64
A Fundamental Study of Laser-Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry University of South Carolina

Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

  • Upload
    nedra

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

A Fundamental Study of Laser-Induced Breakdown Spectroscopy Using Fiber Optics for Remote Measurements of Trace Metals. Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry University of South Carolina. LIBS for Elemental Analysis. Approach Fiber optic technology - PowerPoint PPT Presentation

Citation preview

Page 1: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

A Fundamental Study of Laser-Induced Breakdown

Spectroscopy Using Fiber Optics for Remote

Measurements of Trace Metals

Scott R. Goode and S. Michael AngelDepartment of Chemistry and Biochemistry

University of South Carolina

Page 2: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

• Approach– Fiber optic technology– Wavelength resolution– Time resolution

• Accomplishments– Two operating instruments– Examining surface morphology– Studying matrix effects

• Future– Solutions and slurries

LIBS for Elemental Analysis

Page 3: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Laser-Induced Breakdown Spectroscopy

• Use laser to vaporize sample

• Laser electric field high enough to cause breakdown

• Monitor emission

• Fiber optics afford capability for remote analysis

Page 4: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Limiting Factor

• Discriminating analyte atomic emission from continuum background emission limits the analysis

– Time

– Wavelength

Page 5: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Time-Resolved LIBS Apparatus

Pulsed Lasermirror

focusinglens

Spectrographplasma

collectionlens

intensifieddetector

TimingControl

1064 nm

Page 6: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Pulsed laserLens

Delaygenerator

Controller

Detector

Computer

Lasertrigger

Spectrograph

Lens

Fiber-opticLIBS probe

Fiber-Optic LIBS System Configuration

Page 7: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

SampleFocusing lens

Excitation Fiber

Collection Fiber

f/2 Lens Plasma

Fiber-Optic LIBS Probe Design

Page 8: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Lead in Paint Using Fiber-Optic LIBS Probe

Wavelength (nm)

Ti Ti Ti

140012001000

800

600

400

200

0406.0404.0402.0400.0398.0

Pb

Solder

Leaded Paint

Unleaded Paint

Inte

nsity

Page 9: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Leaded Paint Calibration Using Fiber-Optic Probe

200

150

100

50

0

Inte

nsity

0.100.080.060.040.020.00

Concentration of Lead (% w/w, Dry Basis)

L.O.D.= 0.014% Pb (wt/wt) Dry Basis

- 4 mJ/pulse, 2 Hz, 532 nm laser, avg. 5 replicate spectra

Page 10: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Fiber-Optic Transmission1201101009080706050403020100

Pow

er O

ut o

f fib

er (m

J)

150140130120110100908070605040302010Power into Fiber (mJ)

fiber breakdown

1 mm silica-clad 1 mm hard-clad800 m hard-clad600 m hard-clad

Page 11: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

imaging fiberHe:Ne

Nd:YAG

Ar+

pellicle f/8

probe

b&w CCD

6x macrolens 10x imaging fiber

framegrabber

excitationfiber

ICCD

LIBS/Ramancollection

fiber

monitor

pulser

controller spectrograph

f/7 lens

10ximaging ex. w/GRIN

spectral excit.

Page 12: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Imaged region

Imaging fiber

GRIN lens

Filtered Ramanexcitation fiber(514.5 nm)

LIBS excitationfiber (1064 nm)(632 nm pointer)

Collection fiber(filtered for Raman)

Region of interest

Sample

Videocamera

Page 13: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Inte

nsity

16 x103

Inte

nsity

35x103

25

15

5

420416412408404

FeFe

Fe

Ca

FeFe

Fe

b

14

10

6

2

420416412408404

Sr Ca

Sr

d

Wavelength (nm)

5 mm

Region of InterestWavelength (nm)

a

c

Page 14: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

1000800600400200

Darkfield image of TiO2 and Sr(NO3)2

on soil

Raman spectrum of Sr(NO3)2

Raman spectrum of TiO2200x103

150

100

50

0

Inte

nsity

Wavenumber (cm-1)

200x103

150

100

50

1600140012001000800Wavenumber (cm-1)

Inte

nsity

a

c

b

Page 15: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

TiO2 @190 cm-1

Darkfield image of TiO2 and Sr(NO3)2 on soil

Raman Images

Sr(NO3 ) 2 @1055cm-1

a

c

b

Page 16: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Plasma Temperature Profile2500

0384382380378376374372370368366

Graph 7 (top of plasma)

