58
1 Scientific Visualization Melanie Tory Acknowledgments: Torsten Möller (Simon Fraser University) Raghu Machiraju (Ohio State University) Klaus Mueller (SUNY Stony Brook)

Scientific Visualization

Embed Size (px)

DESCRIPTION

Melanie Tory Acknowledgments: Torsten M öller (Simon Fraser University) Raghu Machiraju (Ohio State University) Klaus Mueller (SUNY Stony Brook). Scientific Visualization. Overview. What is SciVis? Data & Applications Iso-surfaces Direct Volume Rendering Vector Visualization Challenges. - PowerPoint PPT Presentation

Citation preview

Page 1: Scientific Visualization

1

Scientific Visualization

Melanie Tory

Acknowledgments: Torsten Möller (Simon Fraser University) Raghu Machiraju (Ohio State University)Klaus Mueller (SUNY Stony Brook)

Page 2: Scientific Visualization

2

Overview

What is SciVis? Data & Applications Iso-surfaces Direct Volume Rendering Vector Visualization Challenges

Page 3: Scientific Visualization

3

Difference between SciVis and InfoVis

Direct Volume Rendering

Streamlines

Line Integral Convolution

GlyphsIsosurfaces

SciVis

Scatter Plots

Parallel Coordinates

Node-link Diagrams

InfoVis[Verma et al.,Vis 2000]

[Hauser et al.,Vis 2000]

[Cabral & Leedom,SIGGRAPH 1993]

[Fua et al., Vis 1999]

[http://www.axon.com/gn_Acuity.html]

[Lamping et al., CHI 1995]

Page 4: Scientific Visualization

4

Difference between SciVis and InfoVis

Card, Mackinlay, & Shneiderman:– SciVis: Scientific, physically based– InfoVis: Abstract

Munzner:– SciVis: Spatial layout given– InfoVis: Spatial layout chosen

Tory & Möller:– SciVis: Spatial layout given + Continuous– InfoVis: Spatial layout chosen + Discrete– Everything else -- ?

Page 5: Scientific Visualization

5

Overview

What is SciVis? Data & Applications Iso-surfaces Direct Volume Rendering Vector Visualization Challenges

Page 6: Scientific Visualization

6

Medical Scanning

MRI, CT, SPECT, PET, ultrasound

Page 7: Scientific Visualization

7

Medical Scanning - Applications

Medical education for anatomy, surgery, etc. Illustration of medical procedures to the

patient

Page 8: Scientific Visualization

8

Medical Scanning - Applications

Surgical simulation for treatment planning Tele-medicine Inter-operative visualization in brain surgery,

biopsies, etc.

Page 9: Scientific Visualization

9

Biological Scanning

Scanners: Biological scanners, electronic microscopes, confocal microscopes

Apps – physiology, paleontology, microscopic analysis…

Page 10: Scientific Visualization

10

Industrial Scanning

Planning (e.g., log scanning) Quality control Security (e.g. airport scanners)

Page 11: Scientific Visualization

11

Scientific Computation - Domain

Mathematical analysis

ODE/PDE (ordinary and partialdifferential equations)

Finite element analysis (FE)

Supercomputer simulations

Page 12: Scientific Visualization

12

Scientific Computation - Apps

Flow Visualization

Page 13: Scientific Visualization

13

Overview

What is SciVis? Data & Applications Iso-surfaces Direct Volume Rendering Vector Visualization Challenges

Page 14: Scientific Visualization

14

Isosurfaces - Examples

Isolines Isosurfaces

Page 15: Scientific Visualization

15

Isosurface Extraction

by contouring– closed contours– continuous– determined by iso-value

several methods– marching cubes is most

common

1 2 3 4 3

2 7 8 6 2

3 7 9 7 3

1 3 6 6 3

0 1 1 3 2

Iso-value = 5

Page 16: Scientific Visualization

16

MC 1: Create a Cube

Consider a Cube defined by eight data values:

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1)

(i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)

Page 17: Scientific Visualization

17

MC 2: Classify Each Voxel Classify each voxel according to whether it lies

outside the surface (value > iso-surface value)inside the surface (value <= iso-surface value)

8Iso=78

8

55

10

10

10

Iso=9

=inside=outside

Page 18: Scientific Visualization

18

MC 3: Build An Index

Use the binary labeling of each voxel to create an index

v1 v2

v6

v3v4

v7v8

v5

inside =1outside=0

11110100

00110000

Index:v1 v2 v3 v4 v5 v6 v7 v8

Page 19: Scientific Visualization

19

MC 4: Lookup Edge List

For a given index, access an array storing a list of edges

all 256 cases can be derived from 15 base cases

Page 20: Scientific Visualization

20

MC 4: Example

Index = 00000001 triangle 1 = a, b, c

a

b

c

Page 21: Scientific Visualization

21

MC 5: Interp. Triangle Vertex

For each triangle edge, find the vertex location along the edge using linear interpolation of the voxel values

=10=0

T=8

T=5

i i+1x

iviv

ivTix

1

Page 22: Scientific Visualization

22

MC 6: Compute Normals

Calculate the normal at each cube vertex

1,,1,,

,1,,1,

,,1,,1

kjikjiz

kjikjiy

kjikjix

vvG

vvG

vvG

Use linear interpolation to compute the polygon vertex normal

Page 23: Scientific Visualization

23

MC 7: Render!

