19
University of Groningen Novel halohydrin dehalogenases by protein engineering and database mining Schallmey, Marcus IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Schallmey, M. (2015). Novel halohydrin dehalogenases by protein engineering and database mining. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-10-2021

Schallmey Novel halohydrin dehalogenases

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Schallmey Novel halohydrin dehalogenases

University of Groningen

Novel halohydrin dehalogenases by protein engineering and database miningSchallmey, Marcus

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Schallmey, M. (2015). Novel halohydrin dehalogenases by protein engineering and database mining.University of Groningen.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 27-10-2021

Page 2: Schallmey Novel halohydrin dehalogenases
Page 3: Schallmey Novel halohydrin dehalogenases
Page 4: Schallmey Novel halohydrin dehalogenases

1. Janssen DB, Majeric-Elenkov M, Hasnaoui G, Hauer B, Lutje Spelberg JH: Enantioselective formation and ring-opening of epoxides catalysed by halohydrin dehalogenases. Biochem Soc Trans 2006, 34:291–295.

2. You Z-Y, Liu Z-Q, Zheng Y-G: Properties and biotechnological applications of halohydrin dehalogenases: Current state and future perspectives. Appl Microbiol Biotechnol 2012, 97:9–21.

3. Janssen DB, Oppentocht JE, Poelarends GJ: Microbial dehalogenation. Curr Opin

Biotechnol 2001, 12:254–258.

4. Smidt H, de Vos WM: Anaerobic Microbial dehalogenation. Annu Rev Microbiol 2004, 58:43–73.

5. Bhatt P, Kumar MS, Mudliar S, Chakrabarti T: Biodegradation of chlorinated compounds - A review. Crit Rev Environ Sci Technol 2007, 37:165–198.

6. Janssen DB: Biocatalysis by dehalogenating enzymes. In Advances in Applied

Microbiology. Volume 61. Laskin A, Sariaslani S, Gadd GM (eds). Amsterdam: Elsevier; 2007:233–252.

7. Kurihara T, Esaki N: Bacterial hydrolytic dehalogenases and related enzymes: Occurrences, reaction mechanisms, and applications. Chem Rec 2008, 8:67–74.

8. Koudelakova T, Bidmanova S, Dvorak P, Pavelka A, Chaloupkova R, Prokop Z, Damborsky J: Haloalkane dehalogenases: Biotechnological applications. Biotechnol J 2013, 8:32–45.

9. van Hylckama Vlieg JET, Tang L, Lutje Spelberg JH, Smilda T, Poelarends GJ, Bosma T, van Merode AEJ, Fraaije MW, Janssen DB: Halohydrin dehalogenases are structurally and mechanistically related to short-chain dehydrogenases/reductases. J Bacteriol 2001, 183:5058–5066.

10. Persson B, Kallberg Y: Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 2013, 202:111–115.

11. de Vries EJ, Janssen DB: Biocatalytic conversion of epoxides. Curr Opin Biotechnol 2003, 14:414–420.

12. Arand M, Cronin A, Adamska M, Oesch F: Epoxide hydrolases: Structure, function, mechanism, and assay. In Methods in Enzymology. Volume 400. Sies H, Packer L (eds). Amsterdam: Elsevier; 2005:569–588.

13. Castro CE, Bartnicki EW: Biodehalogenation. Epoxidation of halohydrins, epoxide opening, and transhalogenation by a Flavobacterium species. Biochemistry 1968, 7:3213–3218.

14. Bartnicki EW, Castro CE: Biodehalogenation. Pathway for transhalogenation and the stereochemistry of eposide formation from halohydrins. Biochemistry 1969, 8:4677–4680.

15. Geigert J, Neidleman SL, Liu T-NE, DEWitt SK, Panschar BM, Dalietos DJ, Siegel ER: Production of epoxides from alpha,beta-halohydrins by Flavobacterium sp. Appl Env

Microbiol 1983, 45:1148–1149.

16. van den Wijngaard AJ, Janssen DB, Witholt B: Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediment. J Gen Microbiol 1989, 135:2199–2208.

17. Kasai N, Tsujimura K, Unoura K, Suzuki T: Degradation of 2, 3-dichloro-1-propanol by

Page 5: Schallmey Novel halohydrin dehalogenases

a Pseudomonas sp. Agric Biol Chem 1990, 54:3185–3190.

18. Nakamura T, Yu F, Mizunashi W, Watanabe I: Microbial transformation of prochiral 1,3-dichloro-2-propanol into optically-active 3-chloro-1,2-propanediol. Agric Biol Chem 1991, 55:1931–1933.

19. Suzuki T, Kasai N: A novel method for the generation of (R)- and (S)-3-chloro-1,2-propanediol by stereospecific dehalogenating bacteria and their use in the preparation of (R)- and (S)-Glycidol. Bioorg Med Chem Lett 1991, 1:343–346.

20. Kasai N, Tsujimura K, Unoura K, Suzuki T: Isolation of (S)-2,3-dichloro-1-propanol assimilating bacterium, its characterization, and its use in preparation of (R)-2,3-dichloro-1-propanol and (S)-epichlorohydrin. J Ind Microbiol 1992, 10:37–43.

21. Suzuki T, Kasai N, Yamamoto R, Minamiura N: Production of highly optically active (R)-3-chloro-1,2-propanediol using a bacterium assimilating the (S)-isomer. Appl Microbiol

Biotechnol 1993, 40:273–278.

22. Fauzi AM, Hardman DJ, Bull AT: Biodehalogenation of low concentrations of 1,3-dichloropropanol by mono- and mixed cultures of bacteria. Appl Microbiol Biotechnol 1996, 46:660–666.

23. Effendi AJ, Greenaway SD, Dancer BN: Isolation and characterization of 2,3-dichloro-1-propanol-degrading rhizobia. Appl Env Microbiol 2000, 66:2882–2887.

24. Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H: Resolution and some properties of enzymes involved in enantioselective transformation of 1,3-dichloro-2-propanol to (R)-3-chloro-1,2-propanediol by Corynebacterium sp. strain N-1074. J Bacteriol 1992, 174:7613–7619.

25. Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H: Characterization of a novel enantioselective halohydrin hydrogen-halide-lyase. Appl Environ Microbiol 1994, 60:1297–1301.

26. Wandel U, Königsberger K, Griengl H: Enantioselectivity of epoxide formation from halohydrins by means of Flavobacterium rigense. Biocatal Biotransformation 1994, 10:159–168.

