Saturn V Derivatives

Embed Size (px)

Citation preview

  • 8/3/2019 Saturn V Derivatives

    1/15

    SATURN HISTORY DOcuvENTUniversity of Alabame Research I~tcjtit~k~History of Science G. TechnologyG~PUQDate ---------- Doc.No. -------- Saturn V Derivatives

    THE MS A , IN ASSOCIATION WITH INDUSTRY, hasdeveloped a launch veh icl e sys ern t ha tsu rpasses the capab i l i ty and u t i l i t y of anyknown syst em i n the world today. Success ofSaturn fl ights has demonstrated vehicledependabil i ty and established a high levelof confidence. Evidence to sup por t thes ta tement is ref lec ted in Figure 2 , ''TheSu cce ss fu l Launch of SA-501! "

    A va st i ndu st ri al complex geared to thefabrication, assembly, trangportation, andlaunch of the Saturn V has been assembled.I t i s of utiwst importance th a t any der iva tiv elaunch ve hicle concept maximize the u i l i z a t io nof the se f a c i l i t ie s and management ca pa bi l i t i es .For the meaningful expl oit at i on andex p lo ra t io n of space to co nt inu e a t areasonable pace, i t is imperative that launchve hi cl e concepts of fe r maximum re tur ns inc a p a b i l i t y a d u t i l i t y a t minimum . t o t a l programcost. Therefore, i t is des i ra b le to determinethe s u i t a b i l i t y o f e x i s t i n g v e hi c l es and

    .stages to accomplish projected missions whencompared with potential ney launch systems,and t o conserve our ne are r- term developmentfunds f o r expanding the rrrarket for thesesys terns.This paper presents four ess en ti al i tems :(1) t he capab i l i ty of the stand ard opera t iona1Saturn V; 0 ) everal der ivat ive launchvehicle concepts result ing from th e many

    ABSTRACTThis paper desci ibes an evo lu t ionary

    family concept of !hturn V der ivat ive launchvehicle systems, discusses their performancec a p a b i l i t i e s , and o u t l in e s t h e i r a b i l i t y t operform orbita 1 and hlgh-energy miss ions a tminimum to ta l program cos t . The v e r s a t i l i t yand u t i l i t y of the Saturn V Launch vehiclesys tem have been well pubLicized with res pec tto i t s a b i l i t y t o i n j e c t s i z e a b l e e x p lo ra t or ypayloads throughout th e So la r Sys tem and withr e s p e c t t o f t s e a r th o r b i t a l c a p a b i l it y t oex p l o i t near e ar t h by u t i l iz in g a mannedsp ace s t a t i w d e rived from th e th i rd s t ag e .The complete f l ex ib i l i t y of the evo lu t ionarySatu rn V system i s iden t i f ied th rough

    Ronald D. Scott and William L. CorcoranMarshall Space Flight Center, NASA

    Fig. 1- Saturn V derivativesin-house .and contracted improvement studies ;( 3 ) ide nti fic ati on of a near-term, low R&Dcost , in termediate derivative launch vehicle ;(4) development of a hypothesized evo lut ion arySaturn V family concept that spans the earth

    derivative launch vehicle concept whichu t i l i z e a "common core" de sig n. Thesev eh ic l es d emon st ra te p o ten t i a l a b i l i t y tospan the earth orbital and planetary payloadspectrum. The va li di ty of th is evolutionaryconcept i s analyzed and der iva tiv e c andidatesar e evaluated i n terms of desig n commonalityand tr af fi c levels. Resources and scheduleinforma ti on i s provided f o r an evolutionarydevelopment p lan that could sa t i s f y c i v i l i anspace exploitat ion requirements for thefores eeab le futur e. The theme i s maximumu t i l i za t io n of p resent eq uipmen t, f a c i l i t i e s ,Saturn V hardware items and engineeringtechniques to ensure com pat ibi lit y of pres entand fut ur e designs.

