90
MINISTÈRE DE LA JEUNESSE, DE L’ÉDUCATION NATIONALE ET DE LA RECHERCHE Direction des personnels enseignants SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE AGRÉGATION INTERNE ET CAER PA Rapport présenté par : Monsieur Jean-Pierre DEDONDER Professeur des Universités Président du jury Monsieur Max HORN IA-IPR Vice-Président du jury 2003

SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

MINISTÈRE DE LA JEUNESSE, DE L’ÉDUCATION NATIONALE ET DE LA RECHERCHE

Direction des personnels enseignants

SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE

AGRÉGATION INTERNE ET CAER PA

Rapport présenté par : Monsieur Jean-Pierre DEDONDER

Professeur des Universités Président du jury

Monsieur Max HORN IA-IPR

Vice-Président du jury

2003

Page 2: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

i

RAPPORT DU JURY DES CONCOURS D'AGRÉGATION INTERNE

ET DU CAERPA DE SCIENCES PHYSIQUES, OPTION PHYSIQUE ET CHIMIE

SESSION 2003

Sommaire i Composition du Jury ii A) Avant propos A1 A2 B) Résultats détaillés de la session 2003 Résultats aux épreuves écrites et orales B1 B2 Résultats par académie de l'agrégation interne B3 Résultats par académie du CAERPA B4 Quelques statistiques (âge et genre) B5 B8 C) Composition sur la physique et le traitement automatisé de l'information Énoncé du sujet C1 C14 Rapport du jury C15 C18 Correction de l'épreuve C19 C22 D) Composition avec exercices d'application Énoncé du sujet D1 D15 Rapport du jury D16 D17 Correction de l'épreuve D18 D32 E) Épreuves orales Organisation, déroulement et remarques générales du jury E1 E3 Rapport sur les leçons et montages de physique E4 E8 Rapport sur les leçons et montages de chimie E9 E13

Liste des leçons et des montages de physique et de chimie tirés au sort lors des épreuves orales E14 E21

F) Session 2004 Programme des épreuves écrites et orales F1

Page 3: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

i

PLAN DU RAPPORT

Composition du jury Avant-propos Session 2003

- Résultats aux épreuves écrites et aux épreuves orales - Résultats par académie de l’agrégation interne - Résultats par académie du CAERPA - Statistiques d’âges et de genre

Composition sur la physique et le traitement automatisé de l’information

- Énoncé du sujet - Rapport du jury - Correction de l’épreuve

Composition avec exercices d’application (chimie)

- Énoncé du sujet - Rapport du jury - Correction de l’épreuve

Épreuves orales

- Organisation et déroulement - Observations générales du jury - Rapport sur les leçons de physique - Rapport sur les montages de physique - Rapport sur les leçons de chimie - Rapport sur les montages de chimie - Liste des leçons et des montages de physique et de chimie tirés au sort lors

des épreuves orales Session 2004

- Programme des épreuves écrites et orales.

Page 4: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

ii

COMPOSITION DU JURY

DEDONDER Jean-Pierre Professeur des Universités, Président

PIETRYK Gilbert Inspecteur général de l’éducation nationale, Vice Président

HORN Max IA-IPR, académie de Créteil, Vice Président

AUVRAY Loïc Directeur de recherches au CNRS

CHAFFARD-BOURGOIN Véronique Professeure agrégée (PRAG), Versailles

COMBEL Hélène IA-IPR, académie de Créteil

DUBOURG Patrick Professeur de CPGE, Le Mans

DURUPTHY André Professeur de CPGE, Aix en Provence

HIMBERT Marc Professeur du CNAM

LE BOURHIS Jean-François IA-IPR, académie de Caen

LEDOUX Odile IA-IPR, académie de Lille

MAIROT Robert IA-IPR, académie de Besançon

PIRON Marie-Noëlle Professeure de CPGE, Sceaux

ROUAN Françoise Professeure de CPGE, Rueil-Malmaison

RUHLMANN Laurent Maître de Conférences, Paris XI

SZYMCZAK Anne Professeure de CPGE, Valenciennes

THOMASSIER Georges Professeur de CPGE, Aix en Provence

Page 5: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

A1

AVANT-PROPOS Pour la première fois le rapport du jury des concours de l’agrégation interne et du CAERPA de sciences physiques, option physique et chimie, est mis en ligne sur le serveur du Ministère. http://www.education.gouv.fr/siac/siac2. Il sera ainsi accessible librement1, et très rapidement, par tous ceux concernés par ces concours de promotion interne dont l’intérêt et le succès ne sont plus à démontrer. La session 2003 de ces deux concours est marquée par une sélectivité toujours plus grande. Si, le nombre d’inscrits – 1030 pour l’ensemble- est revenu au niveau de celui de la session 2001, le nombre de candidats présents aux épreuves écrites est toujours croissant. Ainsi le nombre de candidats non éliminés est de 789 (674 et 115). Les quelques tableaux chiffrés qui suivent dressent un bilan des sept dernières années et soulignent les évolutions. La première observation est donc que ces concours sont plus sélectifs que les concours externes correspondants. Ils sont aussi marqués par le rajeunissement constant depuis quelques années des candidats ; la moyenne d’âge des admissibles est ainsi de 33,4 ans pour la session 2003. Plus de 80 % des admissibles et des reçus ont 35 ans ou moins. Cela confirme donc que ce concours s’adresse désormais pour une fraction importante à des enseignants qui ont fait le choix de l’immersion professionnelle immédiate après leur succès au CAPES –ayant ou non préparé le concours externe de l’agrégation- et qui, dès que les conditions d’ancienneté requises sont remplies, se tournent vers le concours interne. S’il est évidemment réjouissant de voir de nombreux jeunes collègues s’investir dans cette préparation, il est important de souligner que ces concours ont pour vocation de s’adresser avant tout à un ensemble de collègues ayant déjà acquis une solide expérience pédagogique et pour lesquels la préparation du concours fournit l’occasion de se remettre en cause et celle de réaffirmer leur maîtrise des disciplines enseignées. Il convient de saluer à cet égard le succès tant au niveau de l’admissibilité qu’au niveau de l’admission de professeurs plus anciens qui ont su ne pas se laisser décourager par une ou plusieurs tentatives infructueuses au préalable. Il est aussi utile de préciser que plus du tiers des admissibles de cette session avait déjà été admissibles à la session précédente et que parmi les admis ils sont plus du tiers à avoir été admissibles à l’une des deux sessions précédentes. Le major de cette promotion avait été admissible aux deux sessions précédentes. Comme les années précédentes, on trouvera dans ce rapport des recommandations que le jury souhaite adresser aux candidats :

- les épreuves écrites, comme précédemment, font l’objet d’une correction détaillée, certaines questions faisant l’objet de recommandations ou commentaires plus précis ;

- le jury invite les candidats à mener de front préparation aux épreuves écrites et préparation aux épreuves orales. Les sciences physiques sont avant tout des sciences expérimentales et les deux épreuves se nourrissent l’une de l’autre. Il est parfaitement illusoire de penser que l’on peut être performant à l’oral en ne s’y préparant que quelques jours avant les épreuves ;

- il est conseillé aux candidats qui ne disposent pas dans leur établissement d’un environnement sur lequel ils peuvent s’appuyer pour conforter leur préparation de suivre les formations académiques et/ou universitaires assurant cette préparation.

1 La mise en ligne sur le web implique qu’il ne paraîtra désormais plus sous sa forme imprimée traditionnelle.

Page 6: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

A2

Les titres des leçons et montages de physique et de chimie au programme de la session 2004 ne seront que très peu modifiés par rapport à ceux des sessions 2002 et 2003 ; le seul changement envisagé est en effet le remplacement du montage de physique n° 30, « Expériences de physique à l’aide de l’outil informatique : réalisation, acquisition et exploitation », par un nouveau montage « Propagation d’une onde », l’outil informatique étant désormais intégré dans la pratique pédagogique quotidienne. Les logiciels standard sont disponibles lors des épreuves orales. Le jury maintient donc son choix de ne proposer qu’un nombre limité de leçons et de montages, trente par discipline et par épreuve, pour permettre aux candidats de mieux se préparer aux épreuves orales. Les thématiques des montages sont très larges, permettant à chacun de proposer un choix d’expériences variées. Le jury attire toutefois l’attention sur le fait qu’ils doivent éviter de se disperser et leur conseille de ne proposer qu’un nombre limité d’expériences judicieusement choisies, illustrant de manière convaincante le sujet proposé, représentant une progression pédagogique et autorisant de plus des mesures qui doivent être précises, exploitées et interprétées. Enfin, tout en étant conscient du stress auquel sont soumis les candidats lors des épreuves, le jury souhaiterait mieux voir apparaître -et, donc, mieux prendre en compte- l’expérience et les acquis pédagogiques au cours de celles-ci. Le jury reconnaît et apprécie à leur juste valeur les efforts consentis par l’ensemble des candidats à ce concours. Il encourage ceux qui n’en ont pas été récompensés lors de cette session à les renouveler, tout en mesurant les sacrifices que cela représente et les difficultés qu’ils peuvent rencontrer à mener de front l'exercice normal du métier et la préparation au concours. L’expérience montre en effet que de nombreux lauréats s’étaient déjà présentés aux épreuves d’une ou plusieurs sessions précédentes. Dans cet esprit, il rappelle aussi que le niveau des épreuves étant celui des classes préparatoires, de faibles résultats à celles-ci, pour un candidat donné, ne sauraient en aucun cas remettre en question la qualité de l’enseignement qu’il dispense dans les classes du second degré dont il a la charge.

Page 7: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B1

BILAN GLOBAL DES SEPT DERNIÈRES SESSIONS

Agrégation interne

Année Postes Inscrits Présents Admissibles Admis 1997 89 843 411 134 70 1998 89 864 400 131 50 1999 74 762 504 128 46 2000 50 838 545 127 50 2001 50 882 626 101 50 2002 51 809 619 102 51 2003 52 873 674 101 52

CAERPA

Année Postes Inscrits Présents Admissibles Admis 1997 7 150 84 17 7 1998 7 157 74 20 6 1999 7 159 102 24 7 2000 8 169 120 24 8 2001 9 167 117 13 7 2002 10 184 137 13 7 2003 10 157 115 12 4

Page 8: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B2

SESSION 2003 Épreuves écrites (11 et 12 février 2003) • Composition sur la physique et le traitement automatisé de l’information

Moyenne Meilleure note Agrégation interne 5,18/20 11,98/20 CAERPA 4,92/20 10,00/20

• Composition avec exercices d’application Moyenne Meilleure note

Agrégation interne 5,22/20 14,79/20 CAERPA 4,66/20 12,55/20

Barre d’admissibilité :

Agrégation interne 15,55/40 CAERPA 15,55/40

Nombre d’admissibles

Agrégation interne 101 CAERPA 12

Épreuves orales Moyenne • Leçon de physique 9,56/20 • Leçon de chimie 9,62/20 • Montage de physique 9,12/20 • Montage de chimie 8,44/20

Barre d’admission:

Agrégation interne 36,75/80 CAERPA 36,75/80

Nombre d’admis:

Agrégation interne 52 (pour 52 postes) CAERPA 4 (pour 10 postes)

Page 9: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B3

RÉSULTATS AGRÉGATION INTERNE 2003

Académie Inscrits Présents à une épreuve au moins Admissibles Admis

Aix-Marseille 37 25 4 1 Besançon 17 15 4 2 Bordeaux 29 23 7 7 Caen 24 18 2 2 Clermont-Ferrand 9 9 1 0 Dijon 27 21 1 0 Grenoble 33 28 1 1 Lille 78 69 13 5 Lyon 41 33 6 3 Montpellier 35 24 1 0 Nancy-Metz 37 33 1 1 Poitiers 17 14 2 0 Rennes 24 20 3 2 Strasbourg 44 33 3 2 Toulouse 30 22 2 2 Nantes 31 22 9 3 Orléans-Tours 19 16 1 1 Reims 20 15 1 0 Amiens 29 23 6 0 Rouen 30 24 3 2 Limoges 6 6 1 0 Nice 32 28 5 3 Corse 1 1 0 0 Réunion 26 19 1 1 Martinique 8 6 1 1 Guadeloupe 23 18 1 1 Guyane 6 3 0 0 Paris-Créteil-Versailles 160 119 21 12 TOTAL 873 687 101 52 Candidats non éliminés 674

Page 10: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B4

RÉSULTATS CAERPA 2002

Académie Inscrits Présents à une épreuve au moins Admissibles Admis

Aix-Marseille 12 7 1 1 Besançon 6 5 0 Bordeaux 3 3 2 1 Caen 10 7 0 Clermont-Ferrand 2 0 0 Dijon 3 3 0 Grenoble 6 5 0 Lille 21 18 2 1 Lyon 8 8 1 1 Montpellier 4 3 0 Nancy-Metz 6 5 1 0 Poitiers 2 2 0 Rennes 16 8 0 Toulouse 2 2 0 Nantes 24 18 3 0 Orléans-Tours 2 1 0 Reims 2 1 0 Amiens 3 2 1 0 Rouen 1 0 0 Nice 3 3 1 Martinique 1 1 0 Guadeloupe 1 1 0 Guyane 1 1 0 Paris-Créteil-Versailles 18 12 0 TOTAL 157 116 12 4 Candidats non éliminés 115

Page 11: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B5

Date de naissance des candidats admissibles et admis

Agrégation interne CAERPA Année de naissance

Nombre Admissibles

Nombre Admis

Nombre Admissibles

Nombre Admis

1945 1 0 1946 0 0 0 0 1947 0 0 0 0 1948 0 0 1949 0 0 0 0 1950 0 0 0 0 1951 0 0 0 0 1952 0 0 0 0 1953 1 0 0 0 1954 0 0 0 0 1955 1 1 0 0 1956 0 0 0 0 1957 2 1 1 1 1958 0 0 0 0 1959 0 0 0 0 1960 1 0 1 0 1961 4 3 0 0 1962 0 0 0 0 1963 1 0 1 0 1964 1 0 0 0 1965 2 0 0 0 1966 0 0 0 0 1967 4 2 1 1 1968 9 3 1 0 1969 9 5 0 0 1970 14 7 3 1 1971 7 2 0 0 1972 13 6 1 0 1973 16 12 3 1 1974 11 7 0 0 1975 3 2 1976 1 1

TOTAL 101 52 12 4

Répartition par sexe des candidats

Agrégation interne CAERPA Nb

inscritsNb

présentsNb

admissiblesNb

admis Nb

inscritsNb

présents Nb

admissiblesNb

admis HOMME 648 510 84 43 93 68 9 2 FEMME 225 177 17 9 64 48 3 2

Page 12: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B6

Nombre d'inscrits 2003

050

100150200250300350400

27-29 30-34 35-39 40-44 45-49 50-54 55-59 >59

H+F F H

Fraction d'inscrits 2003 par tranches d'âge

0,05,0

10,015,020,025,030,035,040,045,050,0

27-29 30-34 35-39 40-44 45-49 50-54 55-59 >59

H+F F H

Ratios par tranche 2003 admissibles/inscrits

0,010,020,030,040,050,0

27-29 30-34 35-39 40-44 45-49 50-54 55-59 >59F+H F H

Page 13: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B7

NOMBRE ADMISSIBLES

0

2

4

6

8

10

12

14

16

18

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

2003 2002 2001

NOMBRE ADMISSIBLES

0

2

4

6

8

10

12

14

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

1996 1994

Page 14: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

B8

NOMBRE ADMIS

0

2

4

6

8

10

12

14

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

2003 2002 2001

NOMBRE ADMIS

0

1

2

3

4

5

6

7

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

1996 1994

Page 15: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C1

L�énoncé de cette épreuve propose de parcourir au travers du thème de la MESURE quelques domaines de la physique, couverts par les programmes de terminale S et des classes préparatoires scientifiques. L�épreuve comporte sept parties indépendantes les unes des autres.

Première partie Mesure de g : méthode de la "double chute" et des deux stations.

1.1. Etude mécanique

Un corps assimilable à un point matériel de masse m est lancé verticalement, vers le haut, dans un milieu assimilable au vide, à partir d'une altitude z0, avec une vitesse initiale v0. On appelle z son altitude à l'instant t et zM l'altitude maximale atteinte à l'instant tM.

1.1.1. Donner les expressions littérales de dzz(t) = dt

& et z(t).

1.1.2. Etablir la relation qui lie v0, g et tM puis celle qui lie (zM � z) à (t - tM)2 et g. 1.1.3. Exprimer la durée T qui sépare les instants de passage du mobile à une même

altitude z en fonction de z, zM et g. 1.1.4. On mesure les durées T1 et T2 entre les passages à "deux stations" d'altitude z1 et

z2 telles que z2 � z1 = H. Exprimer g en fonction de H, T1 et T2. 1.1.5. Application numérique : T1 = 0,70 s ; T2 = 0,30 s ; H = 0,49 m. Calculer g. 1.2. Mesure expérimentale des durées T1 et T2 On se propose d�examiner maintenant de quelle manière on peut réaliser une mesure précise des durées T1 et T2. On utilise pour cela une méthode optique, fondée sur l�utilisation de l�interféromètre de Michelson, selon le dispositif expérimental suivant :

Figure 1

Page 16: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C2

L�interféromètre est éclairé en lumière parallèle suivant la direction Oxséparatrice Sp est traitée de façon à obtenir des coefficients de réfletransmission en énergie égaux à 50%. On ne tiendra pas compte d�différences de marche introduites par la lame et par les miroirs dans la suquestion. Les miroirs M1 et M2 sont fixes, distants de H, et perpendiculaires à la directnote O1 et O2 leurs centres respectifs, et x1 la distance OO1 ainsi que x2distance OO2. Un dispositif non représenté permet d�utiliser soit l�un soit l�apour la mesure. Le miroir M de centre A est mobile sur l�axe vertical Oconstamment perpendiculaire à cette direction. Une cellule photoélectrique est placée au foyer image F� de la lentille conveon enregistre le signal électrique reçu, considéré comme proportionnel àlumineuse reçue en F�. L�expérience se déroule par la suite de la façon suivante : comme dans précédente, on lance le miroir mobile, de masse m, suivant l�axe vertical vavec une vitesse initiale v0 > 0. Le miroir décrit une trajectoire de chute libre encore zM sa cote maximale, et tM l�instant où il l�atteint. 1.2.1. Comment peut-on réaliser expérimentalement un faisceau de lumière

On décrira aussi précisément que possible la démarche suivie. 1.2.2. Utilisation de l�interféromètre en lumière monochromatique

Dans un premier temps, l�interféromètre est éclairé en lumière monocde longueur d�onde λ .

1.2.2.1. Décrire la marche des rayons lumineux qui interfèrent et sont reçus e 1.2.2.2. Calculer leur différence de marche δ , en notant z(t) la cote vertical

M ( z OA= ) (on examinera deux cas, selon que le miroir M1 ou M2 e 1.2.2.3. Montrer de quelle façon le repérage de la frange centrale d�interféren

comme le point de différence de marche nulle), permettrait d�aintervalles de temps T1 et T2 précédemment définis.

1.2.2.4. Donner l�expression de l�intensité I(t) recueillie par la cellule phot

en fonction de z(t). On notera I0 l�intensité lumineuse émise pa

x

g

Sp

O

M1 M2

M

Rayons incidents

L

A

O1 O2

z

Figure 2

. La lame xion et de éventuelles ite de cette

ion Ox. On = x1+H la utre miroir z, et reste

rgente L, et l�intensité

la question ers le haut ; on note là

parallèle ?

hromatique

n F�.

e du miroir st utilisé).

ce (définie ccéder aux

oélectrique, r la source

Page 17: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

monochromatique. Est-il effectivement possible de déterminer expérimentalement la position de la frange centrale, par simple lecture de I(t) ?

1.2.3. Utilisation de l�interféromètre en lumière blanche : pour remédier au défaut précédent, on décide de procéder en lumière blanche. On assimile cette lumière à une répartition d�intensité uniforme sur tout le spectre visible, limité à la bande de fréquence [ ]1 2,ν ν .

1.2.3.1. Donner les valeurs limites des longueurs d�onde du domaine visible dans le vide ; en déduire l�ordre de grandeur de 1ν et 2ν .

1.2.3.2. Des sources lumineuses de fréquences différentes sont-elles cohérentes ?

Peuvent-elles interférer entre elles ? Expliquer cette notion et indiquer les conséquences.

1.2.3.3. La répartition spectrale de la source est représentée par le graphe de la figure 3 :

l�intensité élémentaire émise par la source dans la bande de fréquence comprise entre ν et ν +dν est : dI0 = A dν . En utilisant la question 1.2.2.4., déterminer l�expression de l�intensité I(δ ) , où δ est la différence de marche entre les deux rayons qui interfèrent, recueillie par la cellule en F�. On donne :

[ ] [ ]2 1 2 1 2 1

2

1

cos(2 ) ( ).sinc ( ) .cos ( )dν

ναν ν ν ν α ν ν α ν ν= − − +∫ ,

avec sinc(x) = sin(x) x

. On rappelle de plus le graphe de cette fonction (figure 4).