27. Assis HMS, Bull AT, Hardman DJ: Synthesis of chiral epihalohydrins using haloalcohol dehalogenase A from Arthrobacter erithii H10a. Enzyme Microb Technol 1998, 22:545–551.

28. Assis HMS, Sallis PJ, Bull AT, Hardman DJ: Biochemical characterization of a haloalcohol dehalogenase from Arthrobacter erithii H10a. Enzyme Microb Technol 1998, 22:568–574.

29. Lutje Spelberg JH, van Hylckama Vlieg JET, Bosma T, Kellogg RM, Janssen DB: A tandem enzyme reaction to produce optically active halohydrins, epoxides and diols. Tetrahedron Asymmetry 1999, 10:2863–2870.

30. Nakamura T, Nagasawa T, Fujio Y, Watanabe I, Yamada H: A new catalytic function of halohydrin hydrogen-halide-lyase, synthesis of beta-hydroxynitriles from epoxides and cyanide. Biochem Biophys Res Commun 1991, 180:124–130.

31. Nakamura T, Nagasawa T, Yu F, Watanabe I, Yamada H: A new enzymatic synthesis of (R)-gamma-chloro-beta-hydroxybutyronitrile. Tetrahedron 1994, 50:11821–11826.

32. Yu F, Nakamura T, Mizunashi W, Watanabe I: Cloning of two halohydrin hydrogen-halide-lyase genes of Corynebacterium sp. strain N-1074 and structural comparison of the

Page 6: Schallmey Novel halohydrin dehalogenases

genes and gene products. Biosci Biotechnol Biochem 1994, 58:1451–1457.

33. Higgins TP, Hope SJ, Effendi AJ, Dawson S, Dancer BN: Biochemical and molecular characterisation of the 2,3-dichloro-1-propanol dehalogenase and stereospecific haloalkanoic dehalogenases from a versatile Agrobacterium sp. Biodegradation 2005, 16:485–492.

34. Tang L, van Hylckama Vlieg JET, Lutje Spelberg JH, Fraaije MW, Janssen DB: Improved stability of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by replacement of cysteine residues. Enzyme Microb Technol 2002, 30:251–258.

35. Tang L, Lutje Spelberg JH, Fraaije MW, Janssen DB: Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter. Biochemistry

2003, 42:5378–5386.

36. Tang L, van Merode AEJ, Lutje Spelberg JH, Fraaije MW, Janssen DB: Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change. Biochemistry 2003, 42:14057–14065.

37.Tang L, Torres Pazmino DE, Fraaije MW, de Jong RM, Dijkstra BW, Janssen DB: Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site. Biochemistry 2005, 44:6609–6618.

38. de Jong RM, Tiesinga JJW, Rozeboom HJ, Kalk KH, Tang L, Janssen DB, Dijkstra BW: Structure and mechanism of a bacterial haloalcohol dehalogenase: A new variation of the short-chain dehydrogenase/reductase fold without an NAD(P)H binding site. EMBO J 2003, 22:4933–4944.

39. de Jong RM, Kalk KH, Tang L, Janssen DB, Dijkstra BW: The X-ray structure of the haloalcohol dehalogenase HheA from Arthrobacter sp. strain AD2: Insight into enantioselectivity and halide binding in the haloalcohol dehalogenase family. J Bacteriol

2006, 188:4051–4056.

40. de Jong RM, Tiesinga JJW, Villa A, Tang L, Janssen DB, Dijkstra BW: Structural basis for the enantioselectivity of an epoxide ring opening reaction catalyzed by halo alcohol dehalogenase HheC. J Am Chem Soc 2005, 127:13338–13343.

41. Tang L, Zhu X, Zheng H, Jiang R, Elenkov MM: Key residues for controlling enantioselectivity of halohydrin dehalogenase from Arthrobacter sp. strain AD2, revealed by structure-guided directed evolution. Appl Environ Microbiol 2012, 78:2631–2637.

42. Lutje Spelberg JH, van Hylckama Vlieg JET, Tang L, Janssen DB, Kellogg RM: Highly enantioselective and regioselective biocatalytic azidolysis of aromatic epoxides. Org Lett

2001, 3:41–43.

43. Lutje Spelberg JH, Tang L, van Gelder M, Kellogg RM, Janssen DB: Exploration of the biocatalytic potential of a halohydrin dehalogenase using chromogenic substrates. Tetrahedron Asymmetry 2002, 13:1083–1089.

44. Hasnaoui G, Lutje Spelberg JH, de Vries E, Tang L, Hauer B, Janssen DB: Nitrite-mediated hydrolysis of epoxides catalyzed by halohydrin dehalogenase from Agrobacterium

radiobacter AD1: A new tool for the kinetic resolution of epoxides. Tetrahedron Asymmetry

2005, 16:1685–1692.

45. Hasnaoui-Dijoux G, Majeric Elenkov M, Lutje Spelberg JH, Hauer B, Janssen DB: Catalytic promiscuity of halohydrin dehalogenase and its application in enantioselective epoxide ring opening. ChemBioChem 2008, 9:1048–1051.

Page 7: Schallmey Novel halohydrin dehalogenases

46. Bull A, Hardman DJ, Stubbs BM, Sallis PJ: United States Patent: 5470742 - Dehalogenation of organohalogen-containing compounds. 1995.

47. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW: Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 2007, 25:338–344.

48. Ma SK, Gruber J, Davis C, Newman L, Gray D, Wang A, Grate J, Huisman GW, Sheldon RA: A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem 2010, 12:81–86.

49. Schallmey M, Koopmeiners J, Wells E, Wardenga R, Schallmey A: Expanding the halohydrin dehalogenase enzyme family: Identification of novel enzymes by database mining. Appl Environ Microbiol 2014, 80:7303–7315.

50. Xue F, Liu Z-Q, Wan N-W, Zheng Y-G: Purification, gene cloning, and characterization of a novel halohydrin dehalogenase from Agromyces mediolanus ZJB120203. Appl Biochem

Biotechnol 2014, 174:352–364.

51. Wan N-W, Liu Z-Q, Huang K, Shen Z-Y, Xue F, Zheng Y-G, Shen Y-C: Synthesis of ethyl (R)-4-cyano-3-hydroxybutyrate in high concentration using a novel halohydrin dehalogenase HHDH-PL from Parvibaculum lavamentivorans DS-1. RSC Adv 2014, 4:64027–64031.

52. Xue F, Liu Z-Q, Wang Y-J, Wan N-W, Zheng Y-G: Biochemical characterization and biosynthetic application of a halohydrin dehalogenase from Tistrella mobilis ZJB1405. J Mol

Catal B Enzym 2015, 115:105–112.