  • 8/3/2019 Saturn V Derivatives

    2/15

    Fig. 2 - AS-501 launcho r b i t a l payload spectrum from 50,000 poundst o ov er 500,000 pounds.

    The paper descri bes th e Saturn V and i t sevo lut ion ary fa mily of two- and three-s taged er iv a t iv e l au nch v eh ic l es , d i scu sses t h e i rperfo rmance capab i l i t ies , and ou t l ines thei ra b i l i t y t o p er fo rm , c o s t e f f e c t i ve l y , o r b i t a lmissions programs and potential high-energymissions. These de ri va ti ve con gurat ionshave a payload ca pa bi l i ty range extendingfrom th at of the Saturn I B to the postu la tedmanned planetary vehicle requirements whichmight include placing larger nuclear modules/sta ges i n rendezvous compatible or bi ts aboutth e ea r th . -Basic inf orma tion on launch vehic leconf igurat ions , i .e . , techn ical descr ip t ions ,performance data, and resources data, wasextracted from recent MSA-funded studydocumentation. Mission and c ost - dat a wereprepa red a t MSFC.

    Many, a l t e r na t i v e methods of providinglaunch ta pa bi l i ty fo r t he complete payloadspectrum have been conceived, evalu ated andaggre ssive ly compared with r espe ct to design,schedules, and resources. As a re su lt , theau thors contend th at the p resen t nat ion alinventory of launch vehicles does not provideany overwhelming direction for the , u t i l i z a t i o nof 'p resen t sys tems to s a t i s fy fu tu re requ ire-ments. However, when one compares co mp et it iv elaunch veh ic le systems i n a s ing le o r s e l ec trange (e. g. , int erm edi ate payload range of110,000 pounds i n LEO) the danger ex i s t s fo r

    comparison ou t of con tex t w i t h respect toresources and/or launch ra te s or, perhaps, acomparison of ex is ti ng o r ear ly modifiedconfigurations with merely publicized futureconcepts.To a rr iv e a t a tr ue program cost comparisonfor de r ivat i ve veh ic les , the cost of in t raducingand producing each new vehicle over and abowtha t fo r the bas ic Satu rn-V xms t be determined.A three- or four-per-year production r a t e i sbelow the design production rat e f or Saturn Vfa ci l i t i es . When der iva tiv e vehicles usingSaturn V elements a r e produced i n addit ion t oSaturn V, t he ir program cost s a r e minimizedbecause Saturn V f a c i l i t i e s a r e the n us ed ,more effectively . For comparisons of Saturnd er iv a t iv es , e i t h e r u pra ed or deratedcon gura tio ns , he candidate should bese lec ted wi th r e sp ec t t o a vehicle evolutionaryconcept where an assumed thre e-st age Satu rn Vbas eli ne production program ex is ts and thecomplete mission spec trum requirements areevaluated wi th res pec t t o this open-endeddevelopment concept. In this paper theva li di ty of th is evoll l t ionary concept isanalyzed and Saturn V d e ~ iv a t iv e and id atesa r e eval uate d i n terms of performance, d esig n -commonality, cost and traffic levels,The philosophy expressed throughoutth is paper i s the cm sidered op in ion o f theau th o rs and d oes n o t ~ le r ess a r i ly e f l ec t MSFCor NASA management approved direction for anyfu tu re program.THE SATURN V

    The foc al point o r key t o the evolutionarycomon core concept, which wi ll -b e developedwith in th is paper , is fie "Standard saturn V. "Designed f or th e Apollo missions, the Saturn Vhas t he c a p a b i l i ~ y f in ject ing s izeab leexp lor ato ry payloads throughout the so la rsystem by housing th e payload with in a shroudof sele cted length t o remain within the designcap ab i l i t i e s of th e current vehicle.The upper ri gh t half of Figure 3 showsthe Saturn V with a va ri ab le payload heightdepicted by the dashed l i ne and the netinjec ted payload cap abi l i t y as a function ofthe energy parameter C3 is shown in the lowerr i g h t . The mis sio n pr of il e assumes th ree-s t ag e ascen t to a 1 00 n. mi , parking orbitw it h r e s t a r t o f t h e S-IW s tage to injectthe payload t o a range of energy levels. TheSaturn V high-energy injec tion capab il i ty doesno t ap roach zero u n t i l a G3 of approximatelyF50 km /sec2 (Ref. 2),* For reference, l oc al 'escape i s C3 = 0, and a Mars t ransfer isapproximately C3 = 18 &/see2.