Tracer aposition

1ν 2ν ν

dν ν+

A

0dI /dν

3

sinc(x)

Figure

C3

lors l�allure de la fonction I(δ ) et montrer de quelle façon on peut repérer la de la frange centrale. Conclure.

Figure 4

x

Page 18: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

Deuxième partie Mesure de la constante de la gravitation G ;

expérience de Cavendish (1731 – 1810)

On suspend auportant sur chchacune des pe1 puis d�autre Les données nu• Constante • Longueur d• Masse d�un• Masse d�un• Distance e

proche : d = Pour chaque gla plus proche,sont prises ortdevant la mass Lorsque l�on ftourne d�un anLa mesure de lb = 5,0 m est é

C4

bout d�un fil de torsion de constante de torsion C un fléau de longueur 2l acune de ses extrémités une petite sphère de masse m. On approche de tites sphères une grosse sphère de masse M d�une part dans les positions

part dans les positions 2 comme indiqué sur la figure 5.

mériques sont les suivantes : de torsion du fil de suspension : C = 5,0.10-7 N.m.rad-1 u fléau 2l = 20 cm e petite sphère : m = 50 g e grosse sphère : M = 30 kg ntre le centre d�une grosse sphère et celui de la petite sphère la plus 15 cm

rosse sphère, on ne tiendra compte que de son action sur la petite sphère, portée par le fléau. Les deux droites, définies par les deux couples (1,2), hogonales par rapport au fléau. La masse de ce dernier est négligeable e des petites sphères.

ait passer les grosses sphères de la position 1 à la position 2, le fléau gle 2θ . La mesure angulaire est réalisée par un miroir fixé sur le fléau. a déviation du spot lumineux sur une échelle placée à une distance gale à a = 3,5 cm. L�angle θ étant très faible, on considère que cos 1θ ≈ .

Figure 5

1

1

2 2

2 l

d

spot lumineux

Page 19: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C5

2.1. Ecrire le bilan des moments (moments par rapport à l�axe portant le fil de

suspension) des forces appliquées au système {fléau + petites masses}. Ecrire la condition d�équilibre du système dans la position 1 en fonction de C, G, m, M, d, l et de l�angle θ que fait le fléau par rapport à sa position initiale en l�absence des grosses sphères.

2.2. Montrer que si le miroir tourne d�un angle 2θ alors le spot lumineux réfléchi par le

miroir est dévié d�un angle 4θ . 2.3. Exprimer θ en fonction de a et b. 2.4. Déduire de ces données les valeurs littérale et numérique de la constante de

gravitation G. Quelle est la dimension de G ? Préciser alors son unité.

Troisième partie Mesure des masses d’une étoile double

De nombreuses étoiles sont associées en couple (doublet). Les étoiles doubles occupent une place de choix dans l'astronomie d'observation, car elles offrent un moyen direct de mesurer des masses stellaires. On se propose d'étudier dans cette partie un doublet dans un référentiel R supposé galiléen. Pour cela, on assimile les deux étoiles formant le doublet à deux points matériels M1 et M2 de masses respectives m1 et m2. Chacun des deux éléments n�est soumis qu�à la force de gravitation exercée par l�autre. On note G le centre d�inertie des deux masses. 3.1. Rappeler la définition du référentiel barycentrique R*. Est-il en règle générale

galiléen ? Est-il galiléen dans cette partie avec les hypothèses énoncées plus haut ? Justifier proprement.

3.2. Lois de Kepler 3.2.1. Enoncer sans les démontrer les trois lois de Kepler décrivant le mouvement des

planètes autour du Soleil. 3.2.2. Dans le cas d�une orbite circulaire, démontrer la troisième loi de Kepler reliant

la période T au rayon a de l�orbite. 3.3. Rappeler brièvement le principe et l�intérêt de la réduction canonique du problème

à deux corps. On introduira un point P de masse 1 2

1 2

m mm m

µ =+

tel que 1 2GP M M=uuur uuuuuuur

.

3.4. Décrire le mouvement de P dans R*.

Page 20: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C6

3.5. Décrire le mouvement des deux étoiles M1 et M2 dans R*. On fera un schéma (en prenant m1 = 3 m2, uniquement pour ce schéma). On précisera :

3.5.1. la période de révolution T de M1 et M2 autour de G en fonction de G, m1, m2 et

a où G est la constante universelle de gravitation et a le demi-grand axe de l�ellipse décrite par P dans R*.

3.5.2. les demi-grands axes a1 et a2 des ellipses décrites respectivement par M1 et M2

en fonction de a, m1 et m2. 3.6. Des mesures permettent de donner le rapport des demi-grands axes a1 et a2 ,

1

2

aa

α = , les distances extrêmes entre les deux étoiles dmin et dmax et la période de

révolution T du système. Déterminer les masses des deux étoiles en fonction de α, T, dmin, dmax et G.

3.7. Application numérique : deux étoiles Alpha et Bêta décrivent des orbites circulaires

de rayons respectifs r1 = 1,00.109 km et r2 = 5,0.108 km avec une période orbitale T = 44,5 années. Déterminer les masses m1 et m2 de ces deux étoiles.

Quatrième partie Mesure de la charge élémentaire e ;

expérience de Millikan (1868 – 1953)

On considère deux plaques métalliques A et B horizontales, parallèles, distantes de d=2,0 cm entre lesquelles on peut appliquer une différence de potentiel U = VA � VB >0. Dans l�espace limité par ces plaques règne une atmosphère gazeuse de masse volumique ρ0 = 1,3 kg.m-3. On y pulvérise de la glycérine sous forme de gouttelettes sphériques de rayon r et de masse volumique ρ = 1,25.103 kg.m-3. La force de frottement visqueux qui s�exerce sur une gouttelette de glycérine M est donnée par fF = 6πµrv−

uur r,

où µ = 1,8.10-5 USI est le coefficient de viscosité de l�air et vr

le vecteur vitesse de M.

U

A

B

gFigure 6

Page 21: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C7

On prendra g = 9, 81 m. s-2 pour l�accélération de la pesanteur. Un faisceau de rayons X ionise l�atmosphère ce qui provoque des transferts de charges sur les gouttelettes de glycérine. Le mouvement de celles-ci est observé avec un microscope muni d�un micromètre. 4.1. Etablir le bilan des forces appliquées à une gouttelette de glycérine. 4.2. La tension U est tout d�abord nulle. Montrer que la vitesse des gouttelettes de

glycérine tend vers une vitesse limite verticale v0 que l�on exprimera en fonction de ρ, ρ0, r, g et µ.

4.3. On applique à présent une tension U1 telle qu�un certain nombre de gouttelettes

sont alors immobiles. En déduire la charge q0 portée par celles-ci en fonction de µ, v0, U1, d, ρ, ρ0 et g.

4.4. Une observation prolongée montre qu�une proportion non négligeable des

gouttelettes a un mouvement vertical ascendant uniforme de vitesse v1. Interpréter et calculer la charge q1 de chacune de ces gouttelettes en fonction de µ, v0, v1, U1, d, ρ, ρ0 et g.

4.5. On mesure v0 = 4,91.10-4 m.s-1 et v1 = 4,90.10-4 m.s-1. Calculer numériquement q0 et

q1 sachant que U1 = 37 440 V. Millikan a pu calculer d�autres valeurs de la charge q des gouttelettes de glycérine par cette expérience. Quelle conclusion a-t-il pu tirer de ces mesures ?

Cinquième partie Mesures de distances focales d’une lentille convergente

5.1. Préliminaires On considère une lentille L mince convergente, de distances focales objet f et image f �. On note O le centre de la lentille, F et F� les foyers respectivement objet et image. O, F et F� sont sur l�axe optique de L. On se place dans les conditions de Gauss. 5.1.1. Quelle est la relation qui lie f = OF et f � = OF' pour une lentille mince ? 5.1.2. Expliquer comment on construit l�image A�B� d�un objet AB orthogonal à l�axe

optique par la lentille L. Précisez les rayons lumineux utiles. 5.1.3. On place un objet AB sur un banc d�optique. La lumière va de la gauche vers la

droite. Construire l�image A�B� de AB par la lentille dans chacun des trois cas suivants. Le candidat complétera la feuille annexe qui reproduit ces schémas.

Cette feuille annexe devra être rendue avec la copie.

Page 22: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C8

Donner la nature de l�objet et de l�image obtenue (réelle ou virtuelle) dans chaque cas. Où se trouve l�image de AB si A est confondu avec le foyer objet F ?

5.1.4. Où se trouve l�image A�B� d�un objet réel AB donné par un miroir plan ? Quelle est sa nature ? Construire un schéma.

5.2. Mesures directes des distances focales f et f ’

On dispose d�un banc d�optique gradué, d�un collimateur, d�une lunette de visée réglée à l�infini, de la lentille L dont on veut mesurer les distances focales objet f et image f �, et d�un écran. 5.2.1. Définir les foyers objet F et image F�. 5.2.2. Qu�est-ce qu�un collimateur ? Comment le régler correctement ? 5.2.3. Proposer un montage permettant de mesurer f �. Préciser le mode opératoire. 5.2.4. Proposer un montage permettant de mesurer f . Préciser le mode opératoire.

F O F' A

B

F O F'A

B

F O F'A

B

sens de la lumière

Page 23: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C9

5.3. Mesure de la distance focale f par autocollimation 5.3.1. Où se trouve l�image A�B� de AB à travers la lentille L puis le miroir plan M

puis la lentille L si A est confondu avec F sur la figure suivante ? Justifier à l�aide d�une construction claire à faire sur la feuille annexe.

5.3.2. Le résultat dépend-il de la distance entre la lentille et le miroir plan ? Justifier

votre réponse. 5.3.3. Expliquer comment on peut mesurer la distance focale de la lentille L en séance

de travaux pratiques avec des élèves ? (Matériel utilisé, mode opératoire) 5.4. Mesure de la distance focale image f ’ par la méthode de Bessel et Silbermann

A l�aide de la lentille L de centre O, située entre un objet réel A et un écran placé à une distance D de l�objet, on forme l�image A� de l�objet sur l�écran. On rappelle la

formule de conjugaison des lentilles minces : 1 1 1'' fOA OA

− = .

5.4.1. Montrer qu�il existe deux positions de L, repérées par O1 et O2, distantes de O1O2 = d, qui permettent d�obtenir une image nette, à condition de choisir D > 4f �. Exprimer la distance focale f � de L en fonction de D et d (méthode de Bessel).

5.4.2. Etudier le cas particulier où les deux positions de L sont confondues (méthode

de Silbermann). Présenter une construction géométrique. 5.4.3. Application numérique : D = 1 m et d = 20 cm. Calculer f �.

Les incertitudes sur D et d étant ∆ D = 2 mm et ∆ d = 4 cm, calculer l�incertitude ∆ f � sur f �.

On rappelle que la différentielle d�une fonction f(x,y) est f fdf dx dyx y

∂ ∂= +∂ ∂

.

5.4.4. Comment peut-on utiliser cette méthode pour calculer la distance focale f � < 0

d�une lentille divergente sachant que l�on dispose d�un jeu de lentilles convergentes étalonnées ?

F=A O

B

L M

Page 24: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C10

Sixième partie Mesure de champs magnétiques

6.1. Mesure de la composante horizontale du champ magnétique terrestre On se propose d�étudier le principe d�une mesure simple, réalisable en classe. 6.1.1. Première expérience : On place un aimant droit fixe à une distance d d�une

boussole, perpendiculairement à la direction Nord-Sud que prend l�aiguille aimantée au repos en l�absence d�aimant.

On constate que la direction de la boussole varie alors d�un angle θ . On assimile l�aimant à un dipôle de moment magnétique M

uur. On rappelle que le

champ magnétique créé en un point P tel que rOP = r = r uuuur r uur

par un tel dipôle, centré en O, vaut :

r r03

3(M.u )u - MB4 rµπ

=uur r r uur

ur avec 7

0 4 .10µ π −= USI.

Déterminer la relation entre l�angle d�équilibre θ , la valeur de la composante horizontale du champ magnétique terrestre BH et les paramètres du problème.

6.1.2. Deuxième expérience : On enlève la boussole, et on suspend l�aimant en son centre par l�intermédiaire d�un fil vertical à un point fixe O du référentiel d�étude, supposé galiléen. On note J le moment d�inertie de l�aimant par rapport à Oz, axe vertical. On constate qu�il oscille autour de sa position moyenne d�équilibre avec une période T. Expliquer cette observation, et déterminer la relation entre T, BH et les paramètres du problème en explicitant les approximations que l�on est amené à introduire.

6.1.3. Application numérique : les élèves ont mesuré θ = 10,0°, d = 71,7 cm, T =5,9 s. Le professeur leur a fourni J = 1,43 10-4 USI. Donner l�unité de J et expliquer succinctement quelles mesures le professeur est amené à faire pour déterminer J (on demande ici une réponse qualitative, sans calculs). En déduire la valeur de BH au lieu considéré.

Etat initial

d

θ

Etat d�équilibre Figure 7

Page 25: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C11

6.2. Sonde à effet Hall

Soit une plaquette conductrice de longueur L selon Oy, de largeur a selon Ox et d�épaisseur b selon Oz. Elle est traversée par un courant d�intensité I, et placée dans un champ B

ur uniforme perpendiculaire à sa plus grande face.

On note n la densité volumique des électrons mobiles, � e leur charge et m leur masse. 6.2.1. Montrer qu�en régime permanent, il apparaît un champ électrique HE

urque l�on

exprimera vectoriellement et dont on donnera la direction, le sens et l�intensité en fonction des données. Faire le schéma correspondant.

6.2.2. Montrer qu�il apparaît une différence de potentiel UH, dite tension de Hall, aux

bornes de deux faces que l�on précisera. Montrer que l�on peut mettre cette

tension sous la forme : H HIBU Rb

= , et exprimer la constante de Hall RH en

fonction des données. Préciser son unité. Expliquer comment cette sonde peut être utilisée pour la mesure de l�intensité des champs magnétiques.

6.2.3. Application numérique : la densité volumique des électrons mobiles pour le cuivre

est égale à n ≈ 7.1028 m-3 ; pour un semi conducteur donné, elle vaut n ≈ 8.1021 m-3. Calculer RH dans ces deux cas, ainsi que la tension de Hall pour une plaquette mince (b ≈ 0,1 mm) parcourue par un courant de 1A, placée dans un champ B = 0,5 T. Commenter.

6.2.4. En réalité, pour expliquer le fait que la vitesse des porteurs de charge reste

constante en régime permanent, il est nécessaire d�introduire une force dissipative qui modélise l�interaction réseau-porteur de charge par une force de frottement �m/τ v

r, où τ est le temps de relaxation, et v

r la vitesse des porteurs

de charge. Montrer que dans le matériau conducteur placé dans le champ Bur

permanent, il apparaît en régime permanent un champ E

ur de la forme :

HjE = + R j Bγ

∧r

ur r ur , où j

r est le vecteur densité de courant.

Exprimer la conductivité γ en fonction des données. En déduire que les lignes de courant ne sont pas exactement parallèles aux lignes de champ électrique, et exprimer l�angle qu�elles font entre elles. Application numérique : calculer cet angle pour les deux cas précédents avec γ = 6.107 S/m pour le cuivre, et γ ≈ 1 S/m pour le semi conducteur, sachant que B = 0,5 T. Commenter.

z

x

y Bur

I

Figure 8

Page 26: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C12

Septième partie Mesures de vitesse par effet Doppler

L�effet Doppler reflète l�existence d�une différence entre la fréquence de l�onde émise par une source S et la fréquence perçue par un récepteur R lorsque S et R sont en mouvement relatif. On se place dans le référentiel dans lequel le milieu de propagation n�a pas de mouvement d�ensemble. Une source ultrasonore S émet un signal sous forme d�impulsions brèves, à intervalles réguliers T (période d�émission de la source). Pour simplifier, on suppose que S et R se déplacent le long d�un axe fixe, noté Ox, avec des vitesses respectives algébriques VS et VR selon cet axe. On note c la vitesse de propagation du signal dans ce référentiel. 7.1. Déterminer la durée TR qui sépare la réception par R de deux impulsions

successives. En déduire l�expression de la fréquence Rν du signal reçu par R en fonction de la fréquence d�émission Sν . On suppose R immobile : préciser si Rν est plus grande ou plus petite que Sν lorsque la source s�éloigne ou s�approche du récepteur. Commenter.

7.2. Un signal de fréquence ν est émis par la source S immobile et reçu par le récepteur

R animé d�une vitesse algébrique v. R réfléchit le signal reçu et se comporte à cet instant comme une source émettant à la fréquence Rν . Le dispositif S bascule alors en mode récepteur et reçoit un signal de fréquence ν �.

7.2.1. Donner l�expression de ν � en fonction de Rν , c et v. 7.2.2. En déduire l�expression de ν � en fonction de ν , c et v. Que devient cette

expression dans le cas usuel |v|<<c ? Exprimer, dans le cadre de cette approximation, l�écart de fréquence δ ν = ν �- ν .

7.2.3. Application : l�effet Doppler est couramment utilisé en médecine, par exemple

pour mesurer la vitesse moyenne des écoulements sanguins dans les veines et artères du corps humain. Une sonde ultrasonore émet des signaux de fréquence ν = 4 MHz. Les cibles mobiles que sont les globules rouges réfléchissent cette onde ultrasonore qui est à nouveau perçue par le capteur. On mesure δ ν = 530 Hz. Déterminer la vitesse d�écoulement du sang, sachant que c = 1 500 m/s.

7.2.4. On souhaite obtenir une précision absolue sur la mesure de v de 0,01 m/s. Une mesure directe de ν � vous semble-t-elle possible ? Justifier votre réponse en argumentant sur la précision relative nécessaire de cette mesure.

7.3. Mesure directe de l�écart de fréquence par détection synchrone. Par des méthodes non indiquées ici, les signaux ultrasonores sont convertis en signaux électriques de même fréquence, sur lesquels on travaille désormais.

Page 27: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C13

Un oscillateur de référence fournit un signal synchrone du signal d�émission u(t)=U0 cos (2π ν t). Le signal réfléchi par la cible mobile est uR(t) = UR cos(2π ν � t). Ces deux signaux sont appliqués à l�entrée d�un multiplieur de constante k :

u1 = k u uR.

7.3.1. Donner le spectre du signal u1 (t). 7.3.2. Ce signal est envoyé sur un filtre électrique. Déterminer la nature de ce filtre

pour que l�on récupère en sortie un signal permettant la mesure de δ ν . Proposer un schéma simple de ce filtre en précisant les conditions de son bon fonctionnement.

uR(t)

u(t) u1(t) F

u2(t)

Figure 9

Page 28: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C14

Feuille annexe à rendre avec la copie 5.1.3. Construire l�image A�B� de AB dans les trois cas suivants : 5.3.1. Construire les images successives de AB par la lentille puis le miroir puis la lentille.

F O F' A

B

F O F'A

B

F O F'A

B

sens de la lumière

F=A O

B

L M

Page 29: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C15

RAPPORT SUR LA COMPOSITION DE PHYSIQUE ET LE TRAITEMENT INFORMATISÉ DE L’INFORMATION

! Remarques générales Les correcteurs ont constaté une grande hétérogénéité dans les copies des candidats. Les meilleurs de ceux-ci perpétuent l’image du professeur à la fois rigoureux et pragmatique, qui développe un esprit critique bâti sur un socle de connaissances scientifiques. Nous rendons hommage à ces candidats et à leurs formateurs. Mais, à côté, il existe beaucoup de copies très décevantes. Celles-ci témoignent du fait que la réussite à ce concours nécessite une préparation efficace. Il s'avère malheureusement que celle-ci n'a pas pu être mise en place partout. L'objet de ce rapport est de faciliter la tâche des candidats et aussi celle des formateurs.

! Quelques remarques et conseils généraux En plus du travail de fond, se préparer à un concours, c'est aussi se donner les meilleures chances, c'est-à-dire se placer dans les meilleures conditions pour obtenir un résultat au moins honorable dans toutes les situations. Il est particulièrement navrant de constater que beaucoup de candidats perdent des points "bêtement", c'est-à-dire sur des questions faciles dont à coup sûr, ils connaissent les réponses correctes. Deux aspects de ce problème sont évoqués. " D'abord, il existe un certain nombre de questions fondamentales en physique sur lesquelles les candidats, à l'écrit comme à l'oral, ont d'assez bonnes chances d'être interrogés. Comme elles sont fondamentales, il est certainement bon qu'elles soient bien connues. Mais, il faut également que, interrogé sur ces points, le candidat ait à l'esprit une réponse correcte, simple et précise, qui vise peut-être dans un premier temps davantage à la concision qu'à l'exhaustivité. Parmi ces sujets, qui ne sont pas si nombreux, figurent incontestablement les principes fondamentaux de la mécanique, les premier et second principes de la thermodynamique, une définition acceptable de l'énergie et de la température ainsi que les équations de Maxwell. Dans l'épreuve de cette année, il y avait notamment la cohérence en optique et la notion de référentiel barycentrique (avec le problème bien classique de savoir s'il est galiléen ou non). Le premier sujet est plus subtil mais les deux sont importants. À tout point de vue, il est regrettable de lire des réponses inacceptables. " Plus anecdotique peut paraître l'existence de sujets dont il faut un peu se méfier. Mais il convient d'être prudent car, réputés assez faciles donc pris avec un peu de désinvolture (c'est-à-dire sans le soin nécessaire) ils présentent quelques pièges. C'est ainsi que la notion d'image en optique, réelle ou virtuelle, obtenue à l'aide d'une lentille mince et plus encore d'un miroir plan, a entraîné, dans de nombreux cas, des surprises désagréables. L'effet Doppler a été très mal traité dans la quasi totalité des copies. Le sujet n'est pourtant pas difficile : il suffit de se demander soigneusement à quelle heure un premier signal (parti par exemple à t = 0) est reçu et à quelle heure un signal émis une période plus tard est lui aussi enregistré. " Enfin, s'il est un nom que le physicien se doit d'écrire correctement, c'est celui du fondateur de sa discipline à savoir Galilée ! Dans le sujet, il n’était pas demandé aux candidats de développer le délicat problème de la précision des mesures. Néanmoins, quelques remarques de bon sens sont toujours utiles.