53. Liu Z-Q, Gao A-C, Wang Y-J, Zheng Y-G, Shen Y-C: Expression, characterization, and improvement of a newly cloned halohydrin dehalogenase from Agrobacterium tumefaciens

and its application in production of epichlorohydrin. J Ind Microbiol Biotechnol 2014, 41:1145–1158.

54. Janssen DB, Dinkla IJT, Poelarends GJ, Terpstra P: Bacterial degradation of xenobiotic compounds: Evolution and distribution of novel enzyme activities. Environ Microbiol 2005, 7:1868–1882.

55. Jörnvall H, Hedlund J, Bergman T, Oppermann U, Persson B: Superfamilies SDR and MDR: From early ancestry to present forms. Emergence of three lines, a Zn-metalloenzyme, and distinct variabilities. Biochem Biophys Res Commun 2010, 396:125–130.

56. Kavanagh KL, Jörnvall H, Persson B, Oppermann U: Medium- and short-chain dehydrogenase/reductase gene and protein families. Cell Mol Life Sci 2008, 65:3895–3906.

57. Zhang Q, Peng H, Gao F, Liu Y, Cheng H, Thompson J, Gao GF: Structural insight into the catalytic mechanism of gluconate 5-dehydrogenase from Streptococcus suis: Crystal structures of the substrate-free and quaternary complex enzymes. Protein Sci 2009, 18:294–303.

58. de Jong RM, Dijkstra BW: Structure and mechanism of bacterial dehalogenases: Different ways to cleave a carbon-halogen bond. Curr Opin Struct Biol 2003, 13:722–730.

59. Bohac M, Nagata Y, Prokop Z, Prokop M, Monincova M, Tsuda M, Kocca J, Damborsky J: Halide-stabilizing residues of haloalkane dehalogenases studied by quantum mechanic calculations and site-directed mutagenesis. Biochemistry 2002, 41:14272–14280.

60. Hopmann KH, Himo F: Cyanolysis and azidolysis of epoxides by haloalcohol dehalogenase: Theoretical study of the reaction mechanism and origins of regioselectivity.

Page 8: Schallmey Novel halohydrin dehalogenases

Biochemistry 2008, 47:4973–4982.

61. Senthilnathan D, Tamilmani V, Venuvanalingam P: Biocatalysis of azidolysis of epoxides: Computational evidences on the role of halohydrin dehalogenase (HheC). J Chem Sci 2011, 123:279–290.

62. Siegbahn PEM, Himo F: Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. J Biol Inorg Chem 2009, 14:643–651.

63. Haak RM, Tarabiono C, Janssen DB, Minnaard AJ, de Vries JG, Feringa BL: Synthesis of enantiopure chloroalcohols by enzymatic kinetic resolution. Org Biomol Chem 2007, 5:318–323.

64. Majeric Elenkov M, Tang L, Hauer B, Janssen DB: Sequential kinetic resolution catalyzed by halohydrin dehalogenase. Org Lett 2006, 8:4227–4229.

65. Chen S-Y, He X-J, Wu J-P, Xu G, Yang L-R: Identification of halohydrin dehalogenase mutants that resist COBE inhibition. Biotechnol Bioprocess Eng 2014, 19:26–32.

66. Liljeblad A, Kallinen A, Kanerva LT: Biocatalysis in the preparation of the statin side chain. Curr Org Synth 2009, 6:362–379.

67. Patel JM: Biocatalytic synthesis of atorvastatin intermediates. J Mol Catal B Enzym 2009, 61:123–128.

68. Barrios-González J, Miranda RU: Biotechnological production and applications of statins. Appl Microbiol Biotechnol 2009, 85:869–883.

69. Ye Q, Ouyang P, Ying H: A review - Biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: Recent advances and future perspectives. Appl Microbiol Biotechnol

2010, 89:513–522.

70. You Z-Y, Liu Z-Q, Zheng Y-G: Chemical and enzymatic approaches to the synthesis of optically pure ethyl (R)-4-cyano-3-hydroxybutanoate. Appl Microbiol Biotechnol 2014, 98:11–21.

71. Bornscheuer UT, Kazlauskas RJ: Catalytic promiscuity in biocatalysis: Using old enzymes to form new bonds and follow new pathways. Angew Chem Int Ed 2004, 43:6032–6040.

72. Hult K, Berglund P: Enzyme promiscuity: Mechanism and applications. Trends

Biotechnol 2007, 25:231–238.

73. Babtie A, Tokuriki N, Hollfelder F: What makes an enzyme promiscuous? Curr Opin

Chem Biol 2010, 14:200–207.

74. Humble MS, Berglund P: Biocatalytic promiscuity. Eur J Org Chem 2011, 2011:3391–3401.

75. Arora B, Mukherjee J, Gupta MN: Enzyme promiscuity: Using the dark side of enzyme specificity in white biotechnology. Sustain Chem Process 2014, 2:25.

76. Lutje Spelberg JH, Tang L, Kellogg RM, Janssen DB: Enzymatic dynamic kinetic resolution of epihalohydrins. Tetrahedron Asymmetry 2004, 15:1095–1102.

77. Schrittwieser JH, Lavandera I, Seisser B, Mautner B, Lutje Spelberg JH, Kroutil W: Shifting the equilibrium of a biocatalytic cascade synthesis to enantiopure epoxides using anion exchangers. Tetrahedron Asymmetry 2009, 20:483–488.

78. Zou S-P, Du E-H, Hu Z-C, Zheng Y-G: Enhanced biotransformation of 1,3-dichloro-2-propanol to epichlorohydrin via resin-based in situ product removal process. Biotechnol Lett

Page 9: Schallmey Novel halohydrin dehalogenases

2013, 35:937–942.

79. Majeric Elenkov M, Hauer B, Janssen DB: Enantioselective ring opening of epoxides with cyanide catalysed by halohydrin dehalogenases: A new approach to non-racemic -hydroxy nitriles. Adv Synth Catal 2006, 348:579–585.

80. Majeric Elenkov M, Hoeffken HW, Tang L, Hauer B, Janssen DB: Enzyme-catalyzed nucleophilic ring opening of epoxides for the preparation of enantiopure tertiary alcohols. Adv

Synth Catal 2007, 349:2279–2285.

81. Majeric Elenkov M, Tang L, Meetsma A, Hauer B, Janssen DB: Formation of enantiopure 5-substituted oxazolidinones through enzyme-catalysed kinetic resolution of epoxides. Org

Lett 2008, 10:2417–2420.