    The curve labeled '5-25" r e fe r s to th eperformance obta ina ble by incorporating animproved propulsion system in the second andth i rd s t ag es . The J-2S is a simplified

    *Numbers i n pa re nt he se s designa ted ReEerencesa t end of paper.

  • 8/3/2019 Saturn V Derivatives

    3/15

    R . D. Scott and W . L. Corcoran

    FLEXIB IL ITY I UTIL ITY

    m0 STAGE TO EMIR ORBITmrPATLOMI (I$ LEI

    2h 5 =. (DEC)a

    ' AW W S I I STACE101 1% m IS 3ca

    W U L M ORB1A T T I N D E R)Wl

    mPEE STAGE TO H I G H I N 1 X C Y1 s ~ i 0 N S ( 1 0 0N MI PARXING ORBIT) -

    Fig. 3 - ~ k d a r daturnV capabilityversion of the present 5-2 engine used on theS-IZ and S-IVB s tages . The engine w i l l havean increased specif ic impulse of 5.5 secondsand wi l l be capable o f o pera t ing a t an increasedth ru st le ve l of approximately 35,000 poundsas compared to the standard 5-2 engine. Thissimplified system w i l l be incorporated as i tbecomes available through normal productimprovement. The dashed curve de pi ct s theperformance increase achieved when the Centauris used as an addi t iona l p ropuls ive s tag e onthe Saturn V. For example, th e st ag e mightbe in tegrated with in the ex i s t i ng LEM a d a p t e rsec tio n (SIX) of the stand ard Sa turn V/Apollovehicle . This configurat ion i s shown in theupper r i gh t corner of Figure LO.

    Ihe Saturn V has a tremendous potentialfor e a r t h o r b i t a l ap p l i c a t i on s , By u t i l i z i n gthe f i r s t two s t a g e s t o a c hi e ve o r b i t , t h eth ir d s tag e "derivat ive" becomes a ground-fitted, prelaunch-checked-out, manned spaces ta t ion . This concept re ta ins the ex te rna lconfigurati on of the standard S atu rn V/Apollovehicle. Qnce ear th or bi t has been achieved,the pos s ib i l i t y ex is t s to der ive from the seconds tage a hangar, add i t iona l s to r age a re a ,counter weight f or "g" s imulat ion or oth erposs ib le app l ica t ions . The ea r th o r b i tperformance cap ab il it y of the Satu rn V-andan a r t i s t ' s concept of a der i va t ive manneds p a c e a s ta t i o n a r e d is pl ay ed i n t h e l e f t h a l fof Figure 3.

    The e a r t h o r b i t a l p ay lo ad c a p a b i l i t y i s

    POSTAPOUO TIME FRAMEEMPHASIS ON h1 lSSION FLEXIB IL ITYMAX!MUM UTIlJZATION OF EXISTIN GCAPA BILITIES AND RESOURCES

    I DER IVA TIVE CONCEPTS DO NOT REPRESENTAPPROVED PROGRAMS

    COST Fig. 4. - Guidelinesshown as a funct ion of c ir cu la r ea r th o rb i ta l t i t u d e . The family of curves r es ul ts byvarying launch azimuth and the in i t ia t i on ofyaw steer ing t o achieve various inc l in at i onsof the f i na l orb i t . Select ion of the azimuthand time t o i n i t i a t e the yaw maneuver wasbased on range sa fe ty l im i ta t io ns ; theincl i nat io ns were chosen according t o p ossib leexperimentor requirements.