Page 30: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C16

! Remarques particulières L’épreuve comportait sept parties indépendantes. Première partie : mesure de g par la méthode de la double chute La question 1.1 a été traitée par la plupart des candidats. Cependant, nous restons étonnés que la chute verticale d’un point matériel ne puisse pas être correctement traitée par 10 % des candidats. Certains ne précisent pas l’orientation de l’axe vertical. La valeur calculée de g, très différente de la valeur bien connue de 9,8 m.s-2, aurait dû les alerter. Les questions de la partie 1.2 n’ont pas été clairement identifiées. La plupart des candidats ne connaissent pas les notions de cohérence et d’interférences à deux ondes. Un schéma clair de l’interféromètre de Michelson avec la justification sur les amplitudes des ondes qui interfèrent était conseillé. Le résultat avec l’utilisation de la lumière blanche n’a pas été exploité correctement. Le principe de l'expérience avec le mouvement des miroirs n'est pas si facile. L'allure de la courbe I(δ) est rarement en cohérence avec celle de la fonction trouvée. Visiblement les candidats ont tracé un vague sinus cardinal. Deuxième partie : expérience de Cavendish De nombreux candidats ont résolu les questions. Cependant nous regrettons le manque de rigueur dans la rédaction de la solution. Le sujet précisait les moments par rapport à un axe. Dans trop de copies, on trouve pêle-mêle des moments par rapport à un point, donc vectoriels, et des moments par rapport à un axe, donc scalaires. De même, le problème de l'influence des poids des petites sphères est souvent abordé de façon incorrecte alors qu'il est évident qu'il ne se pose pas. La technique du miroir tournant (Poggendorff) est visiblement mal comprise. La démonstration du fait que, si le miroir tourne de l’angle α, le faisceau réfléchi (spot) est dévié de l’angle 2α, est souvent très discutable, au mieux maladroite et faite dans le cas particulier où le faisceau incident est initialement perpendiculaire au miroir. En toute rigueur, il faudrait montrer que cette propriété est vraie en général. Penser qu'on peut se placer dans le cas où le faisceau est perpendiculaire au miroir fait sourire tous ceux qui ont un jour essayé de la réaliser. La difficulté de la réalisation de l'expérience de Cavendish est bien connue des physiciens un peu intéressés par l'histoire des sciences. Le résultat de la mesure de G ne doit pas être donné avec davantage que deux chiffres significatifs. Des professeurs doivent faire attention à la présentation et à l'orthographe. Que penser de la conjugaison du verbe réfléchir ? Troisième partie : mesure des masses d’une étoile double Les connaissances de bases sont souvent superficielles : repère barycentrique, repère galiléen, lois de Kepler. Un repère est défini par son origine et trois axes. L’origine d’un repère ne suffit pas à définir un référentiel. Les énoncés des lois de Kepler sont trop imprécis :

! quel repère considéré comme galiléen : héliocentrique pour les planètes, géocentrique pour les satellites terrestres et non pas n’importe quel repère ;

! signification du paramètre a : demi-grand axe de la trajectoire et non pas le rayon moyen de la trajectoire ;

! loi des aires : surface balayée par le rayon vecteur et non pas par la planète. La notion de référentiel pose de redoutables difficultés. Il apparaît que la notion de référentiel barycentrique n'est pas maîtrisée et que l'intérêt de l'utiliser échappe complètement. Très peu de candidats connaissent le principe et l’intérêt de la réduction canonique.

Page 31: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C17

En réalité, ils savent souvent, mais vaguement, qu'en prenant une masse dite réduite, on se ramène à un problème à un corps. Dire qu'on transforme un problème à deux corps en un problème à un corps est discutable. Le nombre d'inconnues et le nombre d'équations sont ce qu'ils sont. On transforme le problème à deux corps en deux problèmes à un corps. Mais là, les mouvements sont découplés et celui de l'un des deux est trivial : mouvement rectiligne uniforme. Quatrième partie : expérience de Millikan Beaucoup de candidats abordent cette partie. Nous regrettons un manque de rigueur dans le bilan des forces :

• pas de choix sur la direction de l’axe vertical ; • oubli de la poussée d’Archimède : on peut, il est vrai, la considérer ensuite comme négligeable

devant les autres forces ; • force électrique définie comme un scalaire, sans préciser le sens de cette force ; • projection sur une direction verticale sans tenir compte de l’orientation de la force.

Ce manque de rigueur conduit, bien entendu, à des résultats incohérents et faux. Le calcul vectoriel et la force électrique posent de gros problèmes : que faut-il penser des relations

F q .E.→ →

= et UE .d

→→

= si U est la tension entre les plaques et d la distance entre celles-ci ?

Le calcul vectoriel conduit avec soin donne une vitesse v0 dirigée dans le même sens que la pesanteur (ce qui, en soi, est satisfaisant !). Il est à noter qu'on ne demandait pas de résoudre l'équation différentielle vérifiée par v(t), exercice un peu fastidieux sur lequel de nombreux candidats ont, à l'évidence, perdu du temps pour obtenir un résultat souvent faux. Visiblement, il suffisait de remarquer que la vitesse limite, donc le mouvement rectiligne uniforme, s'obtenait en faisant dv/dt = 0. Si l'on voulait être mathématiquement plus complet, il suffisait de remarquer que la solution générale de l'équation est la somme de la solution générale de l'équation homogène et d'une solution particulière de l'équation complète. Or la solution de l'équation homogène est en exp-t/τ : quand celle-ci est nulle, on a le régime de vitesse limite. C'est la solution particulière de l'équation complète qu'on cherche sous forme de constante v0. La charge q0 est trop souvent obtenue au signe près. Cinquième partie : mesures des distances focales Cette partie conduit à des résultats surprenants. L’image d’un objet virtuel n’est pratiquement pas donnée. 10 % des candidats ne se sont pas observés dans un miroir semble-t-il : l’image d’un objet réel est une image réelle renversée ? l’image est à l’infini ? l’image est sur le miroir ? Le collimateur est souvent confondu avec un condenseur. Le protocole expérimental pour les mesures d’une distance focale est trop souvent décrit simplement : le collimateur et la lunette ne sont pas utilisés. Si on connaît la méthode par autocollimation, en revanche on ne sait pas tracer correctement l’image. La plupart des candidats traite convenablement la méthode de Bessel. Sixième partie : mesure de champ magnétique Quelques candidats ont abordé cette question. L’établissement de la période T dans la deuxième expérience n’est pas conduit rigoureusement : confusion entre moment magnétique et moment des actions mécaniques. On peut peut-être en conclure que la dynamique du solide en rotation n'est pas maîtrisée (voir CAVENDISH). Pour la sonde à effet Hall, de nombreuses erreurs :

• confusion entre force de Laplace et force de Lorentz ;

Page 32: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C18

• sens du champ de Hall mal précisé. Les relations Fe + Fm = 0 avec Fe = -e.EH et Fm = -e.v×B, curieusement, ne conduisent que très rarement à l'expression explicite EH = - v×B. Septième partie : Effet Doppler Quelques candidats (10%) ayant abordé cette question n’ont pas abouti aux résultats attendus. L’expression de TR , en fonction de T, a été trouvée par quelques candidats seulement. Certains ont démontré la relation en considérant la source fixe. L’idée était bonne ; il suffisait de la transposer au cas général. Il est assez souvent affirmé que le filtre nécessaire doit être un passe-bas, le schéma proposé étant celui d'un passe-haut.

! Conseils aux candidats Le jury conseille aux candidats d’accentuer leurs efforts d’analyse avant la résolution d’une question. Il est bon aussi, de se demander, en tant que professeur, quelles exigences nous imposons aux élèves : présentation des résultats, écriture lisible, correction des fautes d’orthographe, énoncé des lois dans un langage correct.

Page 33: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C19

CORRIGÉ 1. Mesure de g 1.1. Etude mécanique

1.1.1. mz = -mg →&& 0z(t) = -gt+v& et 20 0

1z(t) = - gt + v t + z2

1.1.2. 0 Mv = gt 21 ( )

2M Mz z g t t− = −

1.1.3. 2( )2 Mz zTg

−=

1.1.4. 2 21 2

8HgT T

=−

1.1.5. 29,80 .g m s−= 1.2. Mesure expérimentale des durées T1 et T2 1.2.1. Méthode d’auto-collimation. 1.2.2. 1.2.2.1.Division d’amplitude au niveau de la lame séparatrice LS : un des faisceaux est

réfléchi par M1 puis par LS et converge en F’ ; l’autre est réfléchi par LS puis par M et converge également en F’. Il y a donc interférence en F’.

1.2.2.2.δ =2e ; e : épaisseur de la lame virtuelle. Soit δ = -2(z+x1) pour le miroir M1 et δ =-2(z+x2) pour M2.

1.2.2.3.Le repérage de la ddm nulle permet de repérer les instants de passage du miroir M aux cotes z=-x1 et z=-x2 , c'est-à-dire les durées T1 et T2.

1.2.2.4.I= 0 21 cos2I π δ

λ +

= ( )0 41 cos ( )2 iI z t xπ

λ + +

. Cette intensité est périodique, rien ne

permet de distinguer la frange centrale des autres franges brillantes. 1.2.3. 1.2.3.1. 400nm λ≤ ≤ 800nm. D’où 3,7.1014 Hz ν≤ ≤ 7,5.1014 Hz. 1.2.3.2. trains d’onde non synchrones ! ondes non cohérentes (du point de vue temporel).

Terme d’interférence nul, les sources ne peuvent interférer entre elles. Les intensités s’ajoutent.

1.2.3.3. ( )1 22 1( ) 2 ( ) 1 sinc .cos

c cI t A

πδ ν νπδν ν ν + = − + ∆

. La fonction I(t) est cette fois

pseudo périodique : la frange centrale correspond au maximum absolu d’intensité. On peut donc repérer sans ambiguïté le passage par les cotes cherchées.

2. Mesure de G

2.1. Moments : 2et 2 GMmC ld

θ− × ×

Equilibre : 22 GMmC ld

θ =

2.2. Faire un schéma explicatif 4β θ→ =

Page 34: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C20

2.3. 4ab

θ ≈

2.4. 2

8Cd aGbMml

= [ ] 1 3 2. .G M L T− − = 11 1 3 26,6.10 . .G kg m s− − −=

3. Mesures des masses d’une galaxie 3.1. Non, il n’est pas galiléen en règle générale. Ici, R* est galiléen. 3.2. a. Lois de Képler

3.2. b. 2 2

3

4

S

Ta GM

π=

3.3. Réduction canonique

3.4. 2 2

31 2

4( )

Ta G m m

π=+

3.5. 3

1 2

2( )

aTG m m

π=+

; 2 11 2

1 2 1 2

m ma a et a am m m m

= =+ +

3.6. 2 3

min max1 2

( )11 2

d dmGT

πα

+=+

et 2 3

min max2 2

( )1 2

d dmGT

παα

+=+

3.7. AN : 29 291 23,4.10 6,8.10m kg et m kg= =

4. Mesure de la charge élémentaire e 4.1. Poids, force d’Archimède et force de frottement

4.2. 2

0 02 ( )9rv gρ ρµ

= −uur ur

4.3. 0 00

1 0

182( )

v d vqU g

πµ µρ ρ

= −−

4.4. ( )0 1 01

1 0

182( )

v v d vqU g

πµ µρ ρ

+= −

4.5. 19 190 11,6.10 3,2.10q C et q C− −= = 19, 1,6.10q ne avec n entier et e C−→ = =

5. Mesure de distance focale 5.1.1. f = - f ’ 5.1.2. B’ est à l’intersection de deux des trois rayons suivants : celui qui passe par O, celui

qui est parallèle à l’axe optique et celui qui passe par F 5.1.3. a) objet réel, image réelle b) objet réel, image virtuelle

c) objet virtuel, image réelle d) Si A = F, alors A’B’ est à l’infini 5.1.4. L’image A’B’ de AB par un miroir plan est le symétrique de AB par rapport au miroir.

Si AB est réel, alors A’B’ est virtuelle. 5.2.1. Définitions de foyer objet et foyer image 5.2.2. Définition et réglage d’un collimateur 5.2.3. Mesure de f ’ : utilisation d’un collimateur

Page 35: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C21

5.2.4. Mesure de f : utilisation d’un collimateur en utilisant le principe de retour inverse de la lumière 5.3.1. 'L M LA F A F= →∞ →∞ → = , un rayon suffit pour trouver B’, ainsi A’ = A et

' 'A B AB= − 5.3.2. Résultats indépendants de la distance entre la lentille et le miroir plan

5.4.1. 2 2

'4

D dfD−=

5.4.2. '4Df =

5.4.3. f ’ = 24 cm ' 4,5f mm∆ = ( )' 240 5f mm→ = ±

5.4.4. On accole deux lentilles et on utilise la formule des opticiens 1 2

1 1 1' ' 'ef f f

= + …

6. Mesure de champ magnétique

6.1.1. 03tan

2=

H

Md B

µθπ

6.1.2. Théorème du moment cinétique appliqué en O sin= Γ = −&&

HJ M Bθ θ

Pour de petits angles = −&&HJ M Bθ θ

2=H

JTM B

π

6.1.3. [ ] 2J M L = . J est en 2.kg m . Mesurer les dimensions caractéristiques de l’aimant et sa masse pour accéder à J

03 2

2tan

=HJB

d Tπµ

θ A.N. 5

HB 2.3 10 T−=

6.2.1. HE V B= − ∧r r r

H ZE dirigéselon ur r =H

I BEneab

6.2.2. Existence de UH

=HI BUneb

1=HRne

RH en m3 C-1

6.2.3. Cuivre :RH = 8,9.10-11 m3 C-1 Semi-conducteur RH=7,8.10-4 m3 C-1

Cuivre : UH = 0,45 Vµ Semi-conducteur : UH = 3,9 V

6.2.4. 2= + ∧r

r rrm jE j Bne neτ

2

= nem

τγ

lignes de courant non parallèles aux lignes de champ B

tan = =HH

jBR R Bjα γγ

tan = HR Bα γ

A.N. : Cuivre 32,7.10 rad−α = Semi-conducteur 43,9.10 rad−α = Angle très faible, erreur négligeable

Page 36: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

C22

7. Mesures de vitesse par effet Doppler

7.1. vv

SR

R

cT Tc

−=−

vv

RR S

S

cc

ν ν−=−

R immobile v 0vR R S

S

cSic

ν ν= =−

R S quand sourcese rapprocheν > ν

R S quand sources 'éloigneν < ν

7.2.1. vR S

cc

ν ν−= 'v R

cc

ν ν=+

7.2.2. v1v' vv 1

c cc c

ν ν ν−−= =

+ + Si v<<c 2v' (1 )

cν ν= −

2vcδν ν= −

7.2.3. v2cδν

ν= × A.N. :v = 9,9 cm.s-1

7.2.4. Non

7.3.1. Spectre de u1 [ ]01 cos2 ( ') cos2 ( ' )

2RU Uu k t tπ ν ν π ν ν= + + −

7.3.2. Filtre passe-bas

de fréquence de coupure Cν = RCπ21

C R

Page 37: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D1

Cette épreuve comporte deux parties indépendantes : - la partie A traite de l’étude de quelques propriétés de trois métaux de transition : le cobalt,

le nickel et le cuivre et de quelques-uns de leurs composés - la partie B porte sur l’étude de trois synthèses organiques. Données : Activités des espèces : . On assimile les activités ai des espèces dissoutes au rapport de leur concentration à la concentration standard toutes deux étant exprimées en mol.L-1. . Tous les gaz sont assimilés à des gaz parfaits. Quelques valeurs numériques utiles : Charge élémentaire e = 1,60.10-19 C

Constante d’Avogadro N = 6,02.1023 mol-1

Constante des gaz parfaits R = 8,314 J.K-1.mol-1

(RT / F) . ln 10 = 0,060 V à 298K Numéros atomiques : ZCo = 27 ; ZNi = 28 ; ZCu = 29 ; ZAr =18. Masses molaires atomiques (g.mol-1) : MO = 16,0 ; MCo = 58,9 ; MNi = 58,7 ; MCu = 63,5.

Masses volumiques (g.cm-3) : ρNi = 8,90 ; ρCu = 8,92 ; Rayons ioniques : R(Co2+ ) = 72,0 pm ; R(O2-) =140,0 pm

Conductivité du cuivre à 298K : σCu = 5,93.107 S.m-1 ;

Mobilité des électrons dans le cuivre à 298 K : µCu = 4,45.10-3 S.m2.C-1

Règles de Slater : Nombre quantique principal n 1 2 3 4 Nombre quantique apparent n* 1 2 3 3,7 Contribution à l’effet d’écran d’un électron situé dans le groupe n’ sur un électron du groupe n ( ns , np) : n’ < n-1 n’ = n-1 n’ = n n’ > n 1s 0,30 0 ns, np 1 0,85 0,35 0 L’énergie E exprimée en électron-volt (eV) d’un électron de nombre effectif Z* appartenant à un groupe de nombre quantique principal n est : E = - 13,6 . (Z*2 / n*2)

Page 38: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D2

Données thermodynamiques : - Enthalpies standard de formation et entropies molaires standard à 298 K Espèce C(s) CO(g) Ni(s) NiO(s) O2(g) ∆fH° (kJ.mol-1) 0 -110,5 0 -239,8 0 S° (J.mol-1.K-1) 6,0 197 30,0 38,0 205 - Températures de fusion : nickel : 1453 °C ; oxyde de nickel(II) : 1990 °C Espèces en solution aqueuse : . Formules de quelques ligands :

Orthophénanthroline notée phen Ion éthylènediaminetétraacétate (E.D.T.A) Y4-

. Constantes d’acidité à 298 K : - ion ammonium pKA(NH4

+/ NH3) = 9,2. - acide éthylènediaminetétraacétique (H4Y) : pKA1 : 2,0 ; pKA2 : 2,7 ; pKA3 : 6,2 et pKA4 : 10,3. . Constantes de formation de complexes à 298 K :

- log β ([NiY]2- ) = log βa = 18,6. - log β6( [Ni(NH3)6]2+) = log βb = 8,0 - log β3( [Fe(phen)3]2+) = log βc = 21,3 - log β3( [Fe(phen)3]3+) = log βd = 17,1 - log β3( [Co(phen)3]2+) = log βe = 19,8 - log β3( [Co(phen)3]3+) = log βf = 44,4

. Produit de solubilité à 298 K : pKs(Ni(OH)2

) = 14,7 . Potentiels redox standard à 298 K : E°(Co3+/Co2+) = 1,84 V à pH = 0,0 E°(Ce4+/Ce3+) = 1,44 V à pH = 0,0 E°(Fe3+/Fe2+) = 0,77 V à pH = 0,0 E°(Ni2+/Ni) = - 0,25 V à pH = 0,0 E°(Fe2+/Fe) = - 0,44 V à pH = 0,0 E(H2PO3

- / H2PO2-) = - 0,75 V à pH = 4,0

N N

-O2C-CH2 CH2-CO2-

N−−−−CH2 −−−−CH2 −−−−N -O2C-CH2 CH2-CO2

-

Page 39: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D3

PARTIE A LE COBALT, LE NICKEL , LE CUIVRE Les cinq paragraphes notés 1, 2, 3, 4 et 5 sont indépendants. 1. Les métaux 1.1 Structure électronique 1.1.1 Donner la configuration électronique des atomes de cobalt, de nickel et de cuivre dans

leur état fondamental. 1.1.2 En déduire les ions les plus courants de ces trois éléments. 1.1.3 Calculer, en utilisant le modèle de Slater, l’énergie de première ionisation du cuivre. 1.2 Structure cristalline 1.2.1 Le nickel et le cuivre cristallisent dans un réseau cubique à faces centrées. 1.2.1.1 Dessiner la maille élémentaire du nickel. 1.2.1.2 Indiquer les positions des sites octaédriques et tétraédriques pour une telle structure. 1.2.1.3 Déterminer le rayon métallique du nickel ainsi que le rayon maximum des atomes susceptibles de s’insérer dans chacun des sites. 1.2.1.4 Le nickel et le cuivre donnent des solutions solides ; indiquer sans aucun nouveau calcul si elles sont de substitution ou d’insertion. 1.2.2 Le cobalt cristallise dans un réseau hexagonal compact de paramètres : a = 252 pm et c = 412 pm. 1.2.2.1 Dessiner la maille élémentaire du cobalt. 1.2.2.2 L’hypothèse d’un empilement compact de plans de sphères tangentes est-elle correcte pour décrire la structure du cobalt ? Si oui déterminer son rayon métallique. 1.2.3 Le cuivre métallique est un bon conducteur électrique. 1.2.3.1 A quelle grandeur, déjà calculée, peut-on attribuer cette propriété ? 1.2.3.2 Déterminer le nombre de porteurs de charges par unité de volume dans le cuivre ; le comparer au nombre d’atomes de cuivre par unité de volume. Conclure.