82. Bosma T, Kruizinga E, de Bruin EJ, Poelarends GJ, Janssen DB: Utilization of trihalogenated propanes by Agrobacterium radiobacter AD1 through heterologous expression of the haloalkane dehalogenase from Rhodococcus sp. strain m15-3. Appl Env Microbiol 1999, 65:4575–4581.

83. Yonetani R, Ikatsu H, Miyake-Nakayama C, Fujiwara E, Maehara Y, Miyoshi S, Matsuoka H, Shinoda S: Isolation and characterization of a 1,3-dichloro-2-propanol-degrading bacterium. J Health Sci 2004, 50:605–612.

84. Mamma D, Papadopoulou E, Petroutsos D, Christakopoulos P, Kekos D: Removal of 1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol by the whole cell system of Pseudomonas

putida DSM 437. J Environ Sci Health A Tox Hazard Subst Environ Eng 2006, 41:303–313.

85. Kalogeris E, Antzoulatos O, Mamma D, Hatzinikolaou DG, Christakopoulos P, Kekos D: Application of different processes for the biodegradation of 1, 3-dichloro-2-propanol by the bacterium Pseudomonas putida DSM 437. Chem Biochem Eng Q 2007, 21:297–305.

86. Kasai N, Suzuki T, Idogaki H: Enzymatic degradation of esters of dichloropropanols: removal of chlorinated glycerides from processed foods. LWT - Food Sci Technol 2006, 39:86–90.

87. Bornscheuer UT, Hesseler M: Enzymatic removal of 3-monochloropropanediol (3-MCPD) and its esters from oils. Eur J Lipid Sci Technol 2010, 112:552–556.

88. Kasai N, Suzuki T: Industrialization of the microbial resolution of chiral C3 and C4 synthetic units: From a small Beginning to a major operation, a personal account. Adv Synth

Catal 2003, 345:437–455.

89. Suzuki T, Kasai N: Generation of optically active glycerol derivatives by microbial resolution for development of useful synthetic units for pharmaceuticals. Trends Glycosci

Glycotechnol 2003, 15:329–349.

90. Lee S-H, Park O-J: Uses and production of chiral 3-hydroxy- -butyrolactones and structurally related chemicals. Appl Microbiol Biotechnol 2009, 84:817–828.

91. Choi WJ: Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl Microbiol Biotechnol 2009, 84:239–247.

92. Hwang S, Choi CY, Lee EY: Bio- and chemo-catalytic preparations of chiral epoxides. J

Ind Eng Chem 2010, 16:1–6.

93. Nakamura T, Yu F, Mizunashi W, Watanabe I: Production of (R)-3-chloro-1,2-propanediol from prochiral 1,3-dichloro-2-propanol by Corynebacterium sp. Strain N-1074. Appl Env Microbiol 1993, 59:227–230.

Page 10: Schallmey Novel halohydrin dehalogenases

94. Schrittwieser JH, Lavandera I, Seisser B, Mautner B, Kroutil W: Biocatalytic cascade for the synthesis of enantiopure -azidoalcohols and -hydroxynitriles. Eur J Org Chem 2009, 2009:2293–2298.

95. Müller M: Chemoenzymatic synthesis of building blocks for statin side chains. Angew

Chem Int Ed 2005, 44:362–365.

96. Davis SC, Grate JH, Gray DR, Gruber JM, Huisman GW, Ma SK, Newman LM, Sheldon R, Wang LA: United States Patent: 7132267 - Enzymatic processes for the production of 4-substituted 3-hydroxybutyric acid derivatives and vicinal cyano, hydroxy substituted carboxylic acid esters. 2006.

97. Bergmeier SC: The synthesis of vicinal amino alcohols. Tetrahedron 2000, 56:2561–2576.

98. Zelaszczyk D, Kiec-Kononowicz K: Biocatalytic approaches to aptically active -blockers. Curr Med Chem 2007, 14:53–65.

99. Campbell-Verduyn LS, Szymanski W, Postema CP, Dierckx RA, Elsinga PH, Janssen DB, Feringa BL: One pot “click” reactions: Tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition. Chem Commun 2010, 46:898–900.

100. Molinaro C, Guilbault A-A, Kosjek B: Resolution of 2,2-disubstituted epoxides via biocatalytic azidolysis. Org Lett 2010, 12:3772–3775.

101. Fuchs M, Simeo Y, Ueberbacher BT, Mautner B, Netscher T, Faber K: Enantiocomplementary chemoenzymatic asymmetric synthesis of (R)- and (S)-chromanemethanol. Eur J Org Chem 2009, 2009:833–840.

102. Moellering RC: Linezolid: The first oxazolidinone antimicrobial. Ann Intern Med 2003, 138:135–142.

103. Livermore DM: Linezolid in vitro: Mechanism and antibacterial spectrum. J Antimicrob

Chemother 2003, 51:ii9–ii16.

104. Cozzi PG, Hilgraf R, Zimmermann N: Enantioselective catalytic formation of quaternary stereogenic centers. Eur J Org Chem 2007, 2007:5969–5994.

105. Kourist R, Dominguez de Maria P, Bornscheuer UT: Enzymatic synthesis of optically active tertiary alcohols: Expanding the biocatalysis toolbox. ChemBioChem 2008, 9:491–498.

106. Kourist R, Bornscheuer UT: Biocatalytic synthesis of optically active tertiary alcohols. Appl Microbiol Biotechnol 2011, 91:505–517.

107. Haak RM, Berthiol F, Jerphagnon T, Gayet AJA, Tarabiono C, Postema CP, Ritleng V, Pfeffer M, Janssen DB, Minnaard AJ, Feringa BL, de Vries JG: Dynamic kinetic resolution of racemic -haloalcohols: Direct access to enantioenriched epoxides. J Am Chem Soc 2008, 130:13508–13509.

108. Seisser B, Lavandera I, Faber K, Spelberg JL, Kroutil W: Stereo-complementary two-step cascades using a two-enzyme system leading to enantiopure epoxides. Adv Synth Catal

2007, 349:1399–1404.

109. Szymanski W, Postema CP, Tarabiono C, Berthiol F, Campbell-Verduyn L, de Wildeman S, de Vries JG, Feringa BL, Janssen DB: Combining designer cells and click chemistry for a one-pot four-step preparation of enantiopure -hydroxytriazoles. Adv Synth

Catal 2010, 352:2111–2115.

110. Tang L, Li Y, Wang X: A high-throughput colorimetric assay for screening halohydrin dehalogenase saturation mutagenesis libraries. J Biotechnol 2010, 147:164–168.

