A. Harb, J. Hauk, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz,J. Leonard, K. Lipka, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A. B. Meyer, M. Meyer, M. Missiroli, G. Mittag,J. Mnich, V. Myronenko, S. K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger,R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, G. P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann,C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, GermanyR. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gonzalez, P. Gunnellini,J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange,D. Marconi, J. Multhaup, M. Niedziela, C. E. N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf,P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F. M. Stober, M. Stöver, A. Vanhoefer,B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, GermanyM. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm,K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M. A. Harrendorf, F. Hartmann16, S. M. Heindl, U. Husemann,I. Katkov14, S. Kudella, S. Mitra, M. U. Mozer, Th. Müller, M. Musich, M. Plagge, G. Quast, K. Rabbertz, M. Schröder,I. Shvetsov, H. J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, GreeceG. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki

123

Page 17: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 17 of 27 564

National and Kapodistrian University of Athens, Athens, GreeceA. Agapitos, G. Karathanasis, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, E. Tziaferi, K. Vellidis

National Technical University of Athens, Athens, GreeceK. Kousouris, I. Papakrivopoulos, G. Tsipolitis

University of Ioánnina, Ioánnina, GreeceI. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas,J. Strologas, F. A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, HungaryM. Bartók20, M. Csanad, N. Filipovic, P. Major, M. I. Nagy, G. Pasztor, O. Surányi, G. I. Veres

Wigner Research Centre for Physics, Budapest, HungaryG. Bencze, C. Hajdu, D. Horvath21, Á. Hunyadi, F. Sikler, T. Á. Vámi, V. Veszpremi, G. Vesztergombi†

Institute of Nuclear Research ATOMKI, Debrecen, HungaryN. Beni, S. Czellar, J. Karancsi20, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, HungaryP. Raics, Z. L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, IndiaS. Choudhury, J. R. Komaragiri, P. C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, IndiaS. Bahinipati23, C. Kar, P. Mal, K. Mandal, A. Nayak24, D. K. Sahoo23, S. K. Swain

Panjab University, Chandigarh, IndiaS. Bansal, S. B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari,M. Lohan, A. Mehta, K. Sandeep, S. Sharma, J. B. Singh, A. K. Virdi, G. Walia

University of Delhi, Delhi, IndiaA. Bhardwaj, B. C. Choudhary, R. B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka,K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, IndiaR. Bhardwaj25, M. Bharti25, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep25, D. Bhowmik, S. Dey, S. Dutt25,S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P. K. Rout, A. Roy, S. Roy Chowdhury, G. Saha, S. Sarkar,M. Sharan, B. Singh25, S. Thakur25

Indian Institute of Technology Madras, Chennai, IndiaP. K. Behera

Bhabha Atomic Research Centre, Mumbai, IndiaR. Chudasama, D. Dutta, V. Jha, V. Kumar, P. K. Netrakanti, L. M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, IndiaT. Aziz, M. A. Bhat, S. Dugad, G. B. Mohanty, N. Sur, B. Sutar, RavindraKumar Verma

Tata Institute of Fundamental Research-B, Mumbai, IndiaS. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, M. Maity26,G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar26

Indian Institute of Science Education and Research (IISER), Pune, IndiaS. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, IranS. Chenarani27, E. Eskandari Tadavani, S. M. Etesami27, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri,F. Rezaei Hosseinabadi, B. Safarzadeh28, M. Zeinali

123

Page 18: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 18 of 27 Eur. Phys. J. C (2019) 79 :564