2500

0384382380378376374372370368366

Graph 6

Graph 52500

0384382380378376374372370368366

Graph 22500

0384382380378376374372370368366

Graph 1 (bottom of plasma)2500

0384382380378376374372370368366

Graph 3

Graph 42500

0384382380378376374372370368366

2500

3843823803783763743723703683660

7

6

5

4

3

2

1

Observed plasm

a region

70006000Plasma temperature (K)

Top

Bottom

Reg

ions

7

6

5

4

3

2

1

Page 17: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

LIBS Imaging Spectrometer

sample

ICCD

lens

beam stopAOTF

RF generator

collimating lens

plasma

laser

1064 nmmirror

1064 nmmirror

Page 18: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Background Subtracted

722.8 nm LeadEmission + Continuum

715.2 nmContinuumBackground

2 .64 mm

Repetition Rate: 2 Hz, 2000 Shots, 2.5 s Delay

Background Subtracted Lead Emission

Page 19: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Temporal Dependence of Lead Emission

50 ns 675 ns 1. 3 s 1. 9 s 2. 5 s

Pb emission at 722.8 nm

Continuum background

Background subtracted

2.5 mm

2.5 mm

Page 20: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Lead Crater Depth and Plasma Height

0.38 mm0.38 mm 0.50 mm

0.63mm1.42mm

2.75 mm

100 shots 2400 shots960 shots

Page 21: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Plasma Height vs. Number of Laser Shots

2500

2000

1500

1000

200015001000500Number of Laser Shots

Plas

ma

Heig

ht (m

icron

s)

2.5 s delay1.0 s delay

Rep Rate: 2 Hz

Page 22: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Using High Wavelength Resolution

If the major source of noise is the continuum background

– Eliminate the background by time resolution

– Use wavelength resolution to distinguish the atomic lines from the continuum background

Page 23: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Echelle Spectrometer

Page 24: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Matrix effects

• Use binary alloy (brass samples)

• Examine signals from zinc (volatile) and copper (nonvolatile)

• Vary laser power

• Vary focal depth

Page 25: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Studying selective volatilization

• Measure zinc and copper emission from brass standards

• Perform measurements while varying laser power (Q-switch delay)

• See if ratio is independent of power and proportional to concentration

Page 26: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Effect of Laser Power2.86% Zn

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn/C

u em

issi

on r

atio

5/5/985/14/98

Page 27: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Effect of Laser Power4.18 % Zn

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn/C

u em

issi

on ra

tio

5/5/985/8/98

Page 28: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Effect of Laser Power24.8 % Zn

0.40.6

0.81

1.2

1.41.61.8

2

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn/C

u em

issi

on ra

tio

5/7/985/8/98

Page 29: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Effect of Laser Power34.6 % Zn

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

105 115 125 135 145 155 165 175 185 195

Q-switch delay/s

Cu/

Zn e

mis

sion

ratio

5/7/985/8/98

Page 30: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Effect of Laser Power39.7 % Zn

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

105 115 125 135 145 155 165 175 185 195

Q-switch delay/ s

Zn/C

u em

issi

on ra

tio

5/7/985/8/98

Page 31: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Calibration Plot

Brass CRMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.2 0.4 0.6 0.8

Zn/Cu Concentration Ratio

Zn/C

u E

mis

sion

Rat

io

110 s delay

180 s delay

Page 32: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Effect of focus

• Measure Zn-to-Cu emission ratio

– As a function of composition

– As a function of focal point

• Negative: focal point below surface

• Zero: at surface

• Positive: above surface

Page 33: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Zn-to-Cu ratio as a function of focal point 2.86% Zn

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn/C

u em

issi

on ra

tio

Page 34: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Zn-to-Cu ratio as a function of focal point 4.18 % Zn

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn/C

u em

issi

on ra

tio

Page 35: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Zn-to-Cu ratio as a function of focal point 8.48 % Zn

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn/C

u em

issi

on ra

tio

Page 36: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Zn-to-Cu ratio as a function of focal point 24.8 % Zn

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn/C

u em

issi

on ra

tio

Page 37: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Zn-to-Cu ratio as a function of focal point 34.6 % Zn

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn/C

u em

issi

on ra

tio

Page 38: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Zn-to-Cu ratio as a function of focal point 39.7 % Zn

0.95

1.05

1.15

1.25

1.35

1.45

1.55

1.65

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

z/ mm

Zn/C

u em

issi

on ra

tio

Page 39: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Conclusions

• LIBS is more complex than originally thought.

• Much of the data are consistent with a low-power heating mechanism and a high power dielectric vaporization mechanism.

• Can design experiments to decouple excitation and vaporization.