Page 11: Schallmey Novel halohydrin dehalogenases

111. Davis SC, Fox RJ, Huisman GW, Gavrilovic V, Mundorff EC, Newman LM: United States Patent: 7588928 - Halohydrin dehalogenases and related polynucleotides. 2009.

112. Pollard DJ, Woodley JM: Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol 2007, 25:66–73.

113. Meyer H-P, Turner NJ: Biotechnological manufacturing options for organic chemistry. Mini Rev Org Chem 2009, 6:300–306.

114. Wohlgemuth R: Biocatalysis - Key to sustainable industrial chemistry. Curr Opin

Biotechnol 2010, 21:713–724.

115. Luetz S, Giver L, Lalonde J: Engineered enzymes for chemical production. Biotechnol

Bioeng 2008, 101:647–653.

116. Kazlauskas RJ, Bornscheuer UT: Finding better protein engineering strategies. Nat Chem

Biol 2009, 5:526–529.

117. Turner NJ: Directed evolution drives the next generation of biocatalysts. Nat Chem Biol

2009, 5:567–573.

118. Kazlauskas RJ: Enhancing catalytic promiscuity for biocatalysis. Curr Opin Chem Biol

2005, 9:195–201.

119. Kasai N, Suzuki T, Furukawa Y: Optically active chlorohydrins as chiral C3 and C4 building units: Microbial resolution and synthetic applications. Chirality 1998, 10:682–692.

120. Gao X, Xie X, Pashkov I, Sawaya MR, Laidman J, Zhang W, Cacho R, Yeates TO, Tang Y: Directed evolution and structural characterization of a simvastatin synthase. Chem Biol

2009, 16:1064–1074.

121. Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM: Thermostable Bacillus subtilis

lipases: In vitro evolution and structural insight. J Mol Biol 2008, 381:324–340.

122. Glieder A, Farinas ET, Arnold FH: Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 2002, 20:1135–1139.

123. Ohki T, Shibata N, Higuchi Y, Kawashima Y, Takeo M, Kato D, Negoro S: Two alternative modes for optimizing nylon-6 byproduct hydrolytic activity from a carboxylesterase with a -lactamase fold: X-ray crystallographic analysis of directly evolved 6-aminohexanoate-dimer hydrolase. Protein Sci 2009, 18:1662–1673.

124. Spiller B, Gershenson A, Arnold FH, Stevens RC: A structural view of evolutionary divergence. Proc Natl Acad Sci U S A 1999, 96:12305 –12310.

125. Oue S, Okamoto A, Yano T, Kagamiyama H: Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues. J Biol Chem 1999, 274:2344–2349.

126. Tomatis PE, Rasia RM, Segovia L, Vila AJ: Mimicking natural evolution in metallo- -lactamases through second-shell ligand mutations. Proc Natl Acad Sci U S A 2005, 102:13761–13766.

127. Shimotohno A, Oue S, Yano T, Kuramitsu S, Kagamiyama H: Demonstration of the importance and usefulness of manipulating non-active-site residues in protein design. J

Biochem 2001, 129:943–948.

128. Reetz MT, Carballeira JD: Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Protoc 2007, 2:891–903.

Page 12: Schallmey Novel halohydrin dehalogenases

129. Campeotto I, Bolt AH, Harman TA, Dennis C, Trinh CH, Phillips SEV, Nelson A, Pearson AR, Berry A: Structural insights into substrate specificity in nariants of N-acetylneuraminic acid lyase produced by directed evolution. J Mol Biol 2010, 404:56–69.

130. Ericsson UB, Hallberg BM, DeTitta GT, Dekker N, Nordlund P: Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 2006, 357:289–298.

131. Narasimhan D, Nance MR, Gao D, Ko M-C, Macdonald J, Tamburi P, Yoon D, Landry DM, Woods JH, Zhan C-G, Tesmer JJG, Sunahara RK: Structural analysis of thermostabilizing mutations of cocaine esterase. Protein Eng Des Sel 2010, 23:537 –547.

132. Gakhar L, Malik ZA, Allen CCR, Lipscomb DA, Larkin MJ, Ramaswamy S: Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J Bacteriol

2005, 187:7222–7231.

133. Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J

Mol Biol 2007, 372:774–797.

134. Tanaka Y, Tsumoto K, Yasutake Y, Umetsu M, Yao M, Fukada H, Tanaka I, Kumagai I: How oligomerization contributes to the thermostability of an archaeon protein. J Biol Chem

2004, 279:32957–32967.

135. Korkhin Y, Kalb (Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F: Oligomeric integrity - The structural key to thermal stability in bacterial alcohol dehydrogenases. Protein

Sci 1999, 8:1241–1249.

136. Eijsink VGH, Bjork A, Gaseidnes S, Sirevag R, Synstad B, Burg B van den, Vriend G: Rational engineering of enzyme stability. J Biotechnol 2004, 113:105–120.

137. Kim YH, Berry AH, Spencer DS, Stites WE: Comparing the effect on protein stability of methionine oxidation versus mutagenesis: Steps toward engineering oxidative resistance in proteins. Protein Eng 2001, 14:343 –347.

138. Kumar S, Tsai C-J, Nussinov R: Factors enhancing protein thermostability. Protein Eng

2000, 13:179 –191.

139. Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone B, Pollegioni L: Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J Biol Chem 2009, 284:36415 –36423.

140. Baik S-H, Michel F, Aghajari N, Haser R, Harayama S: Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus

megaterium IWG3 on stabilization of its oligomeric state. Appl Env Microbiol 2005, 71:3285–3293.

141. Bocola M, Otte N, Jaeger KE, Reetz MT, Thiel W: Learning from directed evolution: Theoretical investigations into cooperative mutations in lipase enantioselectivity. ChemBioChem 2004, 5:214–223.

142. Canutescu AA, Dunbrack Jr. RL: Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Sci 2003, 12:963–972.

143. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23:2947–2948.

144. Jin J, Mazon H, van den Heuvel RHH, Heck AJ, Janssen DB, Fraaije MW: Covalent

Page 13: Schallmey Novel halohydrin dehalogenases

flavinylation of vanillyl-alcohol oxidase is an autocatalytic process. FEBS J 2008, 275:5191–5200.

145. Bergmann JG, Sanik J: Determination of trace amounts of chlorine in naphtha. Anal

Chem 1957, 29:241–243.

146. Straathof AJJ, Jongejan JA: The enantiomeric ratio: Origin, determination and prediction. Enzyme Microb Technol 1997, 21:559–571.

147. Scoggins MW: Ultraviolet spectrophotometric determination of cyanide ion. Anal Chem

1972, 44:1294–1296.