University College Dublin, Dublin, IrelandM. Felcini, M. Grunewald

INFN Sezione di Baria , Università di Barib, Politecnico di Baric, Bari, ItalyM. Abbresciaa ,b, C. Calabriaa ,b, A. Colaleoa , D. Creanzaa ,c, L. Cristellaa ,b, N. De Filippisa ,c, M. De Palmaa ,b,A. Di Florioa ,b, F. Erricoa ,b, L. Fiorea , A. Gelmia ,b, G. Iasellia ,c, M. Incea ,b, S. Lezkia ,b, G. Maggia ,c, M. Maggia ,G. Minielloa ,b, S. Mya ,b, S. Nuzzoa ,b, A. Pompilia ,b, G. Pugliesea ,c, R. Radognaa , A. Ranieria , G. Selvaggia ,b,A. Sharmaa , L. Silvestrisa , R. Vendittia , P. Verwilligena , G. Zitoa

INFN Sezione di Bolognaa , Università di Bolognab, Bologna, ItalyG. Abbiendia , C. Battilanaa ,b, D. Bonacorsia ,b, L. Borgonovia ,b, S. Braibant-Giacomellia ,b, R. Campaninia ,b,P. Capiluppia ,b, A. Castroa ,b, F. R. Cavalloa , S. S. Chhibraa ,b, C. Cioccaa , G. Codispotia ,b, M. Cuffiania ,b,G. M. Dallavallea , F. Fabbria , A. Fanfania ,b, E. Fontanesi, P. Giacomellia , C. Grandia , L. Guiduccia ,b, F. Iemmia ,b,S. Lo Meoa , S. Marcellinia , G. Masettia , A. Montanaria , F. L. Navarriaa ,b, A. Perrottaa , F. Primaveraa ,b,16, T. Rovellia ,b,G. P. Sirolia ,b, N. Tosia

INFN Sezione di Cataniaa , Università di Cataniab, Catania, ItalyS. Albergoa ,b, A. Di Mattiaa , R. Potenzaa ,b, A. Tricomia ,b, C. Tuvea ,b

INFN Sezione di Firenzea , Università di Firenzeb, Firenze, ItalyG. Barbaglia , K. Chatterjeea ,b, V. Ciullia ,b, C. Civininia , R. D’Alessandroa ,b, E. Focardia ,b, G. Latino, P. Lenzia ,b,M. Meschinia , S. Paolettia , L. Russoa ,29, G. Sguazzonia , D. Stroma , L. Viliania

INFN Laboratori Nazionali di Frascati, Frascati, ItalyL. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genovaa , Università di Genovab, Genova, ItalyF. Ferroa , R. Mulargiaa ,b, F. Raveraa ,b, E. Robuttia , S. Tosia ,b

INFN Sezione di Milano-Bicoccaa , Università di Milano-Bicoccab, Milan, ItalyA. Benagliaa , A. Beschib, F. Brivioa ,b, V. Cirioloa ,b,16, S. Di Guidaa ,d ,16, M. E. Dinardoa ,b, S. Fiorendia ,b, S. Gennaia ,A. Ghezzia ,b, P. Govonia ,b, M. Malbertia ,b, S. Malvezzia , D. Menascea , F. Montia , L. Moronia , M. Paganonia ,b,D. Pedrinia , S. Ragazzia ,b, T. Tabarelli de Fatisa ,b, D. Zuoloa ,b

INFN Sezione di Napolia , Università di Napoli ’Federico II’ b, Napoli, Italy, Università della Basilicatac, Potenza,Italy, Università G. Marconid , Rome, ItalyS. Buontempoa , N. Cavalloa ,c, A. De Iorioa ,b, A. Di Crescenzoa ,b, F. Fabozzia ,c, F. Fiengaa , G. Galatia , A. O. M. Iorioa ,b,W. A. Khana , L. Listaa , S. Meolaa ,d ,16, P. Paoluccia ,16, C. Sciaccaa ,b, E. Voevodinaa ,b