Page 40: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D4

1.3 Radioactivité du 60Co Le bombardement d’un isotope du cobalt avec des neutrons permet d’obtenir du «cobalt 60 » 60Co qui est un émetteur β- avec une période de 5,3 ans. 1.3.1 Ecrire l’équation nucléaire de la formation de 60Co en précisant l’élément bombardé et

en indiquant clairement les nombres de masse et de charge des espèces mises en jeu. 1.3.2 Ecrire de même l’équation de désintégration spontanée de 60Co. 1.3.3 Au bout de combien de temps un échantillon de 60Co a-t-il perdu 99 % de son

activité ? 2. Les oxydes : structure de CoO, réduction de NiO 2. 1 Structure de CoO 2.1.1 L’oxyde de cobalt (II) CoO a une structure type NaCl 2.1.1.1 Représenter sa maille élémentaire 2.1.1.2 En déduire sa masse volumique théorique ρth 2.1.2 En réalité il s’agit d’un oxyde non stœchiométrique de formule Co1-xO , certains ions Co2+ étant remplacés par des ions Co3+ avec apparition de lacunes. 2.1.2.1 Sachant que la masse volumique réelle vaut ρr = 6460 kg.m-3, en déduire la valeur de x en supposant que le paramètre du cristal réel soit le même que celui du cristal théorique. 2.1.2.2 Ecrire l’équation modélisant la création de défauts dans CoO. En déduire la formule précise de cet oxyde en fonction de x et de la nature des entités présentes. 2.1.2.3 Le cristal réel d’oxyde de cobalt (II) est un semi-conducteur ; de quel type, n ou p ? 2.1.2.4 En admettant que la conductivité σ de cet oxyde est proportionnelle à x, montrer que, dans le cadre d’approximations que l’on précisera, σ = k . (P(O2))q où k est une constante à une température donnée , P(O2) la pression du dioxygène au voisinage de l’oxyde et q un nombre dont on déterminera la valeur. 2.2 Réduction de NiO Les principaux minerais de nickel sont la garniérite de Nouvelle Calédonie, silicate de nickel et de manganèse, et la pyrrhotine nickelifère du Canada, sulfure mixte de fer, de nickel et de cuivre. Après diverses étapes, il est possible d’obtenir de l’oxyde de nickel NiO que l’on réduit par du carbone selon la réaction d’équation : NiO + C = Ni + CO (1)

Page 41: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D5

L’étude de cette réaction est faite dans le cadre de l’approximation d’Ellingham. 2.2.1 Rappeler en quoi consiste cette approximation. 2.2.2 Pour une température comprise entre 300 K et 1400 K , établir l’expression ∆rGa°(T) de l’enthalpie libre standard de la réaction de formation de CO(g) à partir de C(s) et d’une demi-mole de dioxygène . 2.2.3 Déterminer de même ∆rGb°(T) pour le couple NiO(s) / Ni(s) lors de la formation de l’oxyde de nickel(II) lorsqu’une demi-mole de dioxygène est mise en jeu. 2.2.4 Tracer le diagramme d’Ellingham pour ces deux couples. Echelles imposées : 1 cm pour 100 K et 2 cm pour 50 kJ.mol-1 2.2.5 Pour chacun des couples considérés, préciser ce que représentent les droites tracées. 2.2.6 On considère la réaction de réduction de l’oxyde de nickel(II) par le carbone selon l’équation : NiO + C = Ni + CO (1) 2.2.6.1 Déterminer l’expression ∆rG1°(T) de l’enthalpie libre standard de cette réaction (1) 2.2.6.2 En déduire la température d’inversion Ti de l’équilibre (1) 2.2.6.3 Industriellement la réduction du nickel s’effectue à 1000°C. Calculer la constante de cet équilibre K1° à cette température ; conclure. 2.2.7 Parmi les produits susceptibles de se produire lors de cette réaction figure un complexe nickel-carbonyle satisfaisant la règle de Sidgwick ou règle des dix-huit électrons. Donner la formule de ce complexe et préciser, à l’aide d’un schéma, sa géométrie. 3. Titrages du nickel(II) en solution aqueuse On s’intéresse à la réaction entre une solution de nickel (II) et une solution de sel disodique de l’E.D.T.A noté Na2H2Y. Dans une première manipulation, on fait réagir de l’hydroxyde de sodium avec un mélange de ces deux solutions et on suit l’évolution du pH du système. Dans une seconde manipulation, on dose la solution de nickel(II) par la solution de Na2H2Y en présence d’un indicateur, la murexide. 3.1 Etude pH-métrique Dans un bécher on introduit un volume V0,Y = 5,00 mL d’une solution de Na2H2Y de concentration CY inconnue, puis un volume V0,Ni = 10,0 mL de solution de Ni2+ de concentration CNi elle aussi inconnue, et enfin un volume d’eau, Veau = 10 mL . Les ions Ni2+

ont été ici introduits en excès.

Page 42: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D6

On ajoute alors à l’aide d’une burette graduée, une solution d’hydroxyde de sodium, de concentration CB = 0,100 mol.L-1 et on relève le pH après chaque ajout. Le graphe que l’on peut alors tracer présente deux sauts de pH, l’un pour Ve,1 = 11,6 mL l’autre pour Ve,2 = 18,8 mL. 3.1.1 La mesure du pH nécessite l’utilisation de deux électrodes, combinées ou non. Préciser la nature et le rôle de ces deux électrodes. 3.1.2 En remarquant que les ions Ni2+ ont été introduits en excès, écrire l’équation de la réaction qui se produit, dans le bécher, lors du mélange des solutions de H2Y2- et de Ni2+. 3.1.3 Calculer la constante de cet équilibre. 3.1.4 En supposant cette réaction quantitative, indiquer la nature des deux espèces alors présentes dans le mélange et susceptibles de réagir avec l’ion hydroxyde. 3.1.5 Exprimer leurs quantités (en mol) en fonction de V0,Y , CY , V0,Ni et CNi. 3.1.6 Ecrire les équations des deux réactions qui se produisent successivement lors de l’ajout de la solution d’hydroxyde de sodium. Justifier l’ordre dans lequel elles s’effectuent lors du dosage. 3.1.7 A partir des deux volumes équivalents fournis Ve,1 et Ve,2 , déterminer les concentrations CY et CNi . 3.2 Etude colorimétrique Dans une solution de pH voisin de 11, la murexide , indicateur de complexométrie, noté Mu est violet-pourpre. Cet indicateur donne, avec l’ion nickel(II) Ni2+, un complexe noté [NiMu]2+ de couleur orangée. Dans un bécher on introduit V0,Ni = 10,0 mL de la solution de Ni2+ de concentration CNi, déterminée au 3.1.7 , puis V = 40,0 mL de solution d’ammoniac à 2,0 mol.L-1 et enfin une pointe de spatule de murexide ; soit S la solution préparée. Cette solution est limpide, l’hydroxyde de nickel (II) n’apparaissant pas dans ces conditions. On ajoute ensuite à la burette graduée, la solution de Na2H2Y de concentration CY déterminée au 3.1.7 jusqu’au virage de la teinte de la solution de l’orangé au violet-pourpre. On admettra que les teintes des espèces autres que [NiMu]2+ et Mu sont ici peu intenses. 3.2.1 Ecrire les équations des deux réactions auxquelles participent les ions Ni2+ lors de la préparation de la solution S. 3.2.2 Ecrire l’équation de la réaction de dosage et calculer sa constante d’équilibre. 3.2.3 Ecrire l’équation de la réaction justifiant le changement de teinte à l’équivalence.

Page 43: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D7

3.2.4 Déterminer le volume de solution de Na2H2Y versé à l’équivalence. 3.2.5 Vérifier, par un calcul approprié, que l’hydroxyde de nickel (II) ne se forme pas lors de la préparation de S. 4. Titrage d’une solution d’ions cobalt (II) en présence d’ions fer(II) On étudie le dosage d’une solution S’ contenant des ions fer(II) et cobalt(II) par une solution de cérium(IV) en présence ou non d’un excès d’orthophénanthroline, notée phen par la suite. Le dosage est suivi par potentiométrie. Soit U la tension lue par le millivoltmètre et E le potentiel de l’électrode de mesure : U = Eélectrode de mesure - Eréférence = E - Eréférence L’orthophénanthroline donne des complexes avec les ions Fe2+ , Fe3+ , Co2+ et Co3+ mais pas avec les ions Ce3+ et Ce4+. Lorsque l’on dose la solution S’, en l’absence d’orthophénanthroline , la courbe U = f(VCe

4+) ne présente qu’un saut de potentiel pour VCe

4+ = VE,1 alors qu’en présence d’orthophénanthroline en excès, la courbe U = f(VCe

4+) présente deux sauts de potentiel pour VCe

4+ = V’E,1 et VCe4+ = V’E,2 avec :

V’E,2 - V’E,1 = VE,1 4.1 Etude des complexes du cobalt (II) 4.1.1 Pourquoi dit-on que l’orthophénanthroline est bidentate alors que l’E.D.T.A est hexadentate ? On utilisera la formule de ces ligands pour illustrer la réponse. 4.1.2 Représenter le complexe de formule [Co(phen)3]2+. Est-il chiral ? 4.1.3 Le complexe [Co(phen)3]2+ présente un nombre effectif de magnétons de Bohr neff tel que : neff = 3,87 alors que pour [Co(H2O)6]2+ , neff = 1,74. On se place dans la théorie du champ cristallin octaédrique.

4.1.3.1 Donner la configuration électronique de l’élément cobalt dans ces deux complexes. 4.1.3.2 Préciser sur un schéma l’occupation des niveaux énergétiques et indiquer pour chaque complexe si le ligand est à champ fort ou à champ faible. 4.2 Diagramme E = f(pphen) pour les degrés (II) et (III) du cobalt et du fer Le document , fourni en annexe et situé à la dernière page du sujet, présente les diagrammes E = f(pphen) pour les degrés (II) et (III) du fer ( en traits pleins) et du cobalt (en traits pointillés) avec pphen = -log [phen]). Ils ont été tracés en se limitant aux espèces suivantes : - pour l’élément fer : Fe2+ , Fe3+ , [Fe(phen)3]2+, [Fe(phen)3]3+

, espèces repérées par l’une des lettres A, B, C ou D ;

- pour l’élément cobalt : Co2+ , Co3+, [Co(phen)3]2+ et [Co(phen)3]3+ espèces repérées par

l’une des lettres E, F, G ou H .

Page 44: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D8

Les concentrations des espèces dissoutes, à l’exception de l’orthophénanthroline ont été prises égales à 1,00 mol.L-1. Sur chaque frontière il y a égalité des concentrations des espèces contenant un élément métallique. 4.2.1 Diagramme E = f(pphen) pour l’élément fer : 4.2.1.1 En justifiant brièvement les réponses, associer chacune des lettres A, B, C et D à une espèce chimique. 4.2.1.2 Retrouver, par le calcul, l’abscisse de la frontière entre Fe2+ et [Fe(phen)3]2+ puis celle de la frontière entre Fe3+ et [Fe(phen)3]3+

. 4.2.1.3 Déterminer alors, suivant les valeurs de pphen, les équations E = f(pphen) des frontières entre le fer(II) et le fer(III) 4.2.2 Diagramme E = f(p phen) pour l’élément cobalt : 4.2.2.1 En justifiant brièvement les réponses, associer chacune des lettres E, F, G et H à une espèce chimique. 4.2.2.2 Retrouver, par le calcul, l’abscisse de la frontière entre Co2+ et [Co(phen)3]2+ puis celle de la frontière entre Co3+ et [Co(phen)3]3+

. 4.2.2.3 Retrouver, par le calcul, la pente de la frontière entre les espèces [Co(phen)3]3+

et Co2+

4.3 Interprétation du dosage 4.3.1 Quelles électrodes peut-on utiliser pour ce dosage ? 4.3.2 En s’aidant , si nécessaire, du tracé sur le document 2, de la frontière E = f (pphen) pour le couple Ce4+/Ce3+, interpréter les résultats obtenus lors du dosage de la solution S’ contenant des ions fer(II) et cobalt(II) par une solution de cérium(IV) : - en l’absence d’orthophénanthroline , - en présence d’un excès d’orthophénanthroline ( pphen = 1,0 par exemple). 4.3.3 En prenant pour le potentiel de l’électrode de référence Eréf = 0,25 V, tracer , pour les deux dosages considérés à la question 4.3.2 , l’allure des graphes U = f(VCe

4+) dans l’hypothèse où, dans S’, [Fe2+ ] ≈ 2 [Co2+]. 5. Nickelage de pièces métalliques Le nickelage de pièces en fer ou en acier est utilisé pour protéger celles – ci de la corrosion ; on distingue le nickelage chimique et le nickelage électrochimique. 5.1 Nickelage chimique : 5.1.1 Peut-on obtenir un dépôt de nickel en plongeant une lame de fer dans une solution d’ions nickel(II) ? Si oui calculer la constante d’équilibre de la réaction correspondante.

Page 45: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D9

5.1.2 Industriellement, on prépare une solution en mélangeant une solution de chlorure de nickel(II) et une solution d’hypophosphite de sodium ( Na+ + H2PO2

-) toutes deux à la concentration de 1,0 mol.L-1. Le pH est amené à 4 avec une solution tampon adéquate. Cette solution semble inerte. 5.1.2.1 Monter qu’une réaction devrait se produire lors de la préparation de la solution ; écrire son équation. 5.1.2.2 A quoi peut-on attribuer l’apparente inertie observée ? 5.1.2.3 Lorsqu’on plonge une lame de fer ou d’acier dans cette solution, la lame se recouvre d’un dépôt de nickel très régulier et très résistant. Interpréter alors la formation du dépôt de nickel sur la lame de fer ou d’acier. 5.2. Nickelage électrochimique : On réalise un dépôt électrolytique de nickel à partir d’une solution d’ions nickel à 1,0 mol.L-1. La solution utilisée a un pH = 4,0 ; le potentiel cathodique est noté Ecath. Deux réactions sont observées à la cathode lors de cette opération. La densité de courant total est j = 5,0 A.dm-2. La surtension ηNi de dépôt du nickel est donnée par la relation de Tafel : ηNi = - 0,15.log jNi - 0,31 avec ηNi en volt (V) et jNi en ampère par décimètre - carré (A.dm-2.) On admettra que la surtension, à courant nul, du couple H+ / H2 est nulle sur le nickel. 5.2.1 Ecrire les équations des deux réactions électrochimiques qui ont lieu à la cathode. 5.2.2 Rappeler, en s’aidant éventuellement d’un schéma, la définition de la surtension cathodique relative au nickel. Tracer le graphe jNi = f(Ecath) pour la réduction du nickel pour jNi compris entre 0 et 5 A.dm-2. Echelles imposées : 2 cm pour 0,1 V en abscisse et 1 cm pour 1 A.dm-2 en ordonnée 5.2.3 Le potentiel cathodique est fixé à la valeur Ecath = - 0,65 V. 5.2.3.1 Déterminer la valeur de la densité de courant relative au dépôt de nickel jNi dans ces conditions . 5.2.3.2 En déduire le rendement cathodique du dépôt de nickel. Pourquoi n’est - il pas de 100 % ? 5.2.3.3 Calculer alors la vitesse du dépôt de nickel, vd , en micromètres par minutes (µm.min-1).

Page 46: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D10

PARTIE B SYNTHESES ORGANIQUES Les trois synthèses proposées sont celles d’une phéromone, le bombykol, d’un hydrocarbure utilisé pour la synthèse de divers colorants, le pyrène et d’un indicateur coloré de dosage, le zirconon. Aucune connaissance préalable à leur sujet n’est nécessaire pour en réaliser la synthèse. Les trois synthèses étudiées sont indépendantes. 1. Synthèse d’une phéromone : le bombykol L’une des phéromones sexuelles de la femelle du bombyx du murier , le bombykol , a pour formule brute C16H30O .C’est la première phéromone sexuelle animale à avoir été identifiée (1959). Son squelette carboné ne possède pas de cycle et son spectre infrarouge présente une bande d’absorption vers 3500 cm-1. Sa synthèse peut s’effectuer selon la suite de réactions ci-après (seuls les produits organiques des réactions sont indiqués par une lettre en caractère gras ou par leur formule ) : (1) Pent-1-yne + bromure de butylmagnésium ! A + C4H10 (2) A + méthanal puis hydrolyse acide ! B (3) B + PBr3 ! D (4) D + (C6H5)3P puis action d’une base forte ! E (5) E + 10-oxodécanoate d’éthyle ! F (6) F + H2 ! G (7) G + LiAlH4 puis hydrolyse acide ! I (bombykol) 1.1 Quelle information apporte le spectre infrarouge ? 1.2 Combien d’insaturations la molécule de bombykol présente-t-elle ? Quelle peut être leur

nature ? 1.3 Lors de cette synthèse il est nécessaire de disposer de bromure de butylmagnésium. 1.3.1 Pourquoi doit-on synthétiser ce réactif juste avant son emploi ? 1.3.2 En justifiant brièvement la réponse, indiquer quelles doivent être les propriétés du

solvant choisi pour la synthèse du bromure de butylmagnésium. 1.3.3 Citer deux méthodes permettant de doser le bromure de butylmagnésium ; écrire les

équations des réactions mises en jeu dans chaque cas.

Page 47: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D11

1.4 Donner les formules des espèces A, B et D et nommer les réactions (1) , (2) et (3). 1.5.1 Donner la formule de Lewis d’une phosphine de formule générale PR3. En déduire une représentation spatiale. 1.5.2 Préciser le mécanisme de la réaction D !!!! E et donner la formule de E. 1.6.1 Comment appelle-t-on la réaction permettant de passer de E à F ? 1.6.2 Ecrire la formule du 10-oxodécanoate d’éthyle, en déduire celle de F. La formule de F est-elle connue sans ambiguïté ? 1.7 Le passage de F à G nécessite l’emploi d’un catalyseur ; préciser sa nature et donner la

formule de G. 1.8 Equilibrer les équations des réactions permettant de passer de G à I. 1.9 Proposer une formule possible pour la molécule de bombykol. 2. Synthèse du pyrène Le pyrène est un composé aromatique qui est la matière première de la synthèse de pigments utilisés pour colorer des peintures automobiles ou des matières plastiques. Il est aussi utilisé pour le calfatage des bateaux de pêche. Il peut être synthétisé à partir du naphtalène J extrait des goudrons de houille.

pyrène naphtalène ( J) L’une des synthèses emprunte les étapes suivantes (seuls les produits organiques des réactions sont indiqués, par une lettre en caractère gras avec éventuellement leur formule brute) : J + chlorure d’éthanoyle AlCl3 → K et K’ K + Br2 milieu acide → L (C12H9OBr) L + CH2(CO2C2H5)2 C2H5O- + Na+ → M

1

2

345

6

7

8

Page 48: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D12

M Na+ + HO-, chauffage → N N H3O+ + Cl- → P P chauffage → Q (C14H12O3) + CO2

Q Zn(Hg) + H3O+ + Cl- → R (C14H14O2) R acide fluorhydrique ou acide polyphosphorique → S (C14H12O) S + Br-Zn-CH2-CO2C2H5 éther → T T hydrolyse acide → U (C18H20O3) U H3O+ + Cl- et chauffage

→ V (C18H18O2) V Na+ + HO-, chauffage → W W H3O+ + Cl- → X (C16H14O2) X acide fluorhydrique ou acide polyphosphorique → Y (C16H12O) Y Zn(Hg) + H3O+ +Cl-

→ Z Z chauffage sur palladium → pyrène 2.1 Formation du composé K : 2.1.1 Quelle est la nature de la réaction J ! K ? Préciser, en justifiant la réponse, la quantité de chlorure d’aluminium à utiliser pour cette réaction. 2.1.2 K et K’ sont deux isomères de position ; la formation de K résulte d’une réaction au niveau du carbone n°2 du naphtalène. En déduire les formules développées des espèces K et K’ . 2.2 Formation du composé L : 2.2.1 Par quel type d’intermédiaire passe la réaction d’addition du dibrome sur une liaison double C = C ? 2.2.2 Quelle est la structure du composé en équilibre, en milieu acide, avec une cétone présentant un atome d’hydrogène sur le carbone en α de C=O ? 2.2.3 Proposer un mécanisme pour expliquer la transformation de K en L. 2.2.4 Pourquoi cette transformation n’est-elle pas réalisée en milieu basique ?