148. de Jong RM, Rozeboom HJ, Kalk KH, Tang L, Janssen DB, Dijkstra BW: Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1. Acta Crystallogr D Biol Crystallogr 2001, 58:176–178.

149. Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW: iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol

Crystallogr 2011, 67:271–281.

150. Evans P: Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr

2006, 62:72–82.

151. Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN: REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 2004, 60:2184–2195.

152. Emsley P, Cowtan K: Coot: Model-building tools for molecular graphics. Acta

Crystallogr D Biol Crystallogr 2004, 60:2126–2132.

153. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC: MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007, 35:W375–W383.

154. Guerois R, Nielsen JE, Serrano L: Predicting changes in the stability of proteins and protein complexes: A study of more than 1000 mutations. J Mol Biol 2002, 320:369–387.

155. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L: The FoldX web server: An online force field. Nucleic Acids Res 2005, 33:W382–W388.

156. Das R, Baker D: Macromolecular modeling with Rosetta. Annu Rev Biochem 2008, 77:363–382.

157. Kellogg EH, Leaver Fay A, Baker D: Role of conformational sampling in computing mutation induced changes in protein structure and stability. Proteins 2011, 79:830–838.

158. North M: Synthesis and applications of non-racemic cyanohydrins. Tetrahedron

Asymmetry 2003, 14:147–176.

159. Brunel J, Holmes IP: Chemically catalyzed asymmetric cyanohydrin syntheses. Angew

Chem Int Ed 2004, 43:2752–2778.

160. Holt J, Hanefeld U: Enantioselective enzyme-catalysed synthesis of cyanohydrins. Curr

Org Synth 2009, 6:15–37.

161. Larrow JF, Schaus SE, Jacobsen EN: Kinetic resolution of terminal epoxides via highly regioselective and enantioselective ring opening with TMSN3. An efficient, catalytic route to 1,2-amino alcohols. J Am Chem Soc 1996, 118:7420–7421.

Page 14: Schallmey Novel halohydrin dehalogenases

162. Ager DJ, Prakash I, Schaad DR: 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem Rev 1996, 96:835–876.

163. Kobayashi S, Ishitani H, Ueno M: Catalytic asymmetric synthesis of both syn- and anti--amino alcohols. J Am Chem Soc 1998, 120:431–432.

164. Prasad S, Bhalla TC: Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol Adv 2010, 28:725–741.

165. Martinkova L, Kren V: Biotransformations with nitrilases. Curr Opin Chem Biol 2010, 14:130–137.

166. Gong J-S, Lu Z-M, Li H, Shi J-S, Zhou Z-M, Xu Z-H: Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microb Cell Factories 2012, 11:142.

167. Hammond RJ, Poston BW, Ghiviriga I, Feske BD: Biocatalytic synthesis towards both antipodes of 3-hydroxy-3-phenylpropanitrile a precursor to fluoxetine, atomoxetine and nisoxetine. Tetrahedron Lett 2007, 48:1217–1219.

168. Nowill RW, Patel TJ, Beasley DL, Alvarez JA, Jackson III E, Hizer TJ, Ghiviriga I, Mateer SC, Feske BD: Biocatalytic strategy toward asymmetric -hydroxy nitriles and -amino alcohols. Tetrahedron Lett 2011, 52:2440–2442.

169. Itoh T, Mitsukura K, Kanphai W, Takagi Y, Kihara H, Tsukube H: Thiacrown ether technology in lipase-catalyzed reaction: Scope and limitation for preparing optically active 3-hydroxyalkanenitriles and application to insect pheromone synthesis. J Org Chem 1997, 62:9165–9172.

170. Dehli JR, Gotor V: Enantio- and chemoselective bioreduction of -keto nitriles by the fungus Curvularia lunata. Tetrahedron Asymmetry 2000, 11:3693–3700.

171. Kamal A, Khanna GBR, Ramu R: Chemoenzymatic synthesis of both enantiomers of fluoxetine, tomoxetine and nisoxetine: Lipase-catalyzed resolution of 3-aryl-3-hydroxypropanenitriles. Tetrahedron Asymmetry 2002, 13:2039–2051.

172. Kamal A, Khanna GBR, Krishnaji T, Tekumalla V, Ramu R: New chemoenzymatic pathway for -adrenergic blocking agents. Tetrahedron Asymmetry 2005, 16:1485–1494.

173. Kamal A, Khanna GBR, Krishnaji T, Ramu R: A new facile chemoenzymatic synthesis of levamisole. Bioorg Med Chem Lett 2005, 15:613–615.

174. Jin H-X, Hu Z-C, Liu Z-Q, Zheng Y-G: Nitrite-mediated synthesis of chiral epichlorohydrin using halohydrin dehalogenase from Agrobacterium radiobacter AD1. Biotechnol Appl Biochem 2012, 59:170–177.

175. Majeric Elenkov M, Primozic I, Hrenar T, Smolko A, Dokli I, Salopek-Sondi B, Tang L: Catalytic activity of halohydrin dehalogenases towards spiroepoxides. Org Biomol Chem

2012, 10:5063–5072.

176. Tang L, Jiang R, Zheng K, Zhu X: Enhancing the recombinant protein expression of halohydrin dehalogenase HheA in Escherichia coli by applying a codon optimization strategy. Enzyme Microb Technol 2011, 49:395–401.

177. Schallmey M, Floor RJ, Hauer B, Breuer M, Jekel PA, Wijma HJ, Dijkstra BW, Janssen DB: Biocatalytic and structural properties of a highly engineered halohydrin dehalogenase. ChemBioChem 2013, 14:870–881.

178. Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C: Expresso: Automatic incorporation of structural information in multiple sequence

Page 15: Schallmey Novel halohydrin dehalogenases

alignments using 3D-Coffee. Nucleic Acids Res 2006, 34:W604–608.

179. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T: SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014, 42:W252–W258.

180. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ: Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 1982, 104:7294–7299.

181. Kabsch W: XDS. Acta Crystallogr D Biol Crystallogr 2010, 66:125–132.

182. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ: Phaser crystallographic software. J Appl Crystallogr 2007, 40:658–674.

183. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA: REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 2011, 67:355–367.

184. Emsley P, Lohkamp B, Scott WG, Cowtan K: Features and development of Coot. Acta

Crystallogr D Biol Crystallogr 2010, 66:486–501.

185. Nestl BM, Nebel BA, Hauer B: Recent progress in industrial biocatalysis. Curr Opin

Chem Biol 2011, 15:187–193.

186. Reetz MT: Biocatalysis in organic chemistry and biotechnology: Past, present, and future. J Am Chem Soc 2013, 135:12480–12496.