INFN Sezione di Padovaa , Università di Padovab, Padova, Italy, Università di Trentoc, Trento, ItalyP. Azzia , N. Bacchettaa , D. Biselloa ,b, A. Bolettia ,b, A. Bragagnolo, R. Carlina ,b, P. Checchiaa , M. Dall’Ossoa ,b,P. De Castro Manzanoa , T. Dorigoa , U. Dossellia , F. Gasparinia ,b, U. Gasparinia ,b, A. Gozzelinoa , S. Y. Hoh,S. Lacapraraa , P. Lujan, M. Margonia ,b, A. T. Meneguzzoa ,b, J. Pazzinia ,b, N. Pozzobona ,b, P. Ronchesea ,b, R. Rossina ,b,F. Simonettoa ,b, A. Tiko, E. Torassaa , M. Tosia ,b, S. Venturaa , M. Zanettia ,b

INFN Sezione di Paviaa , Università di Paviab, Pavia, ItalyA. Braghieria , A. Magnania , P. Montagnaa ,b, S. P. Rattia ,b, V. Rea , M. Ressegottia ,b, C. Riccardia ,b, P. Salvinia , I. Vaia ,b,P. Vituloa ,b

INFN Sezione di Perugiaa , Università di Perugiab, Perugia, ItalyM. Biasinia ,b, G. M. Bileia , C. Cecchia ,b, D. Ciangottinia ,b, L. Fanòa ,b, P. Laricciaa ,b, R. Leonardia ,b, E. Manonia ,G. Mantovania ,b, V. Mariania ,b, M. Menichellia , A. Rossia ,b, A. Santocchiaa ,b, D. Spigaa

INFN Sezione di Pisaa , Università di Pisab, Scuola Normale Superiore di Pisac, Pisa, ItalyK. Androsova , P. Azzurria , G. Bagliesia , L. Bianchinia , T. Boccalia , L. Borrello, R. Castaldia , M. A. Cioccia ,b,R. Dell’Orsoa , G. Fedia , F. Fioria ,c, L. Gianninia ,c, A. Giassia , M. T. Grippoa , F. Ligabuea ,c, E. Mancaa ,c, G. Mandorlia ,c,A. Messineoa ,b, F. Pallaa , A. Rizzia ,b, G. Rolandi30, P. Spagnoloa , R. Tenchinia , G. Tonellia ,b, A. Venturia , P. G. Verdinia

123

Page 19: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 19 of 27 564

INFN Sezione di Romaa , Sapienza Università di Romab, Rome, ItalyL. Baronea ,b, F. Cavallaria , M. Cipriania ,b, D. Del Rea ,b, E. Di Marcoa ,b, M. Diemoza , S. Gellia ,b, E. Longoa ,b,B. Marzocchia ,b, P. Meridiania , G. Organtinia ,b, F. Pandolfia , R. Paramattia ,b, F. Preiatoa ,b, S. Rahatloua ,b, C. Rovellia ,F. Santanastasioa ,b

INFN Sezione di Torinoa , Università di Torinob, Torino, Italy, Università del Piemonte Orientalec, Novara, ItalyN. Amapanea ,b, R. Arcidiaconoa ,c, S. Argiroa ,b, M. Arneodoa ,c, N. Bartosika , R. Bellana ,b, C. Biinoa , A. Cappatia ,b,N. Cartigliaa , F. Cennaa ,b, S. Comettia , M. Costaa ,b, R. Covarellia ,b, N. Demariaa , B. Kiania ,b, C. Mariottia , S. Masellia ,E. Migliorea ,b, V. Monacoa ,b, E. Monteila ,b, M. Montenoa , M. M. Obertinoa ,b, L. Pachera ,b, N. Pastronea , M. Pelliccionia ,G. L. Pinna Angionia ,b, A. Romeroa ,b, M. Ruspaa ,c, R. Sacchia ,b, R. Salvaticoa ,b, K. Shchelinaa ,b, V. Solaa , A. Solanoa ,b,D. Soldia ,b, A. Staianoa

INFN Sezione di Triestea , Università di Triesteb, Trieste, ItalyS. Belfortea , V. Candelisea ,b, M. Casarsaa , F. Cossuttia , A. Da Rolda ,b, G. Della Riccaa ,b, F. Vazzolera ,b, A. Zanettia