    The basic Saturn V and the "orb j t a l corederivat ives" are presented only to emphasizet h e v e r s a t i l i t y a nd u t i l i t y o f t h e S at u rn Va s an evol utio nary base. This now permitsus to undertake th e pr imary discu ssion of thepaper, i.e., Satu rn V d e r i v a t i v e s a s a nevolutionary launch vehicle sys tem con cep t.GUIDELINES FOR DERIVATIVE CONCEPTS

    The sp ec if ic guidel ines shown i n Figure 4were used to ide nt i fy con igura t ions pecu liart o the s tat ed philosophy and rat io nal e .

    Not only i s the Saturn V th e means t osend American Astr onau ts t o th e moon, i t i sa l s o a v e r s a t i l e machine t o l i f t g i g a n t i c .s pa ce s t a t i o n s i n t o e a r t h o r b i t o r t o l au nc hinstrument Laden spacecraft to the planets ;however, we must apprecia te the n ec es si ty fo rno advanced program in te rf er in g wit h t hetimely execution of the na ti on al ly committedApollo project . Therefore, a n on-interf erencep o li c y s e t s t h e i n i t i a l g ui d e li n e of a nassumed pos t-Apollo time frame f or i n i t i a t i n ga Satu rn de ri va ti ve program to encompass thefore seea ble 'payload spectrum.

    A1 1 vehicles must meet Apollo designs p e c i f i c a t i o n s a n d r e l i a b i l i t y s t a n d a r d s ,&ereby encompassing the spectrum of mannedand unmanned f l i gh ts to give the g re at es tp o t e n t i a l m is si on f l e x i b i l i t y .

  • 8/3/2019 Saturn V Derivatives

    4/15

    Saturn V Derivatives#TERM DlATE PAYLOAD R U S E UPRATED PAYLO4D RANGE

    Fig. 5 - Saturn V deriva-tive, payload flexibilityand hardware utility

    SAT v ..&"i

    DERIVATIVE DERIVATIVE(SIUS-IYBI S ID SIYGLE STAGETO ORBITDERIVATIVEtStD/S IVBI

    With t he va s t t e chno l ogi ca l ab i l i t i e sdeveloped, i t i s o n l y f i t t i n g t o assume t h a tf o r de r i va t i ve concep ts a l l ha rdware i t emsand e ngi nee r ing techniques developed underp r e s e n t p ro gra ms w i l l b e u t i l i z i e d t o t h emaximum ex te nt per mis sib le. This philosophyextends t o a l l t e chn ica l and management a r eas ,i nc l ud i ng des i gn , f ab r i ca t i on , a s sembly ,t r a n s p o r t a t i o n , l au nc h , an d u t i l i z a t i o n o f

    l i l a b e manpower and funding resources.l-fieref or e , one of th e most impor tan t gu id eli ne s'- h e maximum us e of av a il ab le equipment and

    aw-how, thereb y ins ur in g ex pl oi t at i on of . 't he Apol lo inves tment .

    Because the Saturn V de r i va t i ve concep t s,encompassing both upra ted and dera ted candidateveh i c l e s , a r e under cons i de ra t i on f o r p l anni ngpurposes only , t hey do not r e e r e se n t o r r e q u i r eapproved hardw are programs. This all ows ava r i e t y of concept s t o be cons idered andeva l ua ted a s poss i b l e cand i da t e s f o r t he nex tgenera t i on of Sa turn l aunch vehic l es .

    SATURN V DERIVATIVE FAMILY

    Two of th e major problems fa ci ng spaceprogram planner s a r e (1) the payload gapbetween Saturn I B and Saturn V low ea r t h o r b i tc a p a b i l i t i e s , a n d (2 ) the probable requirementfor a c ap ab i l i t y beyond th a t of Sa turn V f o rth e more amb itio us manned pl an et ar y programsof the fu tu re . Cost ana lyses have indica tedth a t on ly .a s in gle , modes t R&D expendi turei s r e qu i re d ' to implement the conf igurat ionsnece ssary t o encompass th is payload spect rumwi th a Sa turn V evolu t i onary vehic l e f amily.

    i s suggests that the program planner wouldzn ha ve t h e f l e x i b i l i t y of s e l e c t i n g t h e

    ve hi cle th a t matches each of the numerousyloads which could mater i a l i ze i n t h i s -nge . . i n a m os t cos t - e f f ec t i ve marine?.