187. Zheng G-W, Xu J-H: New opportunities for biocatalysis: Driving the synthesis of chiral chemicals. Curr Opin Biotechnol 2011, 22:784–792.

188. Schallmey M, Floor RJ, Szymanski W, Janssen DB: 7.8 Hydrolysis and reverse hydrolysis: Halohydrin dehalogenases. In Comprehensive Chirality. Carreira EM, Yamamoto H (eds). Amsterdam: Elsevier; 2012:143–155.

189. Chen S-Y, Yang C-X, Wu J-P, Xu G, Yang L-R: Multi-enzymatic biosynthesis of chiral -hydroxy nitriles through co-expression of oxidoreductase and halohydrin dehalogenase. Adv

Synth Catal 2013, 355:3179–3190.

190. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K: Engineering the third wave of biocatalysis. Nature 2012, 485:185–194.

191. Davids T, Schmidt M, Böttcher D, Bornscheuer UT: Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol 2013, 17:215–220.

192. Reetz MT: Laboratory evolution of stereoselective enzymes as a means to expand the toolbox of organic chemists. Tetrahedron 2012, 68:7530–7548.

193. Woodley JM: Protein engineering of enzymes for process applications. Curr Opin Chem

Biol 2013, 17:310–316.

194. Pedragosa-Moreau S, Morisseau C, Baratti J, Zylber J, Archelas A, Furstoss R: An enantioconvergent synthesis of the beta-blocker (R)-nifenalol using a combined chemoenzymatic approach. Tetrahedron 1997, 53:9707–9714.

195. Barbachyn MR, Ford CW: Oxazolidinone structure-activity relationships leading to linezolid. Angew Chem Int Ed 2003, 42:2010–2023.

196. Guo C, Chen Y, Zheng Y, Zhang W, Tao Y, Feng J, Tang L: Exploring the enantioselective mechanism of halohydrin dehalogenase from Agrobacterium radiobacter

Page 16: Schallmey Novel halohydrin dehalogenases

AD1 by iterative saturation mutagenesis. Appl Environ Microbiol 2015, 81:2919–2926.

197. Schallmey M, Jekel P, Tang L, Majeric Elenkov M, Höffken HW, Hauer B, Janssen DB: A single point mutation enhances hydroxynitrile synthesis by halohydrin dehalogenase. Enzyme Microb Technol 2015, 70:50–57.

198. Reetz MT, Bocola M, Carballeira JD, Zha D, Vogel A: Expanding the range of substrate acceptance of enzymes: Combinatorial active-site saturation test. Angew Chem Int Ed 2005, 44:4192–4196.

199. Miyazaki K, Takenouchi M: Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques 2002, 33:1033–1038.

200. Firth AE, Patrick WM: Statistics of protein library construction. Bioinformatics 2005, 21:3314–3315.

201. Monterde MI, Lombard M, Archelas A, Cronin A, Arand M, Furstoss R: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum

tuberosum epoxide hydrolase. Tetrahedron Asymmetry 2004, 15:2801–2805.

202. Rink R, Fennema M, Smids M, Dehmel U, Janssen DB: Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1. J Biol Chem

1997, 272:14650–14657.

203. Tang L, Gao H, Zhu X, Wang X, Zhou M, Jiang R: Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. BioTechniques 2012, 52:149–158.

204. Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013, 30:772–780.

205. Dessimoz C, Gil M: Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biol 2010, 11:R37.

206. Thompson JD, Linard B, Lecompte O, Poch O: A comprehensive benchmark study of multiple sequence alignment methods: Current challenges and future perspectives. PLoS one

2011, 6:e18093.

207. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH: CDD: Conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013, 41:D348–D352.

208. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic

Acids Res 1997, 25:3389–3402.

209. Marchler-Bauer A, Bryant SH: CD-Search: Protein domain annotations on the fly. Nucleic Acids Res 2004, 32:W327–W331.

210. Xu Y, Kersten RD, Nam S-J, Lu L, Al-Suwailem AM, Zheng H, Fenical W, Dorrestein PC, Moore BS, Qian P-Y: Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J Am Chem Soc 2012, 134:8625–8632.

211. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W, Jaroszewski L, Cieplak P, Miller CS, Li H, Mashiyama ST, Joachimiak MP, van Belle C, Chandonia J-M, Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, Brenner SE, Godzik A, Eisenberg D, Dixon JE, Taylor SS,

Page 17: Schallmey Novel halohydrin dehalogenases

Strausberg RL, Frazier M, Venter JC: The Sorcerer II global ocean sampling expedition: Expanding the universe of protein families. PLoS Biol 2007, 5:e16.

212. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers Y-H, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC: The Sorcerer II global ocean sampling expedition: Northwest Atlantic through eastern tropical Pacific. PLoS Biol 2007, 5:e77.

213. Zhang Z, Miller W, Schäffer AA, Madden TL, Lipman DJ, Koonin EV, Altschul SF: Protein sequence similarity searches using patterns as seeds. Nucleic Acids Res 1998, 26:3986–3990.

214. Gonnet GH: Surprising results on phylogenetic tree building methods based on molecular sequences. BMC Bioinformatics 2012, 13:148.

215. Löytynoja A, Goldman N: Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 2008, 320:1632–1635.

216. Golubchik T, Wise MJ, Easteal S, Jermiin LS: Mind the Gaps: Evidence of bias in estimates of multiple sequence alignments. Mol Biol Evol 2007, 24:2433–2442.

217. Matsunaga T, Endo S, Maeda S, Ishikura S, Tajima K, Tanaka N, Nakamura KT, Imamura Y, Hara A: Characterization of human DHRS4: An inducible short-chain dehydrogenase/reductase enzyme with 3 -hydroxysteroid dehydrogenase activity. Arch

Biochem Biophys 2008, 477:339–347.

218. Yan Y, Song X, Liu G, Su Z, Du Y, Sui X, Chang X, Huang D: Human NRDRB1, an alternatively spliced isoform of NADP(H)-dependent retinol dehydrogenase/reductase enhanced enzymatic activity of benzil. Cell Physiol Biochem 2012, 30:1371–1382.

219. Song X-H, Liang B, Liu G-F, Li R, Xie J-P, Du K, Huang D-Y: Expression of a novel alternatively spliced variant of NADP(H)-dependent retinol dehydrogenase/reductase with deletion of exon 3 in cervical squamous carcinoma. Int J Cancer 2007, 120:1618–1626.