Page 49: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D13

2.3 Comment appelle-t-on généralement une synthèse du type de celle permettant de passer de L à Q ? En déduire les formules de M, N, P et Q. Proposer un mécanisme pour P !!!! Q . 2.4 Donner la formule de R et équilibrer l’équation permettant de passer de Q à R . 2.5 Formation du composé S : 2.5.1 Lors de la réaction R !!!! S deux produits sont susceptibles de se former, on retiendra celui qui est en harmonie avec la formule du pyrène ; préciser sa structure. 2.5.2 Proposer une autre voie permettant de passer de R à S . 2.6 Pourquoi utilise-t-on un organozincique et non un organomagnésien pour passer de S à T ? Donner la formule de U . 2.7 Formation du composé V : 2.7.1 Donner la formule du composé V . 2.7.2 Comment nomme-t-on la réaction permettant de passer de U à V ? Expliciter son mécanisme. 2.8 Formation des composés W et X 2.8.1 Donner la structure des composés W et X . 2.8.2 Quel est le nom de la réaction de formation de W ? En donner le mécanisme. 2.9 Donner les formules des composés Y et Z . 2.10 Pourquoi le passage de Z au pyrène est – il relativement facile ? 3. Synthèse du zirconon Le zirconon est un indicateur coloré utilisé pour le dosage du zirconium de formule :

N N SO3H

OH

H3C

Page 50: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D14

La dernière étape de sa synthèse est un couplage diazoïque entre deux synthons S1 et S2.

3.1 Effets électroniques : 3.1.1 Rappeler la nature des effets électroniques ( mésomère, inducteur, hyperconjugaison, donneur, attracteur) associés aux groupes méthyle –CH3, hydroxyle –OH et sulfonate –SO3H. 3.1.2 Enoncer brièvement les règles de Holleman relatives aux substitutions électrophiles sur les dérivés du benzène. 3.2 En admettant que les effets mésomères aient un rôle prépondérant face aux effets inducteurs et aux effets dus à l’hyperconjugaison, identifier, en justifiant la réponse, les deux synthons qu’il est nécessaire de coupler afin d’obtenir le zirconon avec un bon rendement. 3.3 En disposant du benzène et de tout réactif minéral ou organique ainsi que de tout solvant, proposer une synthèse raisonnée pour chacun des synthons. On veillera en particulier à choisir des conditions opératoires permettant d’obtenir le meilleur rendement à chaque étape et on justifiera la logique de l’enchaînement de ces différentes étapes. Aucun mécanisme n’est demandé. FIN DE L’EPREUVE

Page 51: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D15

Annexe

Diagramme E = f(pphen) pour les degrés (II) et (III) du cobalt et du fer

Page 52: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D16

RAPPORT SUR LA COMPOSITION AVEC EXERCICES D’APPLICATION – OPTION CHIMIE

Le sujet comportait deux parties indépendantes : la première traitait des métaux de transition cobalt, nickel et cuivre alors que la seconde proposait les synthèses d’une phéromone, d’un hydrocarbure polycyclique et d’un indicateur coloré.

Observations générales

La lecture des copies nous amène à faire quelques remarques d’ordre général, ces remarques devant aider les futurs candidats dans leur préparation au prochain concours : - quel que soit l’ordre dans lequel les questions sont abordées, il est impératif de respecter la

numérotation de l’énoncé ; - la rédaction des réponses doit être concise donc sans digression inutile mais précise, ce qui

nécessite la maîtrise scientifique des concepts exposés ; - les échelles proposées pour les tracés doivent être respectées ; elles ont généralement été choisies

pour permettre une bonne visualisation des paramètres considérés ; - s’il est inutile de porter sur la copie le détail de toutes les applications numériques, un soin tout

particulier doit être apporté au nombre de chiffres significatifs retenus. Une valeur numérique non accompagnée de son unité exacte ne pourra être prise en compte lors de la correction.

Il est rappelé que le programme des épreuves écrites (et orales) est publié au Bulletin Officiel de l’Éducation Nationale et que celui-ci constitue la référence à partir de laquelle les candidats sont invités à se préparer au concours. Le jury leur recommande de profiter des aides précieuses que peuvent apporter les centres de préparation académiques ou le centre national d’enseignement à distance (C.N.E.D). Il leur est également conseillé pour une préparation efficace aux épreuves écrites de composer sur les sujets des sessions précédentes ; un tel entraînement est profitable tant sur le plan de la rédaction des réponses aux questions traitées que sur celui de la maîtrise des connaissances exigibles au concours.

Commentaires sur la partie A

La configuration électronique du cuivre [Ar]3d10 4s1 a conduit de nombreux candidats à ne pas citer Cu2+ comme ion courant pour l’élément cuivre. Une définition précise de l’énergie de première ionisation du cuivre aurait évité de longs calculs conduisant souvent à une valeur erronée pour Ei,1 (Cu).

À propos des structures cristallines : le décompte des motifs, les relations rayon – paramètres , les dimensions des sites interstitiels et l’électroneutralité des cristaux ioniques n’ont pas toujours rencontré les réponses souhaitées. La non stœchiométrie semble être ignorée par de très nombreux candidats alors qu’elle correspond à l’état naturel de la plupart des cristaux.

La conservation de la charge et de la masse des particules mises en jeu aurait dû permettre l’écriture correcte des équations nucléaires relatives au cobalt 60, 60Co.

À propos des diagrammes d’Ellingham, la distinction domaine d’existence – domaine de prédominance n’est pas toujours exposée de façon précise et la présence d’une phase gazeuse rarement traduite correctement.

Un certain manque de rigueur a été observé dans l’écriture des équations relatives au titrage colorimétrique : le pH du milieu et la présence d’ammoniac n’ont pas été suffisamment pris en compte.

La théorie du champ cristallin semble très mal connue.

L’étude du titrage du mélange Co2+ - Ni2+ n’a pas toujours été conduite à son terme : si les questions relatives au tracé E = f(pphen) ont souvent amené de bonnes réponses, l’application de ce tracé à l’interprétation des résultats expérimentaux du titrage a souvent fait défaut.

Page 53: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D17

À propos du nickelage de pièces métalliques, le graphe jNi = f(Ecath) a été assez souvent tracé et exploité correctement, en revanche le calcul de la vitesse de croissance du dépôt de nickel a rarement été effectué. Rappelons que le calcul de la constante d’équilibre d’une réaction d’oxydoréduction se fait à partir des potentiels d’oxydoréduction standard des couples mis en jeu.

Commentaires sur la partie B

Cette partie a été globalement moins bien traitée que la partie relative à la chimie inorganique. Certaines réactions classiques de la chimie organique telles que la déshydratation d’un alcool, l’hydrogénation partielle d’un alcyne, la saponification d’un ester, l’acylation d’un composé aromatique ou la synthèse malonique sont absentes d’un très grand nombre de copies.

Synthèse du bombykol :

Il ne suffit pas qu’un solvant soit anhydre pour pouvoir être utilisé dans une synthèse magnésienne, il faut qu’il soit plus généralement aprotique et que ce soit de plus une base de Lewis afin de stabiliser l’organomagnésien formé.

La basicité et la nucléophilie des organomagnésiens auraient dû servir de guide au candidat pour l’obtention des produits A, B et D. La synthèse d’un ylure de phosphore nécessite l’utilisation d’une base très forte alors que très souvent l’ion hydroxyde a été proposé.

La stéréochimie du bombykol dépendait de deux réactions : si la stéréospécificité de la réaction de Wittig pouvait être ignorée, celle de l’hydrogénation en catalyse hétérogène du groupe alcyne est très classique.

Synthèse du pyrène :

L’acylation d’un dérivé aromatique à l’aide d’un chlorure d’acyle ne peut être conduite avec une « quantité catalytique » de chlorure d’aluminium, ce dernier donnant un complexe avec la cétone formée.

La réaction de Clemmensen (réduction d’un groupe carbonyle en groupe méthylène) a été rarement traitée correctement ; l’écriture de l’équation d’oxydoréduction correspondante a très souvent posé problème.

Le pyrène avec seize électrons délocalisés n’est pas un composé aromatique au sens de Huckel (16 ≠ 4n+2) cependant la large délocalisation dont il est le siège explique sa forte stabilité.

Synthèse du zirconon :

La nature des effets électroniques associés aux groupes méthyle et sulfonate n’est pas toujours connue. Le caractère donneur du groupe méthyle relève plutôt de l’hyperconjugaison que de l’effet inducteur : ne considère-t-on pas en effet ce groupe, dans la théorie de Huckel, comme un hétéroatome apportant deux électrons au système pi ?

L’effet désactivant et méta-orienteur du groupe amino –NH2 en milieu acide est peu connu; aussi a-t-on rarement rencontré sa protection par formation d’un amide avant la réaction de sulfonation dans la synthèse de S2. Conclusion : Malgré les remarques qui précèdent, le jury a eu le plaisir de corriger un certain nombre de copies témoignant d’un bon niveau général en chimie. Il encourage les futurs candidats dans leur préparation au concours, préparation qu’il est parfois difficile de conduire en parallèle avec les obligations professionnelles, mais dont ils tireront le plus grand bénéfice.

Page 54: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D18

CORRIGÉ PARTIE A

Les documents annoncés sont à consulter en Annexe à la fin du corrigé.

LE COBALT, LE NICKEL, LE CUIVRE

1. Les métaux 1.1.1 Configuration électronique : 27Co : [Ar] 3d7 4s2 ; 28Ni : [Ar] 3d8 4s2 ; 29Cu : [Ar] 3d10 4s1

1.1.2 Ions les plus courants Co2+ ; Ni2+ ; Cu+ (et Cu2+).

1.1.3. Ei1(Cu) = E(Cu+) – E(Cu) = - E4s(Cu) = 13,6 (29-(18 x 0,85 + 10 x 1))2 / (3,7)2 = 13,6 eV 1.2.1.1 Un atome en chacun des huit sommets et un au centre de chacune des faces (doc.1)

1.2.1.2 Sites octaédriques : un au centre du cube et un au centre de chaque arête soit 4 sites O Sites tétraédriques : un au centre de chacun des huit cubes divisant la maille élémentaire.

1.2.1.3 Masse volumique : ρ = M.Z / (NA.a3) d’où a = (M.Z / (NA.ρ))1/3 et R = a √2 /4 D’où R = 125 pm. RO = R(√2 – 1) = 52 pm RT = R ( √3/2 - 1) = 28 pm.

1.2.1.4 Cu et Ni ont la même structure cristalline, des masses molaires et des masses atomiques voisines donc des rayons métalliques proches aussi aura-t-on une solution solide de substitution.

1.2.2.1 La maille élémentaire du cobalt est un prisme droit à base losange régulier qui s’inscrit dans un prisme régulier à base hexagonale (doc.2)

1.2.2.2 Si le système est hexagonal compact avec sphères tangentes : c / a = √8/3 ≈ 1,633 Avec les données de l’énoncé : c / a = 412 / 252 = 1,635 correct à 0,1 % près. Alors RCo = aCo / 2 = 126 pm

1.2.3.1 Le cuivre a une faible énergie d’ionisation ce qui explique la bonne conductivité du métal.

1.2.3.2 La conductivité électrique vaut σ = n.e.µ , où n est le nombre de porteurs de charges d’où n = σ / .e.µ = 5,93.107 / (1,60.10-19 x 4,45.10-3) = 8,33.1028 m-3

Le nombre d’atomes de cuivre par unité de volume vaut : N = ρ (Cu).NA / M(Cu) = 8,46.1028 m-3

N ≈ n , la conductivité correspond à : Cu → Cu+ + e-

1.3.1 L’élément bombardé est un isotope du cobalt , le nombre de charge vaut donc 27 ; bombardé par des neutrons 1n il donne le cobalt 60, 60Co, l’isotope bombardé a donc un nombre de masse égal à 59, d’où : 1n + 59Co → 60Co 0 27 27 1.3.2 Désintégration de 60Co 60 Co → 60 Ni + 0e + ν ( β- = 0e )

27 28 -1 -1 1.3.3 N = No.e- λ.t avec λ = ( ln 2 ) / T d’où t = ( ( ln No / N) .T ) / ( ln 2 ) = 35,2 ans en prenant No / N = 100 2. Les oxydes : structure de CoO, réduction de NiO.

2.1.1.1 Les ions oxyde O2- forment un réseau cubique à faces centrées les ions cobalt(II) Co2+ occupent tous les sites octaédriques de ce réseau (doc.3)

2.1.1.2 ρρρρth = Z.M(CoO) / (NA.a3) = (4 x74,9.10-3) / ( 6,02.1023 x (424.10-12)3) = 6, 53.103 kg.m-3

Page 55: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D19

2.1.2.1 ρr = Z.(M(O) + (1 – x ) MCo) / (NA.a3)

d’où ρr / ρth = [(1 – x )MCo + MO] / [MCo + MO]

soit x = 0,013.

2.1.2.2 Co1 - x O est un oxyde sur - stœchiométrique d’où :

O2 = 2 Oo2- + 2 VCo + 4 p+ p+ : trou positif VCo lacune cationique

puis 4 Co2+ + 4 p+ = 4 Co3+

soit 4 Co2+ + O2 = 2 Oo2- + 2 VCo + 4 Co3+

La formule du cristal est alors [ Co2+1 – 3 x Co3+

2 x VCo x] {O2-} [ ] : site cationique ; { } : site anionique.

2.1.2.3 La présence de trous positifs en fait un semi – conducteur de type p

2.1.2.4 La constante d’équilibre de l’équation de formation des lacunes s’écrit :

K = (a(Oo2-))2. (a(VCo))2 . (a(p+))4 / a (O2).

O2- constituant avec Co2+ , le « solvant » du cristal : a(Oo2-) = 1,00

a(VCo) = x ; a(p+) = a(Co3+ ) = 2 . x ; a (O2) = P(O2) / P°

D’où K = (16 . x6) / (P(O2) / P°) soit x = k’. (P(O2)1/6) alors σσσσ = k . (P(O2)1/6)

2.2.1 ∆rG°(T) = ∆rH°(T) - T . ∆rS°(T) En l’absence de changement de phase, on admet que : ∆rH°(T) ≈ constante et ∆rS°(T) ≈ constante c’est à dire ∆∆∆∆rCp°(T) ≈≈≈≈ 0.

Alors ∆∆∆∆rG°(T) = ∆∆∆∆rH°(To) - T . ∆∆∆∆rS°(To)

2.2.2 C + ½ O2 = CO

∆rH°(298 K) = ∆fH°(CO, 298K) = -110,5.103 J.mol-1.

∆rS°(298 K) = Σ νi Si°(298K) = 88,5 J.K-1.mol-1.

D’où : ∆∆∆∆rGa°(T) = -110,5.103 - 88,5 T J.mol-1. 2.2.3 Ni + ½ O2 = NiO

∆rH°(298 K) = ∆fH°(NiO, 298K) = -239,8.103 J.mol-1.

∆rS°(298 K) = Σ νi Si°(298K) = - 94,5 J.K-1.mol-1.

D’où : ∆∆∆∆rGb°(T) = -239,8.103 + 94,5 T J.mol-1.

2.2.4 Voir doc. 4.

2.2.5 Pour le couple NiO / Ni, les deux espèces étant solides la droite est la limite d’existence stables des deux espèces. Pour le couple CO / C , la droite est la limite de stabilité de C ; CO étant un gaz, il existe quelle que soit la température.

2.2.6.1 NiO + C = Ni + CO (1)

(1) = (a) - (b) soit ∆rG1°(T) = ∆rGa°(T) - ∆rGb°(T)

d’où ∆∆∆∆rG1°(T) = 129,3.103 - 183 . T J.mol-1.

2.2.6.2 Pour T = Ti , ∆rG1°(Ti) = 0 d’où Ti = 707 K

2.2.6.3 A 1273 K, ∆rG1° = -103,7 kJ.mol-1 et K1° = 1,79.104 ; réaction très avancée.

Page 56: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D20

2.2.7 L’atome de nickel possède 28 électrons, selon la règle de Sidgwick il peut en accepter huit pour acquérir la structure du krypton.

Le complexe formé est le tétracarbonylnickel [Ni(CO)4] de structure tétraédrique régulière (voir doc.5) 3. Titrages du nickel(II) en solution aqueuse

3.1.1 Une électrode de mesure et une électrode de référence sont nécessaires. L’électrode de mesure est une électrode de verre, l’électrode de référence peut-être une électrode AgCl / Ag (électrode combinée) ou une électrode au calomel (Hg2Cl2 / Hg). 3.1.2 Ni2+ + H2Y2- + 2 H2O = [NiY]2- + 2 H3O+

3.1.3 K = ( [[NiY]2-] . [H3O+]2 ) / ( [Ni2+ ] . [H2Y2-] ) = ββββa . KA3 . KA4 = 102,1 3.1.4 Ni2+ et H3O+ sont les deux espèces susceptibles de réagir avec l’ion hydroxyde. 3.1.5 n(H3O+) = 2. no (H2Y2-) = 2. V0,Y . CY

n(Ni2+) = n0(Ni2+) - n([NiY]2-) = V0,Ni . CNi - V0,Y . CY

3.1.6 De 0 à Véq1 H3O+ + HO- = 2 H2O

De Véq1 à Véq2 Ni2+ + 2 HO- = Ni(OH)2(s) 3.1.7 • CY = n(H3O+) / (2.V0,Y) = n(HO-)éq1 / (2.V0,Y) = CB . Véq1 / (2.V0,Y) = 0, 116 mol.L-1

• n(HO-)1→2 = 2 n(Ni2+)

CB . (Véq2 - Véq1) = 2 ( V0,Ni . CNi - V0,Y . CY )

soit CNi = CB . Véq2 / (2.V0,Ni) = 0, 094 mol.L-1

3.2.1 Equations des réactions auxquelles participent les ions Ni2+ lors de la préparation de S :

Ni2+ + 6 NH3 = [Ni(NH3)6]2+

Ni2+ + Mu = [NiMu]2+

3.2.2 Equation de la réaction de dosage :

[Ni(NH3)6]2+ + H2Y2- = [NiY]2- + 2 NH4+ + 4 NH3

K = ( [[NiY]2-] . [NH4+]2 .[NH3]4 ) / ( [[Ni(NH3)6]2+] . [H2Y2-] )

= (ββββa . KA3 . KA4 ) / (ββββb . KA) = 1012,5

3.2.3 Equation de la réaction justifiant le changement de teinte :

[NiMu]2+ + H2Y2- + 2 NH3 = [NiY]2- + 2 NH4+ + Mu

3.2.4 A l’équivalence :

n(H2Y2-)éq = n(Ni2+)o

soit : Véq . CY = V0,Ni . CNi

d’où Véq = V0,Ni . CNi / Véq = 10,0 . 0,094 /0.116 = 8,1 mL

3.2.5 En supposant qu’il n’y ait pas de précipité : Ni2+ + 6 NH3 = [Ni(NH3)6]2+ C initial mol /L 0,0188 1,800 0 C final mol /L ε 1,487 0,0188 [Ni2+] = ε = [[Ni(NH3)6]2+] / ( βb . [NH3]6) = 1,7.10-11 mol.L-1

Page 57: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D21

L’ammoniac étant une base faible : pOH = ½ (pKB + pc) = 2,3 soit [HO-] = 5,0.10-3 mol.L-1

d’où Q = [Ni2+] . [HO-]2 = 4,3.10-16

Q est inférieur à Ks , Ni(OH)2 ne précipite pas. 4. Titrage d’une solution d’ions cobalt(II) en présence d’ion fer(II)

4.1.1 L’orthophénanthroline peut se lier à un cation métallique par les deux doublets non liants des atomes d’azote, c’est un ligand bidentate : l’E.D.T.A peut se lier par six doublets : ceux des atomes d’atome et un de chacun des quatre atomes d’oxygène : il est hexadentate.

4.1.2 Le complexe [Co(phen)3]2+ est ocatédrique (voir doc.6) ; non superposable à son image dans un miroir , il est chiral.

4.1.3.1 Le nombre effectif de magnétons de Bohr est lié au nombre n d’électrons célibataires :

neff = (n(n+2))1/2

Avec neff = 3,87 , [Co(phen)3]2+ possède 3 électrons célibataires d’où : t2g5 eg

2

Avec neff = 1,74 , [Co(H2O)6]2+ possède 1 électron célibataire d’où : t2g6 eg

1

4.1.3.2 Les niveaux énergétiques des deux ions complexes sont alors : [Co(phen)3]2+ [Co(H2O)6]2+ [Co(phen)3]2+ est un complexe à champ faible et haut spin (H.S) alors que le complexe [Co(H2O)6]2+ est à champ fort et spin faible (L.S).