Kyungpook National University, Daegu, KoreaD. H. Kim, G. N. Kim, M. S. Kim, J. Lee, S. Lee, S. W. Lee, C. S. Moon, Y. D. Oh, S. I. Pak, S. Sekmen, D. C. Son,Y. C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, KoreaH. Kim, D. H. Moon, G. Oh

Hanyang University, Seoul, KoreaB. Francois, J. Goh31, T. J. Kim

Korea University, Seoul, KoreaS. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K. S. Lee, S. Lee, J. Lim, S. K. Park, Y. Roh

Sejong University, Seoul, KoreaH. S. Kim

Seoul National University, Seoul, KoreaJ. Almond, J. Kim, J. S. Kim, H. Lee, K. Lee, K. Nam, S. B. Oh, B. C. Radburn-Smith, S. h. Seo, U. K. Yang, H. D. Yoo,G. B. Yu

University of Seoul, Seoul, KoreaD. Jeon, H. Kim, J. H. Kim, J. S. H. Lee, I. C. Park

Sungkyunkwan University, Suwon, KoreaY. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, LithuaniaV. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, MalaysiaI. Ahmed, Z. A. Ibrahim, M. A. B. Md Ali32, F. Mohamad Idris33, W. A. T. Wan Abdullah, M. N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, MexicoJ. F. Benitez, A. Castaneda Hernandez, J. A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, MexicoH. Castilla-Valdez, E. De La Cruz-Burelo, M. C. Duran-Osuna, I. Heredia-De La Cruz34, R. Lopez-Fernandez,J. Mejia Guisao, R. I. Rabadan-Trejo, M. Ramirez-Garcia, G. Ramirez-Sanchez, R Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, MexicoS. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, MexicoJ. Eysermans, I. Pedraza, H. A. Salazar Ibarguen, C. Uribe Estrada

123

Page 20: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 20 of 27 Eur. Phys. J. C (2019) 79 :564

Universidad Autónoma de San Luis Potosí, San Luis Potosí, MexicoA. Morelos Pineda

University of Auckland, Auckland, New ZealandD. Krofcheck

University of Canterbury, Christchurch, New ZealandS. Bheesette, P. H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, PakistanA. Ahmad, M. Ahmad, M. I. Asghar, Q. Hassan, H. R. Hoorani, A. Saddique, M. A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, PolandH. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, PolandK. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski,A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, PortugalM. Araujo, P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar,N. Leonardo, J. Seixas, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, RussiaS. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov,V. Matveev36,37, V. V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov,N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), RussiaV. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsova39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov,V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, RussiaYu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov,A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, RussiaV. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov,V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, RussiaT. Aushev

National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, RussiaR. Chistov40, M. Danilov40, P. Parygin, D. Philippov, S. Polikarpov40, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, RussiaV. Andreev, M. Azarkin, I. Dremin37, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, RussiaA. Baskakov, A. Belyaev, E. Boos, M. Dubinin41, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova,I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, RussiaA. Barnyakov42, V. Blinov42, T. Dimova42, L. Kardapoltsev42, Y. Skovpen42

Institute for High Energy Physics of National Research Centre ’Kurchatov Institute’, Protvino, RussiaI. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik,V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

123

Page 21: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 21 of 27 564

National Research Tomsk Polytechnic University, Tomsk, RussiaA. Babaev, S. Baidali, V. Okhotnikov

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, SerbiaP. Adzic43, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, SpainJ. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J. A. Brochero Cifuentes, M. Cerrada, N. Colino,B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J. P. Fernández Ramos, J. Flix, M. C. Fouz, O. Gonzalez Lopez,S. Goy Lopez, J. M. Hernandez, M. I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo,L. Romero, M. S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, SpainC. Albajar, J. F. de Trocóniz