    T hi s be i ng t he ca se , the concept of a Saturn Vd e r i v a t i v e f l e e t o f v e h i c l es i s evolved to

    '3''DERIVATIVECDvvOll CORE VlTM 2 OR 4sauclan.S-.m

    s e r v e a s a p o s s i bl e s o l u t i o n t o t h e s p a c eprogram planners I predicament.

    The Saturn V de r i va f i v e concep ts t h a tdemonst ra t e the payload f l ex ib i l i t y and hardwareu t i l i t y o f p roven sys tem s a r e p r esen ted i nFigure 5. These launch vehic l es can su cc es sf u l l ysuppo r t both plane ' tary m i s s o ns and e a r t h o r b i t a lm i s s ons for the payload r anges indica ted ,These fu t ure con f igura t io ns a r e a r r angedc h ro n o lo g i ca l ly w i t h r e s p e c t t o a v a i l a b i l i t yda t e s and cou ld e s s en t i a l l y be d i v i ded i n t o thefo l lowing ca tegor i es : (1) The ne ar -te rm "A1'de r i va t i ve com pr ised o f Sa t ur n f i r s t and t h i r ds t ages ; and (2 ) t he f a r - t er m de r i va t i v e s -- -I%'', "Cll and 'Dl' -- - comprised of a lengthenedand st rengthened Saturn v common co re w it h o rw i t hout so l i d p r ope l l a n t r ocke t m ot or s t r ap - onsand accompanying core der i va t iv es as ind icat ed.The economic cormnon co re concep t i s dependentupon a r equir ement f or upra t ing the pres entS a tu r n c a p a b i l i t i e s ; whereas , t he nea rer - t e rmI I I'A d e r i v a t i v e i s i ndependen tl y a va i l ab l e bycombining ex is t i ng s ys terns wi thout la rg e R&L)-expendi tures.

    When the d ec is ion i s made t o upra te th epresent Sa turn V f a mi l y, o ne d e r i v a t i v e t h a tshould be g iven carefu l cons idera t ion is . theS-ID s i ng l e s t ag e t o o r b i t . T hi s de r i v ' a t i ve ,designated I% " , i s a st ag e and one-ha.l f ve rs io nof the .pre sen t S-IC st ag e and would become,t h e f i r s t s t a g e i n a n e f f e c t i v e a nd e c o no m ic a lassembly of upper stage s of the evo lut i ona rySat urn family. These two- and th re e- st ag eveh icle s would form an impressive fam ily ofve hi cle s t ha t range from th e S-LD with i tss t ag e d t h r u s t s t r u c t u r e t o t he t h r e e- s t a g e(S-IDIS-111s-IVB) ve hic le wi th so l i d rd ck etmotor s - for au xi l i a r y boos ter th rus t .

    Only low ear th o r b i t (LEO) payloadcapab i l i t i e s a r e po r t rayed by t he pay load ba r sad j acen t t o t he de r i va t i ve veh i c le s f o r t he100-n. m i . c i r c u l ar or b i t . Synchronous equa-t o r i a l o r b i t (SEO) and ea r t h g r av i t a t i ona le sc a pe c a p a b i l i t i e s w i l l b e d is c u ss e d i n

  • 8/3/2019 Saturn V Derivatives

    5/15

    L L ~ . R ; D. Scott and W . L . Co r co r and et a i_ l w i t h t h e maj or c h a r a c t e r i s t i c s of eachd e r i v a t i v e . I n cr e me nt a l p ay lo ad f l e x i b i l i t yi s achieved by varyi ng th e number of st ag eeng ines o r SRM s t rap-ons .The economical gai ns achie ved by s imul-