4.2.1.1 Les complexes sont les espèces majoritaires pour les fortes valeurs de [phen] donc les faibles valeurs de pphen ; d’autre part le degré d’oxydation de l’élément métallique croît lorsque le potentiel E croît d’où :

A : [Fe(phen)3]3+ ; B : Fe3+ ; C : [Fe(phen)3]2+ ; D : Fe2+

4.2.1.2 Sur la frontière entre C et D : [[Fe(phen)3]2+ ] = [Fe2+] D’autre part : βc = [[Fe(phen)3]2+ ] / ( [Fe2+] . [phen]3) Soit, sur la frontière : βc = 1 / [phen]3 et pphen = (log βc) / 3 = 7,1 Par analogie , pour la frontière entre A et B pphen = (log βd) / 3 = 5,7. [Fe(phen)3]3+ Fe3+ 7,1 →

5,7 [Fe(phen)3]2+ Fe2+ pphen 4.2.1.3 ♦ Pour pphen ≥ 7,1 : Fe3+ + e- = Fe2+

Soit : E1 = E1° + 0,060 log ([Fe3+] / [Fe3+])

Sur la frontière [Fe3+] = [Fe3+] d’où :

E1 = 0,77V

♦ Pour 5,7 ≤ pphen ≤ 7,1 : Fe3+ + e- + 3 phen = [Fe(phen)3]2+

En remarquant que sur la frontière [[Fe(phen)3]2+ ] = [Fe3+], il vient :

E2 = E2° + 0,060 log ( [phen]3) = E2° - 0,18 pphen.

Page 58: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D22

La continuité en pphen = 7,1 permet de trouver E2° = 2,05 V d’où

E2 = 2,05 - 0, 18 pphen

♦ Pour pphen ≤ 5,7 : [Fe(phen)3]3+ + e- = [Fe(phen)3]2+

Sur la frontière [[Fe(phen)3]3+ ] = [[Fe(phen)3]2+ ] d’où : E3 = E3°

La continuité en pphen = 5,7 permet de trouver E3° = 1,02 V d’où

E3 = 1,02 V

4.2.2.1 Par analogie avec la démarche du 4.2.1.1 :

E : Co3+ ; F : [Cophen)3]3+ ; G : Co2+ H : [Co(phen)3]2+ .

4.2.2.2 Par analogie avec la question 4.2.1.2

Sur la frontière entre Co2+ et Co(phen)3]2+ : βe = 1 / [phen]3 et pphen = (log βe) / 3 = 6,6

Sur la frontière entre Co3+ et Co(phen)3]3+ : βf = 1 / [phen]3 et pphen = (log βf) / 3 = 14,8 6,6 [Co(phen)3]3+ Co3+ →

[Co(phen)3]2+ Co2+ 14,8 pphen 4.2.2.3 Sur la frontière entre Co2+ et Co(phen)3]3+ :

[Co(phen)3]3+ + e- = Co2+ + 3 phen

et : [Co(phen)3]3+ = [Co]2+ d’où

soit E4 = E4° + 0,060 log (1 / [phen]3) = E4° - 0,060 log ([phen]3)

= E4° - 0,18 log ([phen]) = E4° - 0,18 pphen

La pente de la frontière vaut 0,18 V

4.3.1 Toutes les espèces Ox et Red étant en solution on peut utiliser une électrode de platine comme électrode de mesure . Une électrode au calomel peut servir d’électrode de référence.

4.3.2 Pour le couple Ce4+ / Ce3+ , E = E° = 1,44 V. ♦ En l’absence d’orthophénanthroline ( partie droite des graphes) :

E(Fe3+ / Fe2+) < E(Ce4+ / Ce3+) < E(Co3+ / Co2+)

Les ions cérium(IV) Ce4+ peuvent oxyder les ions Fe2+ mais pas les ions Co2+ , seuls les ions Fe2+ sont dosés. ♦ En présence d’orthophénanthroline en excès ( phen ≈ 1) :

E([Co(phen)3]3+ / [Co(phen)3]2+) < E([Fe(phen)3]3+ / [Fe(phen)3]2+) < E(Ce4+ / Ce3+)

Les ions cérium(IV) Ce4+ peuvent oxyder les ions [Co(phen)3]2+ et les ions [Fe(phen)3]2+ ; en l’absence de blocage cinétique la première réaction qui se produit est celle qui est la plus quantitative, c’est à dire celle qui correspond au plus grand écart de potentiel. Les ions [Co(phen)3]2+ sont donc dosés en premier et les ions [Fe(phen)3]2+ le sont en second. C’est la raison pour laquelle V’E,2 - V’E,1 = VE,1

4.3.3 Avec les données de l’énoncé il est possible de tracer l’allure des graphes U = f(VCe4+ ) ( voir

doc.7). 5. Nickelage de pièces métalliques 5.1.1 Comme E°(Ni2+ / Ni) >> E°(Fe2+ / Fe), les ions Ni2+ peuvent être réduits par le métal fer, un dépôt de métal nickel est donc possible. La constante d’équilibre de la réaction d’équation : Ni2+ + Fe = Fe2+ + Ni vaut K° = 10 2∆E° / 0,060 = 10 0,38 / 0,060 = 2,1.106.

Page 59: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D23

5.1.2.1 Comme, à pH = 4 E° ( H2PO3- / H2PO2

-) < E°(Ni2+ /Ni), H2PO2- peut réduire les ions Ni2+

selon la réaction d’équation :

H2PO2- + Ni2+ + 3 H2O = H2PO3

- + Ni + 2 H3O+

5.1.2.2 Des raisons cinétiques sont sûrement la cause de cette inertie, vu que cette inertie cesse en présence de la lame de fer.

5.1.2.3 En présence de fer les ions Ni2+ sont réduits en métal nickel, ce qui amorce la cristallisation du nickel sur le fer, cristallisation qui se poursuit par la réaction vue au §5.1.2.1

5.2.1 A la cathode on peut avoir :

- réduction de Haq+ : 2 Haq

+ + 2 e- = H2(g)

- réduction de Ni2+ : Ni2+ + 2 e- = Ni(s)

5.2.2 Par définition la surtension cathodique relative au nickel ηNi vaut :

ηηηηNi = E(Ni2+ / Ni)réel - E(Ni2+ / Ni)th

Le document 8 donne le tracé du graphe jNi = f(Ecath.)

E(Ni2+ / Ni)th = E° (Ni2+ / Ni) + 0,030 log [Ni2+] = - 0,25 V

ηNi = E(Ni2+ / Ni)réel - E(Ni2+ / Ni)th

d’où E(Ni2+ / Ni)réel = E(Ni2+ / Ni)th + ηNi = - 0,15 log jNi -0,56

5.2.3.1 Soit à l’aide du graphe, soit à l’aide de la formule , si Ecath = E(Ni2+ / Ni)réel = -0,65 V, jNi = 4,0 A.dm-2

5.2.3.2 Le rendement cathodique rc du dépôt de nickel est égal au quotient de la densité de dépôt du nickel par la densité cathodique :

rc = jNi / j = 4 / 5 = 80 %

Il n’est pas de 100 % en raison de la formation simultanée, de dihydrogène, à la cathode

5.2.3.3 La quantité de nickel déposé vaut :

n(Ni) = m(Ni) / M(Ni) = V . ρ (Ni) / M(Ni) = d . S . ρ (Ni) / M(Ni)

La demi - équation électronique relative au dépôt s’écrit :

Ni2+ + 2 e- = Ni

d’où : n(Ni) = n(e-) / 2 = Q / 2.F = I . t / (2 . F ) = jNi . S . t / (2 . F )

jNi . S . t / (2 . F ) = d . S . ρ (Ni) / M(Ni)

La vitesse de dépôt du nickel vd vaut :

vd = d / t

soit vd = jNi . M(Ni) / (2 . F . ρ (Ni)) avec F = NA . e

Numériquement vd = (4,0.102 x 58,7.10-3) / (2 x 1,60.10-19 x 6,02.1023 x 8900 )

soit vd = 1,37.10-8 m.s-1 = 0,82 µµµµm.min-1

Page 60: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D24

PARTIE B

SYNTHÈSES ORGANIQUES 1. Synthèse d’une phéromone : le bombykol 1.1 Une bande vers 3500 cm-1 en infrarouge peut être attribuée à la vibration de valence d’une liaison O-H d’une fonction alcool.

1.2 Le nombre d’insaturations ni peut se calculer à l’aide de la relation :

ni = (2 n(C) – n(H) + 2) / 2 = (32 –30 + 2 ) / 2 = 2

Ces deux insaturations peuvent être attribuées soit à une liaison C ≡ C soit à deux liaisons C = C ( la présence d’un groupe alcool exclue, pour un seul atome d’hydrogène une insaturation due à une liaison C = O).

1.3.1 Un organomagnésien réagit très facilement avec l’eau, le dioxyde de carbone, le dioxygène d’où la nécessité de le préparer juste avant de l’utiliser.

1.3.2 Le solvant doit être aprotique afin de ne pas réagir avec l’organomagnésien qui est une base très forte. Ce doit être une base de Lewis afin de stabiliser, par réaction acido-basique de Lewis, l’organomagnésien formé. Un étheroxyde est souvent utilisé.

1.3.3 Deux méthodes utilisant la technique du dosage d’un excès peuvent être utilisées :

- dosage utilisant des réactions acido-basiques : R-Mg-X + H3O+ → R-H + Mg2+ + X- + H2O puis détermination de l’excès d’ion H3O+ par dosage avec de la soude

- dosage par réaction de substitution nucléophile avec le diiode R-Mg-X + I2 → R-I + Mg2+ + X- + I-

puis détermination de l’excès de I2 par dosage avec le thiosulfate de sodium 1.4 Formules des produits A, B et D : A : B : D :

(1) : synthèse d’un magnésien acétylénique par réaction acido-basique (2) : addition d’un organomagnésien sur un composé carbonyle (3) : substitution nucléophile

1.5.1 L’atome de phosphore possédant 5 électrons de valence, la formule de Lewis d’une phosphine s’écrit : R – P – R , de formule AX3E1 sa structure est pyramidale régulière : R 1.5.2 Pour l’écriture du mécanisme notons R – CH2 – Br le composé D :

E :

MgBrOH Br

P

RRR

..

RH2C Br

Pφ3+δ -δR

H2C Pφ3 Br

RHC Pφ3

H

R CH

Pφ3 R CH

Pφ3

formules mésomères de EB

Pφ3

Page 61: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D25

1.6.1 La réaction E →→→→ F est la réaction de Wittig.

1.6.2 La formule du 10-oxodécanoate d’éthyle s’écrit : celle de F s’en déduit : Si l’on ignore la stéréospécificité de la réaction de Wittig, il y a une ambiguïté sur le caractère Z ou E de la double liaison formée par la réaction de Wittig. Sinon en remarquant que dans le cas présent, la charge - de l’ylure E est stabilisée par un effet mésomère attracteur et qu’alors l’oxophosphétane formé est principalement en configuration trans on en déduit que l’alcène formé est de configuration E.

1.7 Le bombykol présentant deux insaturations C = C , l’hydrogénation de la fonction alcyne C≡C doit être partielle. Le catalyseur alors utilisé est celui de Lindlar, c’est à dire du palladium désactivé. Il s’agit d’une synaddition, d’où la formule de G : 1.8 Notons R’-CO2-Et l’espèce G :

4 R’-CO2-Et + 2 LiAlH4 → (R’-CH2-O)4Al Li + (Et-O)4AlLi

(R’-CH2-O)4Al Li + (Et-O)4AlLi + 8 H+ → 4 R’- CH2 – OH + 4 Et-OH + 2 Al3+ + 2 Li+

1.9 Si l’on tient compte de la remarque du 1.6 la structure du bombykol ne peut être que : soit le (10 E,12 Z)-hexadéca-10,12-dièn-1-ol.

Sinon, sans connaître la stéréospécificité de la réaction de Wittig ( ce qui est le cas au niveau des programmes de PC-PC*) on peut envisager comme formules possibles :

- celle du stéréo-isomère 10 E, 12 Z - celle du stéréo-isomère 10 Z, 12 Z .

2. Synthèse du pyrène 2.1.1 La réaction J →→→→ K est une substitution électrophile. AlCl3 est un acide de Lewis, il favorise la formation de l’électrophile R – C = O mais réagit aussi avec toute base de Lewis du milieu, en particulier la cétone qui se forme par substitution électrophile sur le naphtalène

O

O

O

O

O

O

O

OH

R C

O

ClH

AlCl3 R C O AlCl4

C O

R1

R2

C O

R1

R2

AlCl3 AlCl3

Page 62: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D26

Aussi faut-il en introduire une quantité supérieure à celle de naphtalène initialement présente. 2.1.2 K et K’ résultent de la substitution électrophile sur le naphtalène , K de celle en position 2, K’

de celle en position 1 d’où :

K K’ 2.2.1 Lors de l’addition du dibrome sur une double liaison il se forme un pont

bromonium : 2.2.2 En milieu acide un énol est en équilibre avec une cétone possédant un H en α.

2.2.3 Pour la transformation de K en L le mécanisme suivant peut être proposé :

2.2.4 En milieu basique la polybromation est favorisée.

2.3 Une synthèse du type de celle permettant de passer de L à Q est la synthèse malonique. Les formules de M, N, P et Q sont alors M N P Q Le mécanisme de passage de P à Q peut s’écrire :

OO

C C

C C

Br

Ar

CH3

O H

Ar C

OH

CH

H

H

-H+HO

Ar H

H

Br Br+δ −δ

C C

Br

ArO H

HH Ar

O

Br avec Ar :

OO

O

O

OO

O

O

O

O

+2Na

OO

O

OH

OHO

O

OH

O O

OHO

R H

H

-CO2

H

R

OH

OH

RH2C

O

Oh

PQ

Page 63: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D27

2.4 R a pour formule L’équation de son obtention, qui fait appel à la réaction de Clemmensen, peut s’écrire :

+ 2 Zn(Hg) + 4H+ → + 2 Zn2+ + H2O

2.5.1 Pour S deux formules sont envisageables , cependant vu la formule du pyrène nous retiendrons :

sachant qu’il se forme aussi :

2.5.2 Une autre voie permettant de former S consiste à transformer l’acide R en son chlorure d’acyle puis à traiter celui-ci par du chlorure d’aluminium en excès afin de favoriser une substitution électrophile intramoléculaire.

2.6 Un organomagnésien est plus réactif qu’un organozincique ainsi réagit – il avec un ester contrairement à un organozincique, il n’aurait alors pas été possible de préparer Br-Mg-CH2CO2C2H5 La formule de U s’écrit :

2.7.1 V admet pour formule : 2.7.2 La réaction U →→→→ V est une déshydratation ; le mécanisme de cette réaction peut s’écrire : 2.8.1 Les composés W et X ont les formules suivantes : W X

O

OH

O

OH

O

O

OH

O

O

O

EtOOH

O

EtO

R C C

O

H

HH

H

R C C

O

H

H

H

H

-HC C

H

R

+ H2O

O

O

O

HO

Page 64: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D28

2.8.2 La réaction de formation de W est une saponification, dont le mécanisme est le suivant , en notant R-CO2-Et l’espèce W :

W

2.8 Les formules de Y et de Z sont alors : Y Z

2.10 Le pyrène possède seize électrons délocalisés et présente de nombreuses formules mésomères, il est donc particulièrement stable ( en réalité quatorze électrons ( 4 x 3 + 2 ) participent à chacune de ces formules). 3. Synthèse du zirconon : 3.1.1 –CH3 est un groupe donneur par hyperconjugaison –OH est un groupe attracteur par effet inducteur et donneur par effet mésomère, ce dernier étant prépondérant –SO3H est un groupe attracteur par effet inducteur et par effet mésomère

3.1.2 Un groupe donneur oriente préférentiellement en ortho ou en para avec activation alors qu’un groupe attracteur oriente préférentiellement en méta avec désactivation.

3.2 L’effet donneur du groupe –OH étant plus fort que l’effet donneur du groupe –CH3 , les deux synthons qu’il est nécessaire de coupler pour obtenir le zirconon sont alors : S1 S2 3.3 Synthèse de S1 : ♦ Synthèse du phénol : on peut envisager :

- l’oxydation du cumène :

R

O

OEt

O H R C

O

OEt

OH R

O

OH

Et O+ R

O

O

+ EtOH

O

OH

H3C

N2 SO3H

+

Cumène

OH

O

+

Page 65: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D29

- l’hydrolyse de l’ion phényldiazonium :

ion phényldiazonium - la fusion alcaline de l’acide benzènesulfonique :

♦ Méthylation du phénol :

+ isomère ortho

Synthèse de S2 : On part de l’aniline C6H5-NH2 ( obtenu ci-dessus dans la synthèse de S1). Pour fixer –SO3H on fait agir un oléum ( SO3 dissous dans H2SO4) qui est un milieu très acide, aussi afin d’obtenir une substitution électrophile en position para il est nécessaire de protéger le groupe amine –NH2 afin qu’il ne soit pas protoné en –NH3

+ qui orienterait en méta. Il suffit pour cela de passer à l’amide à l’aide d’un chlorure d’acyle ou d’un anhydride d’acide. Les diverses étapes de la synthèse de S2 sont alors :

Protection

La réaction entre S1 et S2 assure le couplage diazoïque conduisant au zirconon :

+ HNO3 NO2 NH2

HNO2

0°C

H2

PtN2

H2OOH

SO3H OHNaOH

SO3

H2SO4

OH OHCH3Cl

AlCl3H3C

S1

NH2 +H3C

O

Cl

N

H

H3C

O

SO3

H2SO4

HO3S N

O

H

HO3S N

O

H

H2O

H+HO3S NH2 HO3S N2

HNO2

0°C

S2

SO3HN2+

OH

H3C

N N SO3H

OH

H3C zirconon

Page 66: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D30

Annexes Doc 1 Doc 2 Doc 3

Doc 5

C

C

CC

O

O

OO

Ni

-250

-200

-150

-100

-50

0

200 400 600 800 1000 1200 1400 1600

Doc 4

T (K)Ti

DrG°(kJ.mol -1)

NiO

Ni

CO

C

Page 67: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D31

Doc 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 4 8 12 16 20 24

Doc 7

VCe4+ (mL)

E (V)

Ve'1 Ve1 Ve'2

Avec orthophénantroline

Sans orthophénantroline

Page 68: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

D32

-5

-4

-3

-2

-1

0

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

doc 8jNi (A.dm -2)

Ecat (v)

E(Ni2 +/Ni)

Page 69: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E1

ÉPREUVES ORALES

Les épreuves orales se sont déroulées au lycée Saint-Louis (Paris) du 7 avril au 16 avril 2003.

Le jury a délibéré immédiatement après la fin des épreuves.

Le lecteur trouvera ci-dessous les informations concernant l’organisation et le déroulement des épreuves orales puis les observations du jury sur les épreuves de la session 2003.

ORGANISATION ET DÉROULEMENT DES ÉPREUVES ORALES Les candidats admissibles reçoivent une convocation leur demandant de se présenter au tirage au sort des épreuves orales correspondant à une série donnée. Le tirage au sort a lieu la veille du début de chaque série (à 17h) ; chaque série dure 3 ou 4 jours, période durant laquelle chaque candidat passe deux épreuves. Lors du tirage au sort, chaque candidat tire un numéro, correspondant à deux enveloppes contenant les sujets des épreuves qu’il sera amené à présenter ; ces épreuves sont :

- soit une leçon de physique (coefficient 1) et un montage de chimie (coefficient 1) ;

- soit une leçon de chimie (coefficient 1) et un montage de physique (coefficient 1).

Ces enveloppes sont ouvertes par le candidat au début de chacune des épreuves, selon les horaires ci-dessous : Ouverture du sujet 6h00 7h20 8h40 11h30 12h50 14h10 Début de l’épreuve 10h00 11h20 12h40 15h30 16h50 18h10 Une épreuve se déroule de la façon suivante :

- ouverture du sujet tiré au sort : un sujet obligatoire pour la leçon, et un sujet à choisir parmi deux proposés pour le montage (choix à faire à l’ouverture de l’enveloppe) ;

- 4h de préparation à l’épreuve ; pendant la durée de cette préparation, le candidat dispose de l’assistance technique d’un personnel qualifié pour la préparation des expériences ;

- 1h20 d’épreuve, dont 50 minutes consacrées à l’exposé de la leçon ou à la présentation du montage et le reste du temps pouvant être utilisé par le jury pour poser des questions au candidat.

Les épreuves sont publiques

L’usage des calculatrices personnelles n’est pas autorisé ; une calculatrice scientifique simple (non programmable) est fournie aux candidats.

Page 70: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E2

Il est demandé aux candidats de se munir d’une pièce d’identité en cours de validité, ainsi que d’une blouse pour la chimie. Des transparents vierges ainsi que des marqueurs pour rétroprojecteur sont fournis aux candidats qui le demandent. À la fin du tirage au sort, les candidats peuvent visiter les bibliothèques et la collection du matériel de physique et de chimie mis à leur disposition. Les centres de préparation ont la possibilité de mettre à la disposition de l’ensemble des candidats admissibles du matériel scientifique et des ouvrages : dans ce cas, ils doivent les faire parvenir au lycée où se déroulent les épreuves orales avant le début de la première série et jusqu’à la fin des épreuves. Le matériel doit être accompagné d’un inventaire et des notices d’utilisation des appareils.