220. Shen Z, Byers DM: Isolation of Vibrio harveyi acyl carrier protein and the fabG, acpP, and fabF genes involved in fatty acid biosynthesis. J Bacteriol 1996, 178:571–573.

221. Baugh L, Gallagher LA, Patrapuvich R, Clifton MC, Gardberg AS, Edwards TE, Armour B, Begley DW, Dieterich SH, Dranow DM, Abendroth J, Fairman JW, Fox D III, Staker BL, Phan I, Gillespie A, Choi R, Nakazawa-Hewitt S, Nguyen MT, Napuli A, Barrett L, Buchko GW, Stacy R, Myler PJ, Stewart LJ, Manoil C, Van Voorhis WC: Combining functional and structural genomics to sample the essential Burkholderia structome. PLoS one 2013, 8:e53851.

222. Gerlt JA, Allen KN, Almo SC, Armstrong RN, Babbitt PC, Cronan JE, Dunaway-Mariano D, Imker HJ, Jacobson MP, Minor W, Poulter CD, Raushel FM, Sali A, Shoichet BK, Sweedler JV: The enzyme function initiative. Biochemistry 2011, 50:9950–9962.

223. Schnoes AM, Brown SD, Dodevski I, Babbitt PC: Annotation error in public databases: Misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 2009, 5:e1000605.

224. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk

Page 18: Schallmey Novel halohydrin dehalogenases

C, Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo S, Souza ML, Piovesan D, Casadio R, Wang Z, Cheng J, Fang H, Gough J, Koskinen P, Törönen P, Nokso-Koivisto J, Holm L, Cozzetto D, Buchan DWA, Bryson K, Jones DT, Limaye B, Inamdar H, Datta A, Manjari SK, Joshi R, Chitale M, Kihara D, Lisewski AM, Erdin S, Venner E, Lichtarge O, Rentzsch R, Yang H, Romero AE, Bhat P, Paccanaro A, Hamp T, Kaßner R, Seemayer S, Vicedo E, Schaefer C, Achten D, Auer F, Boehm A, Braun T, Hecht M, Heron M, Hönigschmid P, Hopf TA, Kaufmann S, Kiening M, Krompass D, Landerer C, Mahlich Y, Roos M, Björne J, Salakoski T, Wong A, Shatkay H, Gatzmann F, Sommer I, Wass MN, Sternberg MJE, Skunca N, Supek F, Bosnjak M, Panov P, Dzeroski S, Smuc T, Kourmpetis YAI, van Dijk ADJ, ter Braak CJF, Zhou Y, Gong Q, Dong X, TianW, Falda M, Fontana P, Lavezzo E, Di Camillo B, Toppo S, Lan L, Djuric N, Guo Y, Vucetic S, Bairoch A, Linial M, Babbitt PC, Brenner SE, Orengo C, Rost B, Mooney SD, Friedberg I: A large-scale evaluation of computational protein function prediction. Nat Methods 2013, 10:221–227.

225. Galperin MY, Koonin EV: From complete genome sequence to “complete” understanding? Trends Biotechnol 2010, 28:398–406.

226. Chovancova E, Kosinski J, Bujnicki JM, Damborsky J: Phylogenetic analysis of haloalkane dehalogenases. Proteins 2007, 67:305–316.

227. Gabrielli F, Tofanelli S: Molecular and functional evolution of human DHRS2 and DHRS4 duplicated genes. Gene 2012, 511:461–469.

228. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank. Nucleic Acids Res 2013, 41:D36–D42.

229. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002, 30:3059–3066.

230. Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 2005, 33:511–518.

231. Rosen GL, Reichenberger ER, Rosenfeld AM: NBC: The naive Bayes classification tool webserver for taxonomic classification of metagenomic reads. Bioinformatics 2011, 27:127–129.

232. Raab D, Graf M, Notka F, Schödl T, Wagner R: The GeneOptimizer algorithm: Using a sliding window approach to cope with the vast sequence space in multiparameter DNA sequence optimization. Syst Synth Biol 2010, 4:215–225.

233. Crooks GE, Hon G, Chandonia J-M, Brenner SE: WebLogo: A sequence logo generator. Genome Res 2004, 14:1188–1190.

234. The UniProt consortium: Update on activities at the universal protein resource (UniProt) in 2013. Nucleic Acids Res 2012, 41:D43–D47.

235. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The protein data bank. Nucleic Acids Res 2000, 28:235–242.

236. Löytynoja A, Goldman N: webPRANK: A phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 2010, 11:579.

237. Desper R, Gascuel O: Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 2002, 9:687–705.

238. Felsenstein J: PHYLIP - Phylogeny inference package (version 3.2). Cladistics 1989, 5:164–166.

Page 19: Schallmey Novel halohydrin dehalogenases

239. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307–321.

240. Yao P, Wang L, Yuan J, Cheng L, Jia R, Xie M, Feng J, Wang M, Wu Q, Zhu D: Efficient biosynthesis of ethyl (R)-3-hydroxyglutarate through a one-pot bienzymatic cascade of halohydrin dehalogenase and nitrilase. ChemCatChem 2015, 7:1438–1444.

241. Chaloupkova R, Sykorova J, Prokop Z, Jesenska A, Monincova M, Pavlova M, Tsuda M, Nagata Y, Damborsky J: Modification of activity and specificity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 by engineering of its entrance tunnel. J Biol Chem 2003, 278:52622–52628.

242. You L, Arnold FH: Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng 1996, 9:77–83.

243. Tang L, Liu Y, Jiang R, Zheng Y, Zheng K, Zheng H: A high-throughput adrenaline test for the exploration of the catalytic potential of halohydrin dehalogenases in epoxide-ring opening reactions. Biotechnol Appl Biochem 2014, 64:451–457.

244. Wan N-W, Liu Z-Q, Xue F, Huang K, Tang L-J, Zheng Y-G: An efficient high-throughput screening assay for rapid directed evolution of halohydrin dehalogenase for preparation of -substituted alcohols. Appl Microbiol Biotechnol 2015, 99:4019–4029.

245. Jochens H, Bornscheuer UT: Natural diversity to guide focused directed evolution. ChemBioChem 2010, 11:1861–1866.

246. Höhne M, Schätzle S, Jochens H, Robins K, Bornscheuer UT: Rational assignment of key motifs for function guides in silico enzyme identification. Nat Chem Biol 2010, 6:807–813.

247. Nguyen G-S, Thompson ML, Grogan G, Bornscheuer UT, Kourist R: Identification of novel esterases for the synthesis of sterically demanding chiral alcohols by sequence-structure guided genome mining. J Mol Catal B Enzym 2011, 70:88–94.