    ' a ne ou s l y d e ve l op i ng t h e e n t i r e f l e e t ofv e hi c l es a r e s i g n i f i c a n t . The combineddevelopment of the vehi cle fami ly not onlyprovides payload f l e x i b i l i ty and more re l i a b l evehic les , but a ls o reduces th e developmentco st by a lmost 40 percent f rom th at r equiredt o develop such veh ic les separ a te ly . Th islarge economy results from reduced DDT&Ecosts and fewer R&D f l ig h t s because of veh ic leelem ent commonality. The de si gn commonalityand impact aspec ts of common cor e f l e e t .development w i l l be presented l a t e r i n Figure 13.

    The most d ir ec t approach t o providing alow-cos t , low-r isk , near- term intermediatepayload launch capabi l i ty i s t o combine thef i r s t and t h i r d s t a ge s of t h e S at u r n V. There su l t in g S-IC/S-IVB ve hi cl e i s shown i n .Figure 6 .This *'AA" d e r i v a t i v e v e h i c l e Can be b u i l tby adapt ing exis t ing equipment and i s p a r t i c u -l a r l y v e r s a t i l e b ec au se it c a n b e t a i l o r e d f o ra range o f pay load ca pa b i l i t i e s . Th i s t a i lo r ingi s accompl i shed by i ns ta l l in g on ly those F -1Gngines th at ar e req uired t o meet miss ion demandsa nd b y v a r y i n g t h e f i r s t s t a g e p r o p e l l a nt l o ad i ngt o match launch th ru st - to-weight requirements .F ou r f e a s i b l e ve h i c l e s a r e t h u s o b t a in e d .The 100-n, m i . or b i t pay load range ava i l ab lefo r the four F -1 eng ine conf igura t ion ind ica tesa maximum LEO ca pa bi li t y of 132,000 poundswhen oper at i ng with in the pre sen t 4 .68-gdes ign acce le ra t ion l i m i t of the Sa tu rn V.With mino r changes i n t h e S-IC and S-IVBp r o p e l l a n t t a n k a f t b ul kh ea ds a n i n c r e a s ein the accel era t io n l imi' t t o 6 .0 g can bea ch i ev e d, r e s u l t i n g i n l a r g e r p a yl oa d v a lu e sup t o 158,000 pounds i n LEO. SEO and escapeca pa bi l i t i es of 15,000 and 32,000 pounds,respect ively ,are shownThe nominal payload capabi l i t ies obta inedusing var iou s engine combinat ions fo r a100-n. mi . c i r c u l a r e a r t h o r b i t mi s si on l au nc he ddue eas t f rom ,KSC ar e shown i n t he fo l lowingt a b l e :No. of F-1 o n S-IC ~ d c e l e r a t i o n i mi t

    The e x i s t i n g S at u rn V s t a g e s c an b eea si ly adapted to t he S-IC/S-IVB configurat ion.The S-IC s ta ge i s adapted by removing (or notins ta l l in g) one o r more o f th e F -1 eng inesand as so ci at ed components. Lsls t a l a ion ofa mo d i f i c a t i o n k i t w i l l complete th e adaptat ion.

    PAYLOADS LEO 132,000SEO 15,000ESCAPE 32 ,000

    MAJORHARACTERISTICS . .STANDARD SATURN V STAGES WITH

    M I N O R A D A P T I O N SCENTER F-1 ENGINE REMOVED WITH

    2-2 SHUTDOW N SEQUENCE.AVAILABILITY

    EAD 12 MONTHS AFTER ATP

    Fig. 6 - "A" derivative (S-IC/S-IVB)The modif icat ion k i t i s comprised of coverp l a t e s , s e a l s , p l ug s , c a p s , h e a t s h i e l d p a n e ls ,support , and e l ec tr ic al and plumbing adapt ers .Cover pl at es and sea ls cl os e t he LOX. and f ue lbulkheads where li ne s a r e removed. Heatsh i e ld pane l s a re i ns ta l l ed where eng ines havebeen removed. It-s hould b e noted th$t th eS-IC s tage adap ta t ions a r e reve rs i b le ; t h a ti s , a Saturn V configurat ion can be obtainedby revers ing the modif icat ion procedure . .