Universidad de Oviedo, Oviedo, SpainJ. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J. R. González Fernández,E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J. M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, SpainI. J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P. J. Fernández Manteca,A. García Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol,F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila,R. Vilar Cortabitarte

University of Ruhuna, Department of Physics, Matara, Sri LankaN. Wickramage

CERN, European Organization for Nuclear Research, Geneva, SwitzerlandD. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, P. Baillon, A. H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci,C. Botta, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d’Enterria,A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, M. Dünser, N. Dupont,A. Elliott-Peisert, P. Everaerts, F. Fallavollita44, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert,K. Gill, F. Glege, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman, C. Heidegger, V. Innocente, A. Jafari, P. Janot,O. Karacheban19, J. Kieseler, A. Kornmayer, M. Krammer1, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli,A. Massironi, F. Meijers, J. A. Merlin, S. Mersi, E. Meschi, P. Milenovic45, F. Moortgat, M. Mulders, J. Ngadiuba,S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo16, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer,M. Pierini, F. M. Pitters, D. Rabady, A. Racz, T. Reis, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Selvaggi,A. Sharma, P. Silva, P. Sphicas46, A. Stakia, J. Steggemann, D. Treille, A. Tsirou, V. Veckalns47, M. Verzetti, W. D. Zeuner

Paul Scherrer Institut, Villigen, SwitzerlandL. Caminada48, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H. C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe,S. A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, SwitzerlandM. Backhaus, L. Bäni, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer,T. A. Gómez Espinosa, C. Grab, D. Hits, T. Klijnsma, W. Lustermann, R. A. Manzoni, M. Marionneau, M. T. Meinhard,F. Micheli, P. Musella, F. Nessi-Tedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Quittnat, C. Reissel,D. Ruini, D. A. Sanz Becerra, M. Schönenberger, L. Shchutska, V. R. Tavolaro, K. Theofilatos, M. L. Vesterbacka Olsson,R. Wallny, D. H. Zhu

Universität Zürich, Zurich, SwitzerlandT. K. Aarrestad, C. Amsler49, D. Brzhechko, M. F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus,B. Kilminster, S. Leontsinis, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi,A. Zucchetta

National Central University, Chung-Li, TaiwanT. H. Doan, R. Khurana, C. M. Kuo, W. Lin, A. Pozdnyakov, S. S. Yu

123

Page 22: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 22 of 27 Eur. Phys. J. C (2019) 79 :564

National Taiwan University (NTU), Taipei, TaiwanP. Chang, Y. Chao, K. F. Chen, P. H. Chen, W.-S. Hou, Arun Kumar, Y. F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, ThailandB. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, TurkeyA. Bat, F. Boran, S. Damarseckin, Z. S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler,E. Gurpinar, I. Hos50, C. Isik, E. E. Kangal51, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut,K. Ozdemir52, S. Ozturk53, D. Sunar Cerci54, B. Tali54, U. G. Tok, H. Topakli53, S. Turkcapar, I. S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, TurkeyB. Isildak55, G. Karapinar56, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, TurkeyI. O. Atakisi, E. Gülmez, M. Kaya57, O. Kaya58, S. Ozkorucuklu59, S. Tekten, E. A. Yetkin60

Istanbul Technical University, Istanbul, TurkeyM. N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen61

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, UkraineB. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, UkraineL. Levchuk

University of Bristol, Bristol, United KingdomF. Ball, J. J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G. P. Heath, H. F. Heath,L. Kreczko, D. M. Newbold62, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V. J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United KingdomK. W. Bell, A. Belyaev63, C. Brew, R. M. Brown, D. Cieri, D. J. A. Cockerill, J. A. Coughlan, K. Harder, S. Harper,J. Linacre, K. Manolopoulos, E. Olaiya, D. Petyt, C. H. Shepherd-Themistocleous, A. Thea, I. R. Tomalin, T. Williams,W. J. Womersley