OBSERVATIONS GÉNÉRALES DU JURY

Le jury a eu le plaisir d'écouter et de s’entretenir avec des candidats qui avaient bien préparé leurs épreuves orales et pris en compte les observations du jury faites au cours des années précédentes. Toutefois, il souhaite renouveler quelques conseils généraux formulés dans des précédents rapports afin de permettre aux futurs candidats de mieux présenter ces épreuves. En effet, les épreuves orales nécessitent une préparation sérieuse avant le concours. Pour espérer obtenir une note au moins correcte, le candidat doit avoir réfléchi au sujet qu'il traite ; la découverte au dernier moment du sujet, l'exposé établi à partir d'une compilation hâtive ne peuvent conduire qu'à un échec.

Bien entendu, le jury veille à ce que les candidats qui ont tiré au sort l’un des couplages leçon de physique-montage de chimie soient ni avantagés ni désavantagés par rapport à ceux qui ont tiré au sort l’un des couplages leçon de chimie-montage de physique. Le jury est par ailleurs particulièrement sensible à la conviction avec laquelle les candidats font passer leurs messages lors des épreuves orales ; exposer sur un ton monocorde, d’une voix sourde et inaudible n’est pas du meilleur effet ; de même, il convient d’utiliser avec efficacité le tableau et de ne pas effacer les résultats aussitôt écrits. L’utilisation des moyens modernes de présentation est encouragée par le jury, de même que celle de l’outil informatique. Mais là encore, le candidat ne doit pas apprendre en préparation à utiliser un logiciel mis à sa disposition, sous peine de perdre un temps toujours précieux. En outre, s'il s'agit de vérifier que les points correspondants aux mesures effectuées sont alignés, le rapport sur papier millimétré est probablement plus rapide. En revanche, un logiciel moderne, même « grand public », propose par exemple une représentation analytique avec la détermination des constantes (pente, ordonnée à l'origine, ...). Le titre du sujet doit être lu avec soin. Les termes qui y figurent doivent être connus et le candidat interrogé sur ce point doit pouvoir répondre correctement et brièvement. Le candidat doit gérer le temps dont il dispose. Il faut éviter tout gaspillage : introduction trop longue, expériences répétitives dont l'accumulation n'apporte que peu

Page 71: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E3

de choses, ... En revanche une conclusion soignée où figure autre chose que les titres et paragraphes successifs est appréciée. Par ailleurs, le jury rappelle aux candidats que les notes attribuées à l’oral correspondent à l’évaluation de connaissances exposées à un niveau post-baccalauréat (celui des CPGE) ; en conséquence, les candidats ne doivent pas, suite à des notes faibles, être démotivés au niveau de leur enseignement, ces notes ne reflétant pas le travail qu’ils réalisent dans leurs classes. Leçons Le candidat dispose de 50 minutes pour son exposé portant sur un sujet faisant partie de la liste publiée au BOEN. S’ensuit une interrogation au cours de laquelle un dialogue s'établit entre le candidat et les membres du jury. Cette interrogation porte sur le fond du sujet traité et sur les approches pédagogiques. Le jury est supposé connaître ce qui précède dans le programme. Cette épreuve permet aux candidats de montrer qu'ils dominent la discipline et qu'ils sont capables de l'enseigner avec clarté, talent et conviction. Il faut rappeler que le rythme de l’exposé doit être plus soutenu que celui adopté devant les élèves d’une classe. Montages Le candidat dispose de 50 minutes pour présenter les expériences qu'il a préparées. Au cours de cette présentation, le jury peut être amené à questionner le candidat, en lui demandant des précisions, des justifications, des explications sur les différentes manipulations présentées, la durée effective de présentation des expériences restant de 50 minutes. Au cours de cette épreuve, les candidats montreront que les sciences physiques et chimiques sont des sciences expérimentales et qu'ils savent mettre en œuvre des expériences et les exploiter.

Page 72: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E4

RAPPORT SUR LES ÉPREUVES ORALES DE PHYSIQUE OBSERVATIONS GÉNÉRALES DU JURY Comme chaque année, un certain nombre d’enseignants de sciences physiques ont passé brillamment les épreuves orales du concours. Nous les félicitons et souhaitons que ce nombre croisse encore. À cet effet, nous rassemblons ci-dessous des remarques et conseils qui peuvent aider et guider les futurs candidats, améliorer leur préparation et leur présentation. Bien entendu, beaucoup d’éléments de réflexion se trouvent déjà dans les précédents rapports du jury dont nous encourageons la consultation. Soulignons d’abord que le jury est extrêmement sensible à la conviction et à l’enthousiasme qu’on est en droit d’attendre de la part d’enseignants possédant déjà une bonne expérience professionnelle. Si l’émotion ou le stress peuvent expliquer qu’un candidat se conduise de façon moins naturelle, moins chaleureuse et moins brillante que dans sa classe, il est difficilement admissible d’entendre des explications débitées d’une voix sourde et peu audible, de voir des expériences peu visibles et réalisées à la hâte ou des résultats de mesures mal disposés et mal exploités. Rappelons qu’il n’y a pas de sujets « sans espoir ». Certains sujets de montage ou de leçon, considérés comme difficiles, ont été très correctement traités à un niveau adéquatement choisi et ont donné lieu à de très bonnes notes ; en revanche, d’autres réputés faciles, ont entraîné des catastrophes pour des candidats partant battus d’avance et n’ayant pas assez exploité leur expérience professionnelle. Bien entendu, aucun des sujets proposés, montage ou leçon, ne peut être traité correctement s’il est improvisé, c’est-à-dire découvert quatre heures avant l’audition. Le jury encourage tous les candidats à suivre dans la mesure du possible une préparation adaptée, à se rapprocher de collègues plus expérimentés et éventuellement à suivre certains cours ou TP du niveau des épreuves. Quelques remarques d’ordre pratique :

! Il peut paraître banal ou inutile de rappeler que le titre du sujet doit être lu avec soin. Pourtant, il n’est pas rare que des points explicitement mentionnés ne soient pas traités sinon connus.

! Le tableau est trop souvent mal utilisé. En particulier, certains candidats effacent pratiquement au fur et à mesure ce qu’ils écrivent : c’est gênant pour le jury mais ce peut être surtout un handicap sérieux pour le candidat qui, très rapidement, n’a plus à sa disposition les résultats nécessaires pour continuer.

! Le rétroprojecteur peut être d’une aide précieuse s’il est utilisé à bon escient. Mais, trop souvent, les documents faits à la main sont peu lisibles et les schémas photocopiés de pages de livres sont très mal choisis. Dans bien des cas l’usage de figures tracées au tableau avec des craies de couleur remplacerait avantageusement et sans perte de temps les projections mal faites. Rappelons également qu’un rétroprojecteur doit être correctement réglé : la mise au point n’est pas difficile à faire mais elle doit l’être.

! Il apparaît que dans d’assez nombreux cas, un temps excessif a été passé ou gaspillé sur l’ordinateur disponible dans chaque salle. S’il s’agit de tracer une simple courbe, le candidat a le plus souvent intérêt à réaliser un document sur papier millimétré qui peut d’ailleurs être projeté. L’utilisation de l’ordinateur ne se justifie que si un minimum raisonnable des possibilités offertes par l’informatique est exploité (en matière de traitement statistique des données, de fonctions dérivées ou d’introduction de nouvelles variables notamment). Rappelons que les tableurs les plus diffusés dans le grand public sont suffisants dans la quasi-totalité des situations rencontrées, aussi

Page 73: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E5

bien pour tracer les courbes que pour comparer les données avec des calculs théoriques et ajuster les paramètres par des régressions linéaires ou non linéaires.

LEÇONS DE PHYSIQUE Remarques générales La leçon de physique présente les mêmes difficultés qu’un cours devant une classe et il faut garder à l’esprit les exigences de l’exercice : capter l’attention de l’auditoire, définir ses objectifs, préciser ses hypothèses, critiquer les modèles et les résultats, aller du simple au complexe, illustrer les idées et les calculs par des ordres de grandeurs, des expériences, des exemples et des applications, en traitant bien sûr le plus complètement possible son sujet sans dépasser le niveau et le temps imparti. Précisons en particulier qu’une illustration expérimentale est toujours appréciée. Bien entendu, il ne faut pas que le candidat y consacre trop de temps, aussi bien pendant la préparation que pendant son exposé devant jury. Il peut sur ce point compter sur l’aide efficace du personnel de laboratoire mis à sa disposition. En général, il est préférable que l’expérience soit réalisée au début de la leçon. Mais cette considération n’a pas valeur de dogme. Les titres des leçons sont extraits des programmes des classes préparatoires aux grandes écoles scientifiques. C’est se tromper sur la nature de l’enseignement dans ces classes que de s’en tenir à des considérations très théoriques et à un traitement formel donnant lieu essentiellement à des calculs. Remarquons par ailleurs que les termes d’un programme sont nécessairement concis, et qu’ils n’indiquent pas, sauf exception, les exemples et les expériences à inclure dans l’exposé. Il est ainsi absolument indispensable que le candidat ne s’en tienne pas à des considérations théoriques. Il doit avoir à l’esprit :

! les ordres de grandeur, ! les applications pratiques et concrètes, ! les cas particuliers simples.

Il sera donc souvent préférable de traiter une situation simple, par exemple unidimensionnelle en électromagnétisme (onde plane, vecteur de Poynting), en mécanique des fluides ou en acoustique (propagation du son), plutôt que d’attaquer d’emblée le cas général avec tout l’arsenal de l’analyse vectorielle qui masque rapidement la réalité des phénomènes physiques, surtout s’il est maladroitement utilisé. Les situations plus complexes, éventuellement envisagées ensuite, sont alors mieux et plus facilement comprises. C’est d’ailleurs ainsi que l’on procède dans de nombreux ouvrages de référence, français ou étrangers.

Page 74: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E6

Remarques particulières concernant les leçons LP1. Les applications numériques et l’étude des ordres de grandeur dans le cas du référentiel terrestre sont particulièrement importantes. On peut aussi ne pas se limiter au cas de ce référentiel. LP2. Il est essentiel de discuter des exemples. On peut évoquer le problème de la puissance des actions de contact. LP5. Il est préférable de présenter les expériences en début de leçon. L’exemple du pendule simple n’est pas significatif d’un solide en rotation autour d’un axe fixe. La discussion -au moins qualitative- des réactions d’axe et des problèmes d’équilibrage permet de rendre la leçon plus concrète et plus intéressante. LP7. Si le gaz de Van Der Waals est abordé, il ne faut pas se contenter de remarquer que son équation est différente de celle du gaz parfait. Il convient de préciser brièvement en quoi consiste le modèle correspondant. Ce modèle de gaz peut être utilisé dans les leçons ou montages concernant les changements d’états. LP9. Le jury a apprécié la présence d’expériences correctement réalisées et exploitées. LP10. Il faut s’appuyer sur des exemples concrets pour définir les transferts thermiques et les travaux effectués sur un système. L’équivalence travail-chaleur et la transformation de l’un dans l’autre n’est souvent pas assez illustrée. LP11. On peut faire des bilans d’entropie avec des mélanges de gaz et ne pas se contenter de l’exemple classique du contact thermique entre deux solides. LP15. De même qu’un système de forces (torseur) de somme nulle est un couple entièrement caractérisé par son moment, un ensemble de charges de somme nulle est très souvent assimilable en première approximation à un dipôle caractérisé par son moment dipolaire. Le système de deux forces opposées ou celui de deux charges ne sont que des modèles simplifiés. Dans le cas du dipôle, toutes les grandeurs utiles s’expriment en fonction du moment dipolaire : champ et potentiel créés, couple exercé par un champ uniforme, force exercée par un champ qui ne l’est pas, énergie potentielle d’interaction avec un champ, … LP16. L’étude d’une carte de champ dans un cas précis apporte un peu de concret à une leçon qui, autrement, peut devenir aussi abstraite qu’ennuyeuse. LP17 et 18. L’orientation de l’espace et celle des éléments physiques (circuits) doit être soignée si on ne veut pas trouver les phénomènes au signe près. Les applications (aux moteurs en particulier) ne sont souvent pas traitées (on peut faire la même remarque à propos du montage MP11 sur l’induction). LP20. Bien faire la différence entre le régime libre et le régime forcé. Souligner le lien entre les fréquences de résonance et les modes propres. LP24. Une erreur commune à éviter est de mélanger les variables complexes fonction de la fréquence et les dérivées temporelles dans les équations de Maxwell des milieux. La discussion d’un modèle microscopique est impérative. LP25. Le rappel des équations de passage des champs et la démonstration des lois de Descartes (dans le cas général) peut être une bonne introduction à la leçon qui ne se limite au cas de l’incidence normale que pour le calcul des coefficients de réflexion. On peut discuter qualitativement le principe des couches anti-reflet. LP27. Les termes « cohérence » et « localisation » doivent être explicités avec soin. LP28. Il est plus intéressant de s’attacher aux conséquences de la diffraction par exemple sur les performances des appareils optiques que d’aligner des calculs aussi laborieux qu’interminables. La présentation expérimentale du phénomène ne doit pas forcément se limiter à l’utilisation du laser. La diffraction de Fresnel en lumière blanche par une fente est facile à mettre en évidence et à présenter avec une caméra vidéo. LP30. Il faut savoir expliquer pourquoi la force de Laplace travaille alors que la force de Lorentz ne travaille pas. Les connaissances même rudimentaires sur les moteurs électriques sont les bienvenues.

Page 75: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E7

MONTAGES DE PHYSIQUE

Remarques générales Rappelons que le montage est un ensemble d’expériences permettant d’illustrer un sujet. Il ne s’agit pas de monter une suite de manipulations sans aucune cohérence mais de bâtir l’ensemble autour d’une « colonne vertébrale » bien apparente, les expériences devant donner lieu à des mesures quantitatives. La faiblesse des montages est parfois due au manque de soin apporté aux manipulations mais beaucoup plus souvent le fait que les résultats ne soient ni discutés ni critiqués. Le résultat brut d’une mesure est rarement d’un grand intérêt. Il peut en revanche être comparé à une donnée tabulée (par exemple, il peut s’agir d’une constante ou d’une valeur trouvée dans un handbook), il peut permettre de vérifier l’accord avec une loi ou un modèle théorique ou semi-empirique. Pour cela, il est indispensable que la précision avec laquelle les mesures sont obtenues soit prise en considération. Trop souvent, le candidat se contente d’estimer un écart relatif à la valeur supposée correcte et d’affirmer que c’est correct si le résultat est en valeur absolue inférieur à 10 %. Or, le hasard ou des phénomènes de compensation font que l’on peut très bien trouver un écart nul. La mesure n’a pas pour autant de valeur particulière. En revanche, pour les expériences montées, trouver un écart de l’ordre de 100 % (ou même supérieur à cette valeur) prouve que l’expérimentateur a probablement fait une faute grossière : erreur de lecture du calibre de l’appareil, erreur de calcul, etc… En tous cas, l’interprétation de la situation ne peut pas être trouvée à l’aide du calcul classique d’incertitudes basé sur les propriétés des différentielles. Remarques particulières concernant les montages MP1. La dynamique newtonienne n’est pas réductible à la mesure de l’intensité de la pesanteur ou à des mesures sur la table à coussin d’air. Il est indispensable de ne pas se limiter aux propriétés du point matériel ou à la translation du solide. La rotation de celui-ci autour d’un axe doit être envisagée. MP2. Savoir ce qu’est une échelle de température est indispensable. Il ne suffit pas de multiplier les simples mesures de température avec les thermomètres les plus divers. MP3. Estimer la chaleur latente de vaporisation de l’eau à l’aide de la relation de Clapeyron demande beaucoup de soin. On peut s’attendre à une incertitude très importante sur le résultat. Trouver dix ou 100 fois trop n’est toutefois pas admissible. MP8. Il est nécessaire de trouver un lien logique aux expériences présentées au lieu de multiplier les circuits dont le seul point commun est la présence d’un condensateur. MP11. L’étude du transformateur ne doit pas uniquement se faire à vide mais en présence de charges résistives et réactives. MP12. Il est difficile de ne pas s’intéresser à l’électro-aimant ainsi qu’aux champs tournants. Le résultat brut obtenu à l’aide d’une seule mesure B = 1,5 × 10-2 T n’a aucun intérêt. MP14. L’utilisation d’un générateur de signaux rectangulaires rend parfois difficile la distinction entre régime permanent et régime transitoire. MP15. Il est nécessaire de passer rapidement sur un exemple de filtre passif. Les filtres actifs ont beaucoup d’avantages ; parmi les inconvénients, il faut signaler la stabilité. L’ordre d’un filtre correspond au comportement du gain lorsqu’on s’éloigne de la fréquence caractéristique ou de la fréquence de coupure : ex. pour un 1er ordre, 20 dB/décade, pour un 2ème ordre, 40 dB/décade, etc… C’est une caractéristique importante, bien plus que le degré du polynôme

Page 76: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E8

qui est au dénominateur de la fonction de transfert. De ce point de vue, un circuit RLC (la tension de sortie étant prise aux bornes de la résistance) ainsi que le filtre actif de Wien le plus simple ont un comportement du 1er ordre. MP16. Le montage sur la conversion alternatif-continu est rarement réussi. Il est indispensable de s’intéresser à la puissance disponible et de ne pas se limiter au redressement filtrage mono ou bi-alternance. L’étude d’un régulateur est pourtant facile. À l’heure actuelle, il est difficilement justifiable de ne pas s’intéresser à la commutation qui est à la base de l’électronique de puissance. MP18. Les oscillations forcées sont les plus simples ; on peut peut-être commencer par là. MP28. Il faut montrer (ou au moins évoquer) des ondes stationnaires dans différents domaines de la physique et dans des domaines variés de longueur d’onde.

Page 77: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E9

RAPPORT SUR LES LEÇONS DE CHIMIE Remarques générales Le sujet de la leçon est tiré de la liste publiée au Bulletin de l’Éducation Nationale. Son niveau est imposé et reste dans le cadre des programmes des classes préparatoires aux grandes écoles. La leçon est censée s’adresser à une classe qui aurait assimilé les leçons précédentes et qui est apte à acquérir rapidement des notions nouvelles. En travail préalable, il peut être nécessaire de réfléchir à la situation de la leçon à l’intérieur du programme des classes préparatoires aux grandes écoles, et ainsi de pouvoir préciser en début de leçon, quels sont les pré requis nécessaires. Toutefois, ceci ne doit se faire qu’en quelques phrases et de longs rappels pourraient être considérés comme hors sujet. Lors du déroulement de la leçon, le candidat doit savoir gérer correctement le temps qui lui est imparti : les différentes parties de la leçon doivent avoir le poids relatif qui leur est dû et un paragraphe important ne doit pas être traité à la hâte dans les cinq dernières minutes. Le candidat doit maîtriser suffisamment son sujet pour pouvoir se détacher de ses notes ; par exemple, un mécanisme de réaction en chimie organique doit pouvoir être écrit au tableau sans consulter ses feuilles de notes en permanence. Dans le même ordre d’idée, les aspects délicats de la leçon ne doivent pas être systématiquement exposés à l’aide de transparents, le jury apprécie qu’ils soient développés au tableau. Si le candidat a choisi de présenter une expérience, celle-ci doit se positionner avec justesse à l’intérieur de la leçon ; s’il s’agit de résultats expérimentaux tirés de la littérature, ils doivent être présentés avant l’exposé de la théorie qui en donne une interprétation. S’il s’agit d’une véritable expérience, elle sera là pour illustrer une partie de la leçon. Cependant, elle ne doit durer qu’un court instant car ce n’est pas le but de la leçon. Pour terminer ces remarques générales, on doit insister sur le fait que le candidat doit pouvoir expliquer tout ce qu’il présente au jury, y compris les expériences et l’intégralité des transparents réalisés lors de la préparation ou photocopiés. Remarques spécifiques Leçons portant sur la cristallographie, les dosages, … Dans certaines leçons, l’utilisation d’un logiciel peut s’avérer intéressante, mais il faut éviter une utilisation trop envahissante qui occasionnerait une perte de temps. Leçons portant sur la cristallographie Les logiciels et les transparents, qui donnent une image 2D, ne peuvent prétendre remplacer les modèles cristallins en 3D. Ils peuvent néanmoins être utilisés conjointement. Leçons de thermodynamique Les concepts de thermodynamique sont délicats à assimiler ; les leçons concernant ce sujet doivent être particulièrement travaillées lors de la préparation du concours. Leçon « utilisation des diagrammes potentiel-pH… » Le jury insiste sur le terme « utilisation ». La construction de ces diagrammes n’est pas à traiter de façon détaillée.