    The changes t o t he S-ITJB st ag e a r e evensimpler . A cab l ing adap te r i s needed betweenthe S-IC cable interface and the S-IVB cableint erf ace ; and the number, s i ze , and loc at i ono f b o l t h o le s i n t h e a f t i n t e r f a c e f r amemust be changed to correspon d wit h th e S-ICforward in te r face f rame bo l t ho le pa t t e rn .

    The Instrument Unit w i l l r eq ui re minorinternal changes f o r a l l i nt e rm e di a re v e h i c l eapp l ica t ions . These changes include reprogram-ming the launch vehicle digi ta l computer andc ha ng in g t h e ga in s i n t h e f l i g h t c o n t r o lcomputer.For the "A1'D e r i v a t i v e i l l u s t r a t e d i nFigure 6, the center F-1 engine i s removedfrom the S-IC s tage t o remain wi thi n ex is t i ngdesign tolerances and a 2-2 engine shutdownsequence i s programed. Two F-1 engi nes w i l lthe ref ore experience a 61-second extendedopera t ion over p resen t Sa tu rn V burntime.Extended burntime i s n o t a problem, bu t wouldreq uir e demonstrat ion.The e a r L i e s t a v a i l a b i l i t y d a t e (EAD) f o rd e l iv e r y of t h e i n i t i a l o p e r at i o n a l u n i t i s12 months af t e r the au th or it y t o proceed (ATP)da te , which follo ws a complete programdef in i t ion phase .1%11 DERIVATIVE (s-m)*

    A s tage-and-one-half to or b i t vers i on ofth e S-IC, shown i n Fig ure s .7 nd 8 anddesignated S-ID, i s worthy of cons id er at io n*The S-ID s i ng le s tage ' t o or b i t conceptresulted from a Boeing Company in-house study.

  • 8/3/2019 Saturn V Derivatives

    6/15

    Saturn V Derivat ives

    Fig . 7 - S-ID single stage to orbi tPAYLOAD A O PAYLOAD LEO 50,0301u-

    L ID

    6 hlAJOR CHARACTERlSTICSS- IC STAGE WIT H JEITISONA5l.E

    THRUST STRUCNREGI MB AL CENTER SUSTAIKER ENGINE

    WITH EXTENDEDBURNT I M EOUTBOARD ENG~RES ND STRUCTURE

    STAGED AT 7CV7 PROPELLANT DEPLETION.8 A V A l L A B l t l T Y

    Fig. 8 - "B" der ivat ive (S-ID inglestage t o orbi t ).i n c e i t cou ld e f f i c i en t l y round ou t t hef l e x i b i l i t y of t h e S a tu r n V sys tem in the50,000 pound payload range.

    The S-Dl e ngi ne st ag in g c?ncep.t o per atesby dropping four engines and the th ru s ts t r u c t u r e c y l i n d e r . The prese nt S-IC th ru sts t r uc t u r e c en t e r eng i ne suppor t c r o s s beami s el im ina ted f or the S-ID concept excep tf o r a sm a l l c r uc i f or m nea r t h e i nb ~ a r d ngi ne .A c y l i n d e r i s . used to adapt the r emain ing cro ssbeam t o a con ica l suppor t which t r an sfe r sr e n t e r ' e n g i n e l o a ds t o t h e s t a g e c y l i n d r i c a l