Imperial College, London, United KingdomR. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, D. Colling, P. Dauncey, G. Davies,M. Della Negra, R. Di Maria, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik,A. Martelli, J. Nash64, A. Nikitenko7, V. Palladino, M. Pesaresi, D. M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez,A. Shtipliyski, G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee16, N. Wardle,D. Winterbottom, J. Wright, S. C. Zenz

Brunel University, Uxbridge, United KingdomJ. E. Cole, P. R. Hobson, A. Khan, P. Kyberd, C. K. Mackay, A. Morton, I. D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USAK. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington DC, USAR. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USAA. Buccilli, S. I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USAD. Arcaro, T. Bose, D. Gastler, D. Pinna, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USAG. Benelli, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J. M. Hogan65, K. H. M. Kwok, E. Laird, G. Landsberg,J. Lee, Z. Mao, M. Narain, S. Sagir66, R. Syarif, E. Usai, D. Yu

123

Page 23: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 23 of 27 564

University of California, Davis, Davis, USAR. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway,P. T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout,M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USAM. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg,C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USAE. Bouvier, K. Burt, R. Clare, J. W. Gary, S. M. A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix,O. R. Long, M. Olmedo Negrete, M. I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USAJ. G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole,V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel,A. Vartak, S. Wasserbaech67, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USAN. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela,A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, S. Wang, J. Yoo

California Institute of Technology, Pasadena, USAD. Anderson, A. Bornheim, J. M. Lawhorn, N. Lu, H. B. Newman, T. Q. Nguyen, M. Spiropulu, J. R. Vlimant,R. Wilkinson, S. Xie, Z. Zhang, R. Y. Zhu

Carnegie Mellon University, Pittsburgh, USAM. B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USAJ. P. Cumalat, W. T. Ford, F. Jensen, A. Johnson, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson,K. A. Ulmer, S. R. Wagner

Cornell University, Ithaca, USAJ. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J. R. Patterson, D. Quach, A. Rinkevicius,A. Ryd, L. Skinnari, L. Soffi, S. M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USAS. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L. A. T. Bauerdick, A. Beretvas,J. Berryhill, P. C. Bhat, K. Burkett, J. N. Butler, A. Canepa, G. B. Cerati, H. W. K. Cheung, F. Chlebana, M. Cremonesi,J. Duarte, V. D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon,R. M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima,M. J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J. M. Marraffino,D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness, L. Ristori,A. Savoy-Navarro68, B. Schneider, E. Sexton-Kennedy, A. Soha, W. J. Spalding, L. Spiegel, S. Stoynev, J. Strait,N. Strobbe, L. Taylor, S. Tkaczyk, N. V. Tran, L. Uplegger, E. W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal,M. Wang, H. A. Weber, A. Whitbeck

University of Florida, Gainesville, USAD. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, D. Curry, R. D. Field,S. V. Gleyzer, B. M. Joshi, J. Konigsberg, A. Korytov, K. H. Lo, P. Ma, K. Matchev, H. Mei, G. Mitselmakher,D. Rosenzweig, K. Shi, D. Sperka, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USAY. R. Joshi, S. Linn

Florida State University, Tallahassee, USAA. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K. F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper,A. Saha, C. Schiber, R. Yohay

123

Page 24: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 24 of 27 Eur. Phys. J. C (2019) 79 :564

Florida Institute of Technology, Melbourne, USAM. M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USAM. R. Adams, L. Apanasevich, D. Berry, R. R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C. E. Gerber,D. A. Hangal, D. J. Hofman, K. Jung, J. Kamin, C. Mills, M. B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USAM. Alhusseini, B. Bilki69, W. Clarida, K. Dilsiz70, S. Durgut, R. P. Gandrajula, M. Haytmyradov, V. Khristenko,J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul71, Y. Onel, F. Ozok72, A. Penzo, C. Snyder, E. Tiras,J. Wetzel

