22
S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Embed Size (px)

Citation preview

Page 1: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

S&C Thermofluids Ltd

CFD modelling of adsorption in carbon filters

E Neininger*, MW Smith** & K Taylor*

* S&C Thermofluids Ltd

** Dstl, Porton Down

Page 2: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Overview

• Background to filter model development• Physics of adsorption modelling• Validation• Implementation in PHOENICS• Future developments

Page 3: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Typical filter application

Air Flow

Impregnated granularactivated carbon

Glass FibreFilter

Canister filter for respirator

Page 4: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Modelling Requirements

• Pressure drop

• Contaminant breakthrough time

Page 5: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Other filter geometries

Small scale filter test bed

- 2 cm diameter carbon bed

Carbon monolith filter - Courtesy of MAST

Page 6: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Flow through filter bed

Page 7: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Flow through packed bed

• Pressure drop- local voidage distribution coupled to Ergun equation for pressure loss through bed:

p/L = 5 So2(1-)2U/3 + 0.29 So(1-)U2/3

viscous loss turbulent loss

- earlier work using this equation given good agreement with experimental data for pressure drop.

• Voidage distribution- Mueller model good for uniform spherical particles- uniform voidage gives better comparison with measured breakthrough times for granular carbon

Page 8: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Adsorption rate• Two scalar equations solved

- one for transport of contaminant vapour- one for rate of ‘uptake’ of adsorbed phase

• A linear driving force approach is used for the adsorption rate, whereby this is proportional to the amount of remaining capacity

-C/t = 1/ So km (C - Ci)

• Equilibrium uptake determined by adsorption isotherm = f(C,T)

Page 9: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Adsorption isotherm

• Pentane adsorption isotherm on BPL carbon at 295K

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p/p0

Up

take

(g

/g)

X – experimental data

__ - Dual Dubinin-Astakhov equation

Page 10: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Validation

Breakthrough of pentane (3lpm flow, 295K, various bed depths)

Page 11: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Validation

Breakthrough of pentane (3lpm flow, 1cm bed depth, 295K)

Page 12: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Saturation of filter bed

Page 13: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Variable inlet concentration

Outflow concentration from pulsed inflow

With no filter

0.5cm filter – experimental

1cm filter – experimental

0.5 filter – CFD

1cm filter - CFD

Page 14: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Pentane concentration at outlet

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

Time (mins)

Co

nc

entr

ati

on

(m

g/m

3)

dry air inlet RH 80% bed + inlet RH 80%

Adsorption in wet air

-C/t = 1/ So km (C - Ci)

but Ci for pentane limited so that

uptake </= total pore volume - water uptake

Water on Carbon Adsorption Isotherm

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p/p0

Up

take

(g

/g)

DDA

Page 15: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Implementation in PHOENICS

• Pre-processor• User interface allows rapid input of geometry and

property data• Writes Q1 file and runs FEMGEN to create mesh

• Run steady-state to establish flowfield then transient to model adsorption

• Run full transient if inlet flowrate varies with time

Page 16: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Implementation in PHOENICS

• Pre-processor• User interface allows rapid input of geometry and

property data• Writes Q1 file and runs FEMGEN to create mesh

• Run steady-state to establish flowfield then transient to model adsorption

• Run full transient if inlet flowrate varies with time

Page 17: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Implementation in PHOENICS

• Pre-processor• User interface allows rapid input of geometry and

property data• Writes Q1 file and runs FEMGEN to create mesh

• Run steady-state to establish flowfield then transient to model adsorption

• Run full transient if inlet flowrate varies with time

Page 18: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Implementation in PHOENICS

• Customised GROUND Coding• Pressure drop and adsorption source terms • Outlet contaminant concentration can be

monitored as run progresses

• Modelling issues• Cell blockages

Page 19: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Monolith filter model

• Activated carbon monolith

• Low pressure drop

• Single channel model• detailed model of one

flow path

• contaminant diffuses into porous monolith

• can model several monoliths in series

Page 20: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Monolith – vapour concentration

Hexane breakthrough

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120

Time (min)

Co

nce

ntr

atio

n (m

g/m

3)

vapour concentration after 6 mins

outlet vapour concentration vs time

Page 21: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Future development of model

• Multiple adsorbents• Non-linear driving force for adsorption• Property database/GUI• Heat of adsorption source terms• Improved solver speed

- optimisation of GROUND coding

- parallel processing

Page 22: S&C Thermofluids Ltd CFD modelling of adsorption in carbon filters E Neininger*, MW Smith** & K Taylor* * S&C Thermofluids Ltd ** Dstl, Porton Down

Conclusions

• Requirement for CFD modelling of filters• CFD model of adsorption process

developed• Validation of packed bed model

promising• Monolith model requires validation• Customised user interface• Ongoing developments