Page 40: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Segregate excitation effects from vaporization effects

• Brass samples, known composition

• Laser ablation into solution

• Dissolution

• Chemical analysis by ICP-MS

• Determine if materials vaporized in proportion to concentration

• Determine factors that affect selective and nonselective vaporization

Page 41: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Spectrometer

• High Spectral Resolution (7500)

• High Time Resolution (5 ns)

• Delivery?

Page 42: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Alternative Excitation

• Use laser system to vaporize solid sample.

• Direct vapor into microwave-excited plasma.

• Use emission from microwave plasma for chemical analysis.

Page 43: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Pulsed Nd:YAG

Controller

1064nmmirror

plasmasample

Pulsed Nd:YAG

TimingControl

Spectrograph

lens

ICCD

lens

Pulser

Optical Fiber

Colinear Dual-Pulse LIBS Configuration

Page 44: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

25x103

20

15

10

5

Inte

nsity

(arb

uni

ts)

530525520515510505500

Wavelength (nm)

0 s between lasers

1 s between lasers

1064 nm Laser 1 (100 mJ) Laser 2 (180 mJ)

Colinear Dual-Pulse LIBS Enhancement for Copper

Page 45: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Sign

al-to

-Bkg

Optimum Delay Between Lasers for Copper Enhancement

16

14

12

10

8

6

4

2

5004003002001000

Time Between Lasers (s)

Laser 1 = 100 mJLaser 2 = 180 mJ

Colinear Dual-Pulse LIBS

Page 46: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

0.38 mm

20 s T

Cu S/B 15

0.38 mm

1 s T

Cu S/B 14

0.38 mm

0 s T

Cu S/B 3

Copper Craters from Colinear Dual-Pulse LIBS

Page 47: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

100

Optimum Timing Between Lasers for Lead Enhancement

4.0

3.5

3.0

2.5

806040200

Pb S

BR

Time Between Lasers (s) T

Colinear Dual-Pulse LIBS

Page 48: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Comparison of Lead Craters (colinear geometry)

0.60 mm 0.60 mm

Zero s T One s T

Pb S/B 6Pb S/B 2.5

Page 49: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Orthogonal Dual-Pulse LIBS

Page 50: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Orthogonal Dual-Pulse LIBS

Controller

Nd:YAG

plasma

Nd:YAG

TimingControl Spectrograph

ICCD

Pulser

Page 51: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

10

8

6

4

2

0

Inte

nsity

530525520515510505500Wavelength (nm)

0 s between lasers -1 s between lasers

Orthogonal Dual-Pulse LIBS Enhancement for Cu

Page 52: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

14

12

10

8

6

4

2

0

Cu

Sig

-to-b

kg

-5 -4 -3 -2 -1 0Time between lasers (s)

Enhancement of Copper Emission Using Non-Ablating Prespark

Page 53: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

150 m 150 m 176 m

Orthogonal Dual-Pulse LIBS GeometrySEM Craters for Copper

Page 54: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

2.86% Zinc at Low Power

36.4120.8

144.456.3 141.2

Page 55: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

2.86% Zinc at High Power

86.6

259.9111.8

110.3

Page 56: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

4.18% Zinc at Low Power

88.9133.9

124.9101.2

90.5

95.0

Page 57: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

4.18% Zinc at High Power

89.1 91.0

97.8

60.6

93.8

71.7

57.8

Page 58: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

24.8% Zinc at Low Power

130.0 7.862.0

75.4 88.0

Page 59: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

24.8% Zinc at High Power

101.3

89.157.9

93.3

100.0106.7

100.8

Page 60: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

35.6% Zinc at Low Power

70.9

92.5

90.2

79.1

101.6

Page 61: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

34.6% Zinc at High Power

108.8 109.6

85.4

173.9126.3 119.6

119.1

84.4

Page 62: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

34.6% Zinc at High Power Surface Effect

110.5

99.4

Page 63: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Targeted DOE Needs

• ID No: SR99-3025: Monitoring Technologies for Effectiveness of Solidification and Stabilization Systems

ID No: SR99-1003: Improvements to Physical, Chemical, and Radionuclide Quantification of Solid Waste

ID No: SR99-1004: Need for Continuous Emissions Monitors for Measurement of Hazardous Compound Concentrations in Incinerator Stack Gas

Page 64: Scott R. Goode and S. Michael Angel Department of Chemistry and Biochemistry

Targeted DOE Needs

ID No. RL-SS06 Improved, Real-Time, In-Situ Detection of Hexavalent Chromium in Groundwater

ID No. RL-DD038: Liquids Characterization for CDI

ID No. RL-SS15: Improved, In Situ Characterization to Determine the Extent of Soil Contamination of One or More of the Following Heavy Metals: Hexavalent Chromium, Mercury, and Lead