Johns Hopkins University, Baltimore, USAB. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A. V. Gritsan, W. T. Hung, P. Maksimovic, J. Roskes,U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USAA. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya,D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J. D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USAS. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D. R. Mendis, T. Mitchell, A. Modak, A. Mohammadi, L. K. Saini

Lawrence Livermore National Laboratory, Livermore, USAF. Rebassoo, D. Wright

University of Maryland, College Park, USAA. Baden, O. Baron, A. Belloni, S. C. Eno, Y. Feng, C. Ferraioli, N. J. Hadley, S. Jabeen, G. Y. Jeng, R. G. Kellogg,J. Kunkle, A. C. Mignerey, S. Nabili, F. Ricci-Tam, M. Seidel, Y. H. Shin, A. Skuja, S. C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, USAD. Abercrombie, B. Allen, V. Azzolini, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I. A. Cali, M. D’Alfonso,Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G. M. Innocenti, M. Klute,D. Kovalskyi, Y.-J. Lee, P. D. Luckey, B. Maier, A. C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus,C. Roland, G. Roland, Z. Shi, G. S. F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T. W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USAA. C. Benvenuti†, R. M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, M. Krohn, Y. Kubota, Z. Lesko,J. Mans, N. Ruckstuhl, R. Rusack, M. A. Wadud

University of Mississippi, Oxford, USAJ. G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USAE. Avdeeva, K. Bloom, D. R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko,J. Monroy, J. E. Siado, G. R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USAA. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USAG. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, D. M. Morse, T. Orimoto, R. Teixeira De Lima,T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USAS. Bhattacharya, J. Bueghly, O. Charaf, K. A. Hahn, N. Mucia, N. Odell, M. H. Schmitt, K. Sung, M. Trovato, M. Velasco

123

Page 25: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 25 of 27 564

University of Notre Dame, Notre Dame, USAR. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D. J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas,N. Marinelli, F. Meng, C. Mueller, Y. Musienko36, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni,M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USAJ. Alimena, L. Antonelli, B. Bylsma, L. S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, T. Y. Ling, W. Luo, B. L. Winer

Princeton University, Princeton, USAS. Cooperstein, P. Elmer, J. Hardenbrook, S. Higginbotham, A. Kalogeropoulos, D. Lange, M. T. Lucchini, J. Luo,D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully, Z. Wang

University of Puerto Rico, Mayaguez, USAS. Malik, S. Norberg

Purdue University, West Lafayette, USAA. Barker, V. E. Barnes, S. Das, L. Gutay, M. Jones, A. W. Jung, A. Khatiwada, B. Mahakud, D. H. Miller, N. Neumeister,C. C. Peng, S. Piperov, H. Qiu, J. F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USAT. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USAZ. Chen, K. M. Ecklund, S. Freed, F. J. M. Geurts, M. Kilpatrick, W. Li, B. P. Padley, R. Redjimi, J. Roberts, J. Rorie,W. Shi, Z. Tu, A. Zhang

University of Rochester, Rochester, USAA. Bodek, P. de Barbaro, R. Demina, Y. t. Duh, J. L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han,O. Hindrichs, A. Khukhunaishvili, E. Ranken, P. Tan, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USAJ. P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli,S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar,R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USAA. G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A& M University, College Station, USAO. Bouhali73, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang,T. Kamon74, S. Luo, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USAN. Akchurin, J. Damgov, F. De Guio, P. R. Dudero, S. Kunori, K. Lamichhane, S. W. Lee, T. Mengke, S. Muthumuni,T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USAS. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J. D. Ruiz Alvarez, P. Sheldon,S. Tuo, J. Velkovska, M. Verweij, Q. Xu

University of Virginia, Charlottesville, USAM. W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang,E. Wolfe, F. Xia

Wayne State University, Detroit, USAR. Harr, P. E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