Page 78: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E10

Leçons de chimie organique Le candidat doit tout d’abord maîtriser l’écriture des formules mésomères des diverses espèces, ainsi que le formalisme des flèches (qui représentent un mouvement d’électrons). Les mécanismes les plus significatifs devront être exposés au tableau. Pour éviter de tomber dans le catalogue de réactions, il est conseillé de trouver un fil directeur à la leçon et de le faire ressortir. Ce peut être un point de vue mécanistique ou bien synthétique (construction de la chaîne carbonée et fonctionnalisation de ladite chaîne) ou encore une comparaison entre la fonction étudiée et une autre déjà connue. On peut utiliser les orbitales frontières des réactifs et des substrats dans la plupart des leçons de chimie organique ; elles constituent une aide précieuse à la compréhension de la régiosélectivité des réactions. Le jury a apprécié l’utilisation par les candidats d’exemples concrets, où les substituants alkyles sont notés par leur formule chimique et non par R ou R’. Lors de l’étude de certaines transformations, la stéréochimie des réactions ne doit pas être oubliée, bien au contraire. Concernant la leçon «Styrène et méthacrylate de méthyle : étude des monomères ; polymérisation anionique et radicalaire», il est bon de présenter l'étude des propriétés macroscopiques du polymère en reliant structures et propriétés. Leçons portant sur les dosages Les leçons concernées (« exemples de dosages acido-basiques, de complexation et de précipitation » ; « exemples de dosages d’oxydo-réduction ») sont des leçons difficiles car elles demandent de réaliser une synthèse des connaissances de la classe. Les exemples choisis doivent être intéressants et non redondants. Ces leçons ne doivent pas être trop calculatoires ni tomber dans l’excès inverse en ressemblant à un montage.

Page 79: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E11

RAPPORT SUR LES MONTAGES DE CHIMIE

Remarques générales Le sujet du montage concerne aussi bien la chimie organique que la chimie inorganique, sauf si cela est spécifié dans le titre. Par exemple, on peut envisager dans le montage « le dichlore et l’eau de Javel », aussi bien des réactions avec des composés minéraux qu’avec des composés organiques. Le niveau du montage doit être celui des classes post baccalauréat ; les manipulations ne doivent pas uniquement être extraites des programmes du secondaire. Le candidat doit choisir au mieux les expériences qu’il présentera devant le jury pour illustrer le sujet du montage de façon complète, diversifiée, et en suivant un fil conducteur pour éviter de tomber dans un montage de type « catalogue ». Pendant le temps imparti à la préparation du montage (4 heures), le candidat dispose des ouvrages de la bibliothèque dans lesquels il trouvera les modes opératoires. Sous sa seule responsabilité, il prépare les expériences. Il est aidé du personnel technique à qui il demande par écrit le matériel, les produits, les solutions titrées. Le candidat doit ensuite présenter son montage ; avant l’arrivée du jury, il prendra soin de noter sur papier les modes opératoires dont il aura besoin pour sa présentation (produits utilisés, volumes à prélever, pH ou température à fixer…). Les paillasses devront être ordonnées. Le candidat attachera un soin particulier à la présentation au tableau de son montage : devront figurer le plan, les équations bilan des réactions mises en jeu et éventuellement les données nécessaires à une bonne interprétation des expériences (constantes thermodynamiques, diagrammes potentiel-pH, courbes i=f(E)…) Pendant la présentation, le jury veut voir le candidat manipuler. Le candidat doit maîtriser les modes opératoires et doit pouvoir les justifier. Les résultats qu’il présente (y compris ceux obtenus avec l’aide du personnel technique) doivent être analysés, expliqués, commentés. Les expériences doivent être menées à leur terme et poussées aussi loin que possible :

- il est inutile de commencer une synthèse magnésienne dix minutes avant la fin de la présentation ;

- il est souhaitable de ne pas se contenter de montrer l’existence d’un complexe, mais d’aller jusqu’à la détermination de sa constante de dissociation.

L’outil informatique doit être bien maîtrisé lorsqu’on souhaite l’utiliser. Mais il ne peut pallier des défauts de manipulations : pour une courbe de dosage, si l’on a relevé peu de points autour du point d’inflexion, les logiciels ne pourront donner de façon satisfaisante, les coordonnées de ce point à l’aide de la courbe dérivée. Sur les impressions papier des courbes, il est souhaitable que soit tracé un quadrillage si on désire lire les coordonnées d’un point. Sur l’écran, le jury a apprécié l’utilisation du « curseur-réticule ». Cependant, une courbe tracée sur papier millimétré peut être tout aussi satisfaisante.

Page 80: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E12

Le candidat utilisera convenablement les chiffres significatifs. Il fera la distinction entre une solution à 0,1 mol/L et une autre à 0,100 mol/L. Remarques spécifiques Montages faisant intervenir des éléments à différents degrés d’oxydation Il est très souvent utile voire impératif de se référer au diagramme potentiel-pH. Montages ou expériences sur l’oxydoréduction Il faut envisager les aspects thermodynamiques et cinétiques. Les aspects quantitatifs (en particulier sur les électrolyses) sont toujours les bienvenus. Montages de chimie organique La présentation du montage ne peut se réduire à un commentaire des résultats obtenus pendant la préparation. Il est donc conseillé au candidat de prévoir en chimie organique un appareillage double de manière à montrer, d’une part le résultat d’une expérience aboutie et d’autre part, à l’aide du doublon, une ou plusieurs étapes de la manipulation. Une synthèse, menée à son terme, avec calcul de rendement après identification du produit obtenu, est attendue. Montage « Indicateurs de fin de dosage » Le jury précise que le terme « indicateur » désigne les indicateurs colorés. Il est conseillé d’envisager les différents types d’indicateurs colorés (acido-basique, oxydo-réduction, complexation, précipitation…) et de ne pas se limiter à leur emploi : leurs constantes thermodynamiques peuvent être déterminées ; on peut également envisager une synthèse. Montages « constantes de formation d’ions complexes », « produits de solubilité », « constantes d’acidité » La détermination des constantes thermodynamiques référencées dans les titres paraît indispensable. Cependant, on peut ne pas s’y limiter et l’on doit aussi penser aux applications en chimie analytique ou, pour le dernier montage, à la séparation d’espèces en chimie organique. Caractérisation des produits et techniques d’analyse Le candidat peut utiliser les techniques de spectroscopie infra-rouge ou UV-visible. Il peut également mesurer une température de fusion à l'aide d'un banc Kofler ou un indice de réfraction à l'aide d'un réfractomètre d'Abbe. Il peut aussi envisager d’utiliser la chromatographie en phase vapeur ou bien la chromatographie sur couche mince avec révélateur chimique ou UV (la présence parmi les espèces déposées du produit pur en référence étant la bienvenue). Sécurité Les produits chimiques peuvent être dangereux ; il convient donc de respecter les règles de sécurité en vigueur en chimie :

- le port des lunettes est obligatoire en permanence ; - porter des gants chaque fois que cela est nécessaire : ne pas se frotter le visage

avec ses gants ; - ne pas porter de gants lors de la manipulation de sources de chaleur (banc

Kofler, flamme,…) ;

Page 81: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E13

- tenir éloignés de toute source de chaleur les produits inflammables en particulier ceux présents en grande quantité ;

- utiliser la hotte à bon escient. Par ailleurs, il est conseillé dans la mesure du possible, d’éviter l’utilisation du benzène et de remplacer celui-ci par des produits de même réactivité. Il est également très utile de consulter les étiquettes des flacons : les informations qui y sont mentionnées sont à prendre en considération et permettent d'adapter les consignes de sécurité. Enfin, certains produits, du fait de leur réactivité particulière (par exemple le sodium métallique), ne peuvent ni être jetés à l'évier, ni être placés dans des bidons de récupération. Il est alors impératif que le candidat qui utilise de tels produits connaisse leurs modes de destruction. Quantités utilisées Le candidat doit également se préoccuper du coût de l’expérience : il est inutile d’utiliser 100 mL d’une solution de nitrate d’argent 0,1 mol/L quand 20 mL d’une solution de concentration 0,01mol/L donnent d’aussi bons résultats. L’environnement doit aussi être préservé : les solutions de métaux lourds, les produits organiques toxiques,…, ne devront être utilisés qu’en quantité juste suffisante. Il est inutile de mettre dans un becher intermédiaire 50 mL d’un produit toxique quand seuls 5 mL sont utilisés. En conclusion, le jury tient à souligner la qualité de certaines prestations et encourage les futurs candidats dans leur préparation aux épreuves orales.

Page 82: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E14

LISTE DES LEÇONS ET DES MONTAGES DE PHYSIQUE ET DE CHIMIE TIRÉS AU SORT LORS DES ÉPREUVES ORALES

Le tirage au sort a conduit le candidat à traiter :

- soit une leçon de physique et un montage de chimie ; - soit une leçon de chimie et un montage de physique.

Chaque candidat a eu en montage le choix entre deux sujets. Leçons de physique 1. Dynamique du point matériel dans un référentiel non galiléen. Exemples. Cas des référentiels géocentrique et terrestre. (PCSI) 2. Puissance d'un système de forces relativement à un référentiel. Travail. Théorème de l'énergie cinétique. Énergie mécanique.(PCSI) 3. Oscillateurs linéaires : oscillateur harmonique amorti, temps de relaxation, facteur de qualité, portrait de phase. Applications. (MPSI) 4. Problème à deux corps. Force centrale conservative. Application au potentiel newtonien. (PCSI) 5. Solide en rotation autour d'un axe fixe. Applications. (PCSI) 6. Actions de contact entre deux solides. Frottement de glissement. Exemples.(PC) 7. Théorie cinétique des gaz parfaits : définition cinétique de la température, de la pression. Relation entre pression et vitesse quadratique moyenne. Équation d'état, énergie interne.(PCSI) 8. Statique des fluides. Applications. (PCSI) 9. Équation d'Euler. Relation de Bernoulli. Applications. (PC) 10. Premier principe de la thermodynamique. Énergie interne, transfert thermique. Conséquences. (PCSI) 11. Bilans d'entropie. Application à des cas simples de phénomènes irréversibles. (PCSI) 12. Corps pur diphasé en équilibre. (PCSI et PC) 13. Diffusion thermique ; loi de Fourier, applications. (PC) 14. Approche thermodynamique du paramagnétisme et du ferromagnétisme. (PC)

Page 83: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E15

15. Dipôle électrostatique : potentiel et champ créés. Action d'un champ électrostatique extérieur. Applications. (PCSI) 16. Cartes du champ électrostatique et du champ magnétostatique ; relations avec les sources ; symétries et invariances par groupe de transformations ; autres propriétés, exemples. (PCSI) 17. Induction électromagnétique dans un circuit fixe. Énergie magnétique. Applications (PC) 18. Induction électromagnétique dans un circuit mobile dans un champ B stationnaire. Applications. (PC) 19. Énergie électromagnétique dans le vide ; vecteur de Poynting ; densité d'énergie électromagnétique. Applications. (PC) 20. Étude de deux oscillateurs harmoniques couplés : régime libre (modes propres) et régime sinusoïdal forcé (résonances). (PC) 21. Vibrations transversales d'une corde : équation de propagation. Corde de Melde : ondes stationnaires, résonance. (PC) 22. Ondes sonores dans les fluides : équation des ondes sonores dans l'approximation acoustique. Aspects énergétiques. (PC) 23. Dipôle électrique oscillant (les composantes du champ électromagnétique rayonné à grande distance seront admises) : structure du rayonnement ; puissance rayonnée ; applications et conséquences. (PC) 24. Dispersion, absorption, indice complexe en optique. Interprétation et modélisation microscopique. (PC) 25. Réflexion et réfraction d'une onde plane progressive harmonique polarisée rectilignement à l'interface entre deux diélectriques linéaires homogènes et isotropes, dans le cas de l'incidence normale. (PC) 26. Lentilles minces dans l'approximation de Gauss. Applications. (PCSI) 27. Interférences non localisées à deux ondes cohérentes en optique. Exemples. Applications. (PC) 28. Diffraction. Principe de Huygens-Fresnel. Diffraction à l'infini d'une onde plane par une pupille rectangulaire ; cas de pupille fente. (PC) 29. Réseaux plans en optique. (PC) 30. Exemples de couplage électromécanique : haut-parleur électrodynamique, moteurs... Bilans énergétiques. (PC)

Page 84: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E16

Montages de physique Pour chacun des thèmes de la liste ci-dessous, il conviendra, dans la mesure du possible, de présenter des applications. L'utilisation de l'ordinateur interfacé, pour l'acquisition et le traitement des données expérimentales, est à privilégier. 1. Dynamique newtonienne. 2. Thermométrie. 3. Transitions de phase. 4. Ondes acoustiques. 5. Formation des images en optique. 6. Spectrométrie optique. 7. Polarisation de la lumière. 8. Condensateurs. 9. Bobines ; transformateurs. 10. Capteurs. 11. Induction, auto-induction. 12. Production et mesure de champs magnétiques. 13. Transducteurs électromécaniques. 14. Régimes transitoires en électricité. 15. Filtres actifs et passifs. 16. Conversions alternatif-continu et continu-alternatif en électricité. 17. Amplification en électronique. 18. Oscillations électriques entretenues. 19. Analyse harmonique et synthèse d'un signal périodique. 20. Modulation d'amplitude et modulation de fréquence . 21. Multimètres numériques : mise en œuvre des différentes fonctions.

Page 85: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E17

22. Oscillateurs couplés. 23. Mesure de longueurs d'onde. 24. Mesure d'impédances. 25. Mesure de constantes physiques fondamentales. 26. Interférences. 27. Diffraction. 28. Ondes stationnaires. 29. Résonance. 30. Expériences de physique à l'aide de l'outil informatique : réalisation, acquisition et exploitation.

Page 86: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E18

Leçons de chimie 1. Notions de mécanisme réactionnel en cinétique homogène. Processus élémentaires ; intermédiaires de réaction. Approximation de l'état quasi-stationnaire. (PCSI) 2. Caractères généraux de l'action catalytique. Catalyse homogène. (BCPST Première année) 3. Construction et utilisation des diagrammes d'Ellingham. Application à la pyrométallurgie. (PC) 4. Affinité chimique. Définition, sens d'évolution possible d'un système. Expression de l'affinité chimique en fonction de la constante d'équilibre et du produit des activités (ou quotient de réaction). (PC) 5. Lois de déplacement des équilibres : influence de T et de P, de l'introduction d'un constituant actif et d'un constituant inactif. (PC) 6. Équilibres liquide-vapeur d'un système binaire ; miscibilité totale ou nulle à l'état liquide. Applications. (PC) 7. Potentiel d'électrode ; formule de Nernst. Prévision des réactions d'oxydo-réduction. (PCSI) 8. Exemples de dosages acido-basiques, de complexation et de précipitation. (PCSI) 9. Exemples de dosages d'oxydo-réduction. (PCSI) 10. Assemblages compacts ; coordinence et compacité. Existence de sites interstitiels. L'assemblage pseudo-compact cubique centré. (PC) 11. Les assemblages ioniques. (PC) 12. Du cristal parfait au cristal réel : exemple de la non stoechiométrie de FeO. (PC) 13. Classification périodique des éléments à partir du modèle quantique de l'atome. Périodicité des propriétés atomiques ; évolutions et analogies dans les colonnes et les lignes. (PCSI) 14. Utilisation des diagrammes potentiel-pH. Application à l'hydrométallurgie (lixiviation, purification, cémentation). (PC) 15. Utilisation des courbes intensité-potentiel. Application à la préparation du zinc par électrolyse. Utilisation du zinc pour la protection du fer contre la corrosion. (PC) 16. Principe de la spectroscopie RMN : notion de déplacement chimique du proton, constante de couplage, courbe d'intégration. (PC) 17. Description des orbitales moléculaires de l'éthylène et du butadiène. Application à la réaction de Diels-Alder. (PC)

Page 87: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E19

18. Stéréoisomérie de configuration : Z et E, R et S, énantiomèrie et diastéréoisomérie. Conformation : éthane, butane, cyclohexane et cyclohexanes mono et disubstitués. (PCSI) 19. La liaison carbone-halogène : réactions de substitution nucléophile ; mécanismes SN1 et SN2 ; stéréochimie. (PCSI) 20. La liaison carbone-halogène : réactions d'élimination ; mécanismes E1 et E2, stéréochimie. (PCSI) 21. La liaison simple carbone-oxygène. Obtention d'étheroxydes. Passage de ROH à RX. Déshydratations inter et intramoléculaire en milieu acide. (PCSI) 22. Préparation des organomagnésiens mixtes. Nucléophilie et basicité des organomagnésiens mixtes. (PCSI) 23. Styrène et méthacrylate de méthyle : étude des monomères ; polymérisations anionique et radicalaire. (PCSI) 24. Alcènes : hydrogénation en catalyse hétérogène ; époxydation ; syn dihydroxylation ; coupures oxydantes. (PC) 25. Hydrocarbures aromatiques : aromaticité ; substitution électrophile aromatique sur le benzène. (PC) 26. Hydrocarbures aromatiques : substitution électrophile sur le benzène monosubstitué. (PC) 27. Amines : réactivité nucléophile ; diazotation des amines primaires aromatiques ; réactions de couplage diazoïque. (PC) 28. Composés carbonylés : préparation par oxydation des alcools ; additions nucléophiles ; réaction de Wittig. (PC) 29. Composés carbonylés : réactions en α du groupe carbonyle ; réactions de l'ion énolate ; additions sur les α-ènones. (PC) 30. Synthèse des esters. Hydrolyse des esters, des amides et des nitriles en milieu basique. Synthèse malonique. (PC)

Page 88: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E20

Montages de chimie Pour chacun des thèmes de la liste ci-dessous, il conviendra, dans la mesure du possible, de présenter des applications. 1. Dosages de produits de la vie courante. 2. Piles électrochimiques et électrolyses. 3. Constantes de formation d'ions complexes. 4. Produits de solubilité. 5. Constantes d'acidité. 6. Vitesse de réaction et catalyse. 7. Indicateurs de fin de dosage. 8. Influence du pH, de la complexation, de la solubilité sur le pouvoir oxydant ou réducteur. 9. Diagramme potentiel-pH du fer. 10. Spectrophotométrie UV-visible. 11. L'azote et ses composés en chimie inorganique. 12. Le zinc et ses composés. 13. Le fer et ses composés. 14. Le dichlore et l'eau de Javel 15. Le dioxygène et l'eau oxygénée. 16. Les oxydants minéraux. 17. Les réducteurs minéraux. 18. Alcènes et alcynes (éthylène et acétylène exclus). 19. Aldéhydes. 20. Cétones. 21. Alcools. 22. Amines.

Page 89: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

E21

23. Organométalliques. 24. Substitutions électrophiles. 25. Substitutions nucléophiles. 26. Acides carboxyliques et dérivés. 27. Acides aminés, amides, polypeptides, polyamides. 28. Méthodes de séparation des constituants d'un mélange en chimie organique. 29. L'eau en chimie organique. 30. Produits organiques contenus dans les substances naturelles. Séparation et identification.

Page 90: SCIENCES PHYSIQUES : OPTION PHYSIQUE ET CHIMIE …tibo.f4acq.free.fr/agregintDOC/Session2003_Bilan.pdf · étant désormais intégré dans la pratique pédagogique quotidienne. Les

F1

PROGRAMME DE LA SESSION 2004

Voir le BOEN spécial n°3 du 22 mai 2003. Des modifications à ce texte sont susceptibles d’être publiées avant le concours 2004. ÉPREUVES ÉCRITES Ces épreuves sont envisagées au niveau le plus élevé et au sens le plus large du programme défini ci-dessous. 1 - Composition sur la physique et le traitement automatisé de l'information Le programme se compose des programmes de physique des classes suivantes : - terminale S, y compris l'enseignement de spécialité (BO hors série n°4 du 30 août 2001), - préparatoires scientifiques aux grandes écoles : classes PCSI, MPSI, MP, MP*, PC et PC* (B.O. hors-série n° 1 du 20-7-1995 et hors-série n° 3 du 18-7-1996). 2 - Composition de chimie avec exercices d'application Cette épreuve porte sur les programmes de chimie des classes suivantes : - première S (B.O. hors-série n° 7 du 31-8-2000) et terminale S, y compris l'enseignement de spécialité (BO hors série n°4 du 30 août 2001), - première et terminale de la série sciences et technologies de laboratoire spécialités Physique de laboratoire et de procédés industriels et Chimie de laboratoire et de procédés industriels, programmes, (BOEN hors série du 24-9-1992 et du 30-12-1993), - classes préparatoires aux grandes écoles PCSI, MP, MP*, PC, PC* et BCPST (B.O. hors-série n°1 du 20-7-1995, hors-série n° 2 du 27-7-1995 et hors-série n° 3 du 18-7-1996). Épreuves orales 1 - Exposé de leçon Dans le cas d'une leçon de physique, le programme est celui de la composition d'écrit n° 1. Dans le cas d'une leçon de chimie, le programme est celui de la composition d'écrit n° 2. Le niveau de la leçon proposée au candidat est celui d'une classe préparatoire scientifique aux grandes écoles, de première ou de deuxième année. 2 - Montage et traitement automatisé de l'information Le niveau est celui des classes post baccalauréat des lycées. L'utilisation de l'outil informatique étant intégrée dans la grande majorité des expériences et donc des montages proposés au concours, le montage 30, tel qu'il figure dans le BO spécial 13 du 30 mai 2002, est susceptible d’être remplacé par un nouveau montage - Propagation d'une onde - sujet très large quant à ses possibilités d'expression, important en classe de terminale et, bien entendu, dans les classes préparatoires.