Page 24: Scientific Visualization

24

Overview

What is SciVis? Data & Applications Iso-surfaces Direct Volume Rendering Vector Visualization Challenges

Page 25: Scientific Visualization

25

Direct Volume Rendering Examples

Page 26: Scientific Visualization

26

Rendering Pipeline (RP)

Classify

Page 27: Scientific Visualization

27

Classification original data set has application specific

values (temperature, velocity, proton density, etc.)

assign these to color/opacity values to make sense of data

achieved through transfer functions

Page 28: Scientific Visualization

28

Transfer Functions (TF’s) Simple (usual) case: Map

data value f to color and opacity

Human Tooth CT

(f)RGB(f)

f

RGB

Shading,Compositing…

Gordon Kindlmann

Page 29: Scientific Visualization

29

TF’s

Setting transfer functions is difficult, unintuitive, and slow

f

f

f

f

Gordon Kindlmann

Page 30: Scientific Visualization

30

Transfer Function Challenges

Better interfaces:

– Make space of TFs less confusing

– Remove excess “flexibility”

– Provide guidance

Automatic / semi-automatic transfer function generation

– Typically highlight boundaries

Gordon Kindlmann

Page 31: Scientific Visualization

31

Rendering Pipeline (RP)

Classify

Shade

Page 32: Scientific Visualization

32

Light Effects Usually only considering

reflected partLight

absorbed

transmitted

reflected

Light=refl.+absorbed+trans.

Light

ambient

specular

diffuse

ssddaa IkIkIkI

Light=ambient+diffuse+specular

Page 33: Scientific Visualization

33

Rendering Pipeline (RP)

Classify

Shade

Interpolate

Page 34: Scientific Visualization

34

Interpolation

Given:

Needed:

2D 1D Given:

Needed:

Page 35: Scientific Visualization

35

Interpolation Very important; regardless of algorithm Expensive => done very often for one image Requirements for good reconstruction

– performance– stability of the numerical algorithm– accuracy

Nearestneighbor

Linear

Page 36: Scientific Visualization

36

Rendering Pipeline (RP)

Classify

Shade

Interpolate

Composite

Page 37: Scientific Visualization

37

Ray Traversal Schemes

Depth

IntensityMax

Average

Accumulate

First

Page 38: Scientific Visualization

38

Ray Traversal - First

Depth

Intensity

First

First: extracts iso-surfaces (again!)done by Tuy&Tuy ’84

Page 39: Scientific Visualization

39

Ray Traversal - Average

Depth

Intensity

Average

Average: produces basically an X-ray picture

Page 40: Scientific Visualization

40

Ray Traversal - MIP

Depth

IntensityMax

Max: Maximum Intensity Projectionused for Magnetic Resonance Angiogram

Page 41: Scientific Visualization

41

Ray Traversal - Accumulate

Depth

Intensity

Accumulate

Accumulate: make transparent layers visible!Levoy ‘88

Page 42: Scientific Visualization

42

Volumetric Ray Integration

color

opacity

object (color, opacity)

1.0

Page 43: Scientific Visualization

43

Overview

What is SciVis? Data & Applications Iso-surfaces Direct Volume Rendering Vector Visualization Challenges

Page 44: Scientific Visualization

44

Flow Visualization

Traditionally – Experimental Flow Vis Now – Computational Simulation

Typical Applications:– Study physics of fluid flow– Design aerodynamic objects

Page 45: Scientific Visualization

45

Traditional Flow Experiments

Page 46: Scientific Visualization

46

Techniques

Contours

Streamlines

Glyphs (arrows)

Jean M. Favre

Page 47: Scientific Visualization

47

Techniques

Page 48: Scientific Visualization

48

Techniques - Stream-ribbon

Trace one streamline and a constant size vector with it

Allows you to see places where flow twists

Page 49: Scientific Visualization

49

Techniques - Stream-tube

Generate a stream-line and widen it to a tube Width can encode another variable

Page 50: Scientific Visualization

50

Mappings - Flow Volumes

Instead of tracing a line - trace a small polyhedron

Page 51: Scientific Visualization

51

LIC (Line Integral Convolution) Integrate noise texture along a streamline

H.W. Shen

Page 52: Scientific Visualization

52

Overview

What is SciVis? Data & Applications Iso-surfaces Direct Volume Rendering Vector Visualization Challenges

Page 53: Scientific Visualization

53

Challenges - Accuracy

Need metrics -> perceptual metric

(a) Original (b) Bias-Added (c) Edge-Distorted

Page 54: Scientific Visualization

54

Challenges - Accuracy

Deal with unreliable data (noise, Ultrasound)

Page 55: Scientific Visualization

55

Challenges - Accuracy Irregular data sets

regular rectilinearuniform curvilinear

Structured Grids:

regular irregular hybrid curved

Unstructured Grids:

Page 56: Scientific Visualization

56

Challenges - Speed/Size

Efficient algorithms Hardware developments (VolumePro) Utilize current hardware (nVidia, ATI) Compression schemes Tera-byte data sets

Page 57: Scientific Visualization

57

Challenges - HCI

Need better interfaces

Which method is best?

Page 58: Scientific Visualization

58

Challenges - HCI “Augmented” reality Explore novel I/O devices