123

Page 26: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

564 Page 26 of 27 Eur. Phys. J. C (2019) 79 :564

University of Wisconsin - Madison, Madison, WI, USAM. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, B. Gomber, M. Grothe, M. Herndon,A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, N. Smith,W. H. Smith, N. Woods

† Deceased

1: Also at Vienna University of Technology, Vienna, Austria2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France3: Also at Universidade Estadual de Campinas, Campinas, Brazil4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil5: Also at Université Libre de Bruxelles, Bruxelles, Belgium6: Also at University of Chinese Academy of Sciences, Beijing, China7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia8: Also at Joint Institute for Nuclear Research, Dubna, Russia9: Also at Cairo University, Cairo, Egypt

10: Also at Helwan University, Cairo, Egypt11: Now at Zewail City of Science and Technology, Zewail, Egypt12: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia13: Also at Université de Haute Alsace, Mulhouse, France14: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia15: Also at Tbilisi State University, Tbilisi, Georgia16: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland17: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany18: Also at University of Hamburg, Hamburg, Germany19: Also at Brandenburg University of Technology, Cottbus, Germany20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India24: Also at Institute of Physics, Bhubaneswar, India25: Also at Shoolini University, Solan, India26: Also at University of Visva-Bharati, Santiniketan, India27: Also at Isfahan University of Technology, Isfahan, Iran28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran29: Also at Università degli Studi di Siena, Siena, Italy30: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy31: Also at Kyung Hee University, Department of Physics, Seoul, Korea32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia34: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland36: Also at Institute for Nuclear Research, Moscow, Russia37: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia39: Also at University of Florida, Gainesville, USA40: Also at P.N. Lebedev Physical Institute, Moscow, Russia41: Also at California Institute of Technology, Pasadena, USA42: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia43: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia44: Also at INFN Sezione di Paviaa , Università di Paviab, Pavia, Italy45: Also at University of Belgrade, Belgrade, Serbia46: Also at National and Kapodistrian University of Athens, Athens, Greece47: Also at Riga Technical University, Riga, Latvia

123

Page 27: Search for a heavy pseudoscalar boson decaying to a Z and ... … · 564 Page 2 of 27 Eur. Phys.. CJ (2019) 79 :564 Fig. 1 Representative Feynman diagrams of the production in the

Eur. Phys. J. C (2019) 79 :564 Page 27 of 27 564

48: Also at Universität Zürich, Zurich, Switzerland49: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria50: Also at Istanbul Aydin University, Istanbul, Turkey51: Also at Mersin University, Mersin, Turkey52: Also at Piri Reis University, Istanbul, Turkey53: Also at Gaziosmanpasa University, Tokat, Turkey54: Also at Adiyaman University, Adiyaman, Turkey55: Also at Ozyegin University, Istanbul, Turkey56: Also at Izmir Institute of Technology, Izmir, Turkey57: Also at Marmara University, Istanbul, Turkey58: Also at Kafkas University, Kars, Turkey59: Also at Istanbul University, Faculty of Science, Istanbul, Turkey60: Also at Istanbul Bilgi University, Istanbul, Turkey61: Also at Hacettepe University, Ankara, Turkey62: Also at Rutherford Appleton Laboratory, Didcot, UK63: Also at School of Physics and Astronomy, University of Southampton, Southampton, UK64: Also at Monash University, Faculty of Science, Clayton, Australia65: Also at Bethel University, St. Paul, USA66: Also at Karamanoglu Mehmetbey University, Karaman, Turkey67: Also at Utah Valley University, Orem, USA68: Also at Purdue University, West Lafayette, USA69: Also at Beykent University, Istanbul, Turkey70: Also at Bingol University, Bingol, Turkey71: Also at Sinop University, Sinop, Turkey72: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey73: Also at Texas A&M University at Qatar, Doha, Qatar74: Also at Kyungpook National University, Daegu, Korea

123