36
Scaling Laws in the Welding Arc P.F. Mendez, M.A. Ramírez G. Trapaga, and T.W. Eagar MIT, Cambridge, MA, USA October 1 st , 2001, Graz, Austria.

Scaling Laws in the Welding Arc

  • Upload
    rey

  • View
    30

  • Download
    1

Embed Size (px)

DESCRIPTION

Scaling Laws in the Welding Arc. P.F. Mendez, M.A. Ramírez G. Trapaga, and T.W. Eagar MIT, Cambridge, MA, USA October 1 st , 2001, Graz, Austria. Evolution in the Modeling of the Welding Arc. Outline. Description of the Welding Arc Modeling of the Arc Column Scaling of Arc Column - PowerPoint PPT Presentation

Citation preview

Page 1: Scaling Laws in the Welding Arc

Scaling Laws in the Welding Arc

P.F. Mendez, M.A. Ramírez

G. Trapaga, and T.W. EagarMIT, Cambridge, MA, USA

October 1st, 2001, Graz, Austria.

Page 2: Scaling Laws in the Welding Arc

2

Evolution in the Modeling of the Welding Arc

Squ

ire

1951

(an

alyt

ical

)S

herc

liff

196

9 (a

naly

tica

l)

Lowke 1997

num

ber

of d

imen

sion

less

gro

ups

asso

ciat

ed w

ith

geom

etry

(mg)

number of dimensionless groups associated with the physics (mp)

1 2 3 4 5 6

1

2

3

4

5S

quir

e 19

51 (

anal

ytic

al)

Mae

cker

195

5 (a

ppro

xim

ate)

7

Ramakrishnan 1978Glickstein 1979

Hsu

198

3

McK

elli

get 1

986

Cho

o 19

90L

ee 1

996

Kim

199

7

availability ofdigital computers

Page 3: Scaling Laws in the Welding Arc

3

Outline

• Description of the Welding Arc• Modeling of the Arc Column• Scaling of Arc Column• Comparison with Numerical Modeling• Improving the Estimations• Discussion

Page 4: Scaling Laws in the Welding Arc

Description of the Welding Arc

Page 5: Scaling Laws in the Welding Arc

5

The Welding Arc

cathodeboundary layer

cathode

cathode region

column

anode region

anode boundarylayer

anode

e.m. forces,inertial forces,viscous forces

joule heating

electron driftconvection, radiation,

conductionconvection, radiation,

conduction

Page 6: Scaling Laws in the Welding Arc

6

The Welding Arc

Flow Temperature

This talk

MetTrans 6/01

Page 7: Scaling Laws in the Welding Arc

7

continuity

Navier-Stokes

Maxwell

Governing Equations

01

Z

VRV

RRZ

R

BJZ

VRV

RRRR

P

Z

VV

R

VV Z

RR

RZ

RR

2

21

BJZ

V

R

VR

RRZ

P

Z

VV

R

VV R

ZZZZ

ZR

2

21

Z

TJ

R

TJ

e

kS

JJ

Z

T

R

TR

RRk

Z

TV

R

TVC ZR

bR

ZRZRp 2

51 22

2

2

Z

BJ R

0

RBRR

J Z 1

0

01

2

2

RBRRRZ

B

energy

Unknown functions:),( ZRVR ),( ZRVZ

),( ZRP

),( ZRJ R ),( ZRJ Z),( ZRB

),( ZRT

Page 8: Scaling Laws in the Welding Arc

Modeling of the Arc Column

Page 9: Scaling Laws in the Welding Arc

9

Assumptions

• Axisymmetric, steady state, optically thin, LTE, etc.• Convection unimportant in column

– Prandtl of plasma <1– Elenbaas-Heller equation– Temperature distribution ~uniform in column length

Tem

pera

ture

(K

)

Distance from cathode (mm)

0 2 4 6 8 10

5000

10000

15000

20000

25000

Hsu et. al. (Numerical)Present study (Numerical)

column

Page 10: Scaling Laws in the Welding Arc

10

Rg

Tc

Ri

Ti

Tc Ti

radiation, conduction,

electron drift

Joule heating

radiation, conduction

Ti

Arc Column

unknowns

column gas

Page 11: Scaling Laws in the Welding Arc

11

Simplified Governing Equations

Energy in plasma

R

Tk

R

Tk gp

02

51 22

R

TJ

e

kS

JJ

R

TR

RRk R

bpR

ZRp

01

gRg SR

TR

RRk

Z

BJ R

0

RBRR

J Z 1

0

01

2

2

RBRRRZ

B

Maxwell

Energy in gas

“Interface” plasma-gas

coefficient OM(1)

g

gp

gpg

ig

rr

rrR

Tk 12

parameters

unknown scaling factor

Normalization

Page 12: Scaling Laws in the Welding Arc

12

Plasma Properties

“ionization” temperature

Tampkin and Evans,1967

Ar

iRTR TTSS

Page 13: Scaling Laws in the Welding Arc

13

Plasma Properties

Bou

los,

Fau

chai

s, P

fend

er, 1

994

Ar

iT TTkk

Ar

iT TT

Bou

los,

Fau

chai

s, P

fend

er, 1

994

Page 14: Scaling Laws in the Welding Arc

Scaling of the Arc Column

Page 15: Scaling Laws in the Welding Arc

15

Order of Magnitude Scaling (OMS)

• Matrix of Coefficients• Balance 2 terms for equation• Check-self consistency

term

s

parameters unknowns

inte

rfac

e g

as p

lasm

a

exponents

Page 16: Scaling Laws in the Welding Arc

16

Estimations from OMS

• Matrix of Estimations• In this case: 10 iterations• E.g.:

parameters

unkn

owns

exponents

1.01.01.04.0

2.02.02.0 2ˆ

iRGgRTTTi TSkISkR

Page 17: Scaling Laws in the Welding Arc

Comparison of OMS and Numerical Results

Page 18: Scaling Laws in the Welding Arc

18

Cases Analyzed

gas I h[A] [m]

Ar 200 0.01Ar 200 0.02Ar 300 0.0063Ar 300 0.01Ar 300 0.02Air 520 0.07Air 1150 0.07Air 2160 0.07

Page 19: Scaling Laws in the Welding Arc

19

Arc Radius

1.E-04

1.E-03

1.E-02

1.E-01

0 500 1000 1500 2000 2500

welding current I [A]

Ri [

m]

numerical

estimation

within order of magnitude

Page 20: Scaling Laws in the Welding Arc

20

Arc Temperature and Gradient in Gas

1.E+02

1.E+03

1.E+04

1.E+05

0 500 1000 1500 2000 2500

welding current I [A]

Tc

[K]

numerical

estimation1.E-04

1.E-03

1.E-02

1.E-01

0 500 1000 1500 2000 2500

welding current I [A]

de

lta

Rg

[m

]

numerical

estimation

Ti Rg

Page 21: Scaling Laws in the Welding Arc

Improving the Estimations

Page 22: Scaling Laws in the Welding Arc

22

How can we improve the accuracy of the estimations?

• Traditionally: constant “fudge” factor• OMS: relates difference to

– Natural dimensionless groups (endogenous factors)• obtained systematically

– Other dimensionless groups (exogenous factors)• obtained by analysis of problem

Page 23: Scaling Laws in the Welding Arc

23

Natural Dimensionless Groups

1.E-03

1.E-02

1.E-01

1.E+00

0 500 1000 1500 2000 2500

welding current I [A]

conduction termJoule radialelectron drift

•Indicate “how asymptotic” the model is•Very small in welding arc•We will not use them

Page 24: Scaling Laws in the Welding Arc

24

Other Dimensionless Groups: Ri/h

fRi= -0.0207Ri/h + 0.6533

fdeltaRg = -0.0934Ri/h + 1.4127

fTc = 0.7041Ri/h + 0.7449

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ri/h

num

eri

cal/e

stim

atio

n

Ri

Tc

deltaRg1

•Account for factors not considered in the governing equations•In this case: aspect ratio

<<1Correction functions

Page 25: Scaling Laws in the Welding Arc

25

Corrected Estimation of Arc Radius

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 500 1000 1500 2000 2500

welding current I [A]

Ri

[m]

numerical

prediction

erro

r<10

%

Page 26: Scaling Laws in the Welding Arc

26

Corrected Estimation of Arc Temperature and Gradient in Gas

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 500 1000 1500 2000 2500

welding current I [A]

Tc

[K]

numerical

prediction

error50%?!

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500

welding current I [A]

Tc

[K]

numerical

prediction

erro

r10

%

TiRg

Page 27: Scaling Laws in the Welding Arc

27

Discussion

• Arc radius: predictions are very good• Arc temperature: predictions could be

improved:– effect of convection (modeled as endo. or exo.)

• Gradient in the gas: not important to know– sensitive to the definition of “ionization

temperature”

Page 28: Scaling Laws in the Welding Arc

28

Conclusions

• Important parameters of the arc can be predicted accurately with closed-form expressions:– temperature, radius, velocity, length of cathode

spot– for any gas and current in regime

• Energy in column:– axial Joule heating=radiation losses

• Energy in gas:– conduction=radiation losses

Page 29: Scaling Laws in the Welding Arc

29

Conclusions

• Most important:

Method to provide closed-form solutions to the welding arc

• non-linear equations• variable properties

Page 30: Scaling Laws in the Welding Arc

30

Page 31: Scaling Laws in the Welding Arc

31

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500

welding current I [A]

Tc

[K]

numerical

prediction

Corrected Estimation of Arc Temperature

erro

r10

%

Page 32: Scaling Laws in the Welding Arc

32

Corrected Estimation of Gradient in the Gas

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 500 1000 1500 2000 2500

welding current I [A]

Tc

[K]

numerical

prediction

error50%?!

Page 33: Scaling Laws in the Welding Arc

33

Arc Temperature

1.E+02

1.E+03

1.E+04

1.E+05

0 500 1000 1500 2000 2500

welding current I [A]

Tc

[K]

numerical

estimation

Page 34: Scaling Laws in the Welding Arc

34

Gradient in the Gas

1.E-04

1.E-03

1.E-02

1.E-01

0 500 1000 1500 2000 2500

welding current I [A]

de

lta

Rg

[m

]

numerical

estimation

Page 35: Scaling Laws in the Welding Arc

35

Parameters

},,,2

,,2

5,,,{}{ iRgg

bRTTT

T TSkIh

RI

e

kSkP

Plasma

System Gas

Page 36: Scaling Laws in the Welding Arc

36

Unknown Scaling Factors

},,{}{ gCiT RTRS

Cooling distance in gas

Arc radius

Arc temperature

Rg

Tc

Ti

Ri