    3 1 1 . .This e f . f ec t iv e ly separa tes the inboardeng ine f rom th e fou r . outboard engines and'he i r suppo r t ing s t ruc tur e . At approximate ly

    pe r cen t of p r ope l l a n t dep l e t i on t he f ou routboard en gines a r e shut . down and th ei rr e spec t i ve p reva l ve s c l o se , s ea l i ng t h e l ox

    and fu e l duc t s f rom the engines. On sepa r a t i oncommand, the th ru st st ru ct ur e i s separated a tt he forward t hr us t r i n g permi t t ing the four -engine pod t o f a l l away f rom the mainstageand i t s s i n g l e F -1 su s t a i ne r eng ine,

    LEO payload of 50,000 pounds is obtainedwith a stan dard S-IC s ta ge length of 138 fe et ;however, i t should be nored th a t an increasein s t ag e l ength , dependent upon the propel l an tcapac i t y requ i r ed f o r the se lec ted upra t ings t e p , w i l l s i g n i f i c a n t l y i n c r e a s e thisca pa bi l i ty . For example, a 20-foot extensionr e s u l t s i n t o t a l l i f t - o f f w eigh t of 6.01mi l l i on pounds, including the S-IC propel lantweigh t of 5.60 mil l i on pounds. With a thru st-t o- we ig ht r a t i o a t l i f t - o f f of 1.266, t h i s - -veh i c l e can p l ace i n LEO a payload .weighing65,000 pounds.

    The ce nter F-1 engine t ha t is used t oa ch ie ve o r b i t , a f t e r t h e four outboard F-1engines and t hr us t s r uc r u r e a r e s taged ,musthave an extended ope ra t io na l durat io n of 192seconds , over th a t of Sa turn V, f o r t hestandard length S-IC and 217 seconds fo r the20-00 t-ex ten ded -le ngt h S-IC. Extendedburnt ime i s n ot considered to be a problem,but would re qu ir e demonstrat ion.

    The e a r l i e s t a v a i l a b i l i t y d a t e f o r t h i scon f i gu r a t i on i s 36 m onths a f t e r ATP. Thisschedule i s paced b y desi gn, manufacture,and t e s t o f t he neces sa r y t e s t s t ages -andcomponents.

    B r ie f s t u d i e s i nd i ca t e t h a t r ecover y o ft he t h r u s t s t r uc t u r e and eng ines is f ea s i b l e .The four outboard engines and thrus t s t r uc tu re ,when separated, represent a package of high-co st i tems. Moreover, s in ce the payload-to-iner t -weight r a t i o of rhe one-ha lf s t age i son th e order of 1 t o 10 (1 lb payload lo ss to10 lb in e r t weight added) , necessary recoveryequipment may be added with minimum payloaddeg rada tion . However, f o r purposes of t h i spaper , no cons idera t ion i s given to t h eeconomics of rec ov er y concepts,

  • 8/3/2019 Saturn V Derivatives

    7/15

    R . D. Scott and W. L. Corcorano f r e fe rence , t h e eq u iv a len t a e r g y l ev e l

    P A R O A D S - L E O 180,000SE O 28,000ESC A PE 45.031

    MAJOR C H A R A C T E R IS T IC SSTANDARD S-IVB UPPER STAGES-IC STAGE WITH JETlISONABCE

    THRUST STRUCTURE. CENTERF - I SUSTAINER ENGINE.

    A V A l L A B l L l l YEA D 36 hlONTHS AFTER ATP

    Fig. 9 - "C" derivative (S-ID/S-IVB)"Cfl DERIVATIVE (S-ID /S-IVBf

    An add i t i onal degree o f f le x i b i l i tyaccrues to the Satu rn V d er iv a t iv e v eh ic l esystem in t he inte rmedi ate payload range-whenthe S-IC stage i s replaced by the S-ID s tag eon t he "AA" e ri va ti ve (S-IC/S-IVB) launchv eh ic l e , a s in d ica ted in F igu re 9. The payloadincre ase and fl ex ib il i t y of such an arrangementwas demonstrated i n Figure 5.

    The concept mist be used on configurationsw i th e i th e r th ree o r f iv e F-1 en gin es , s in cethe cen ter engine i s r eq u i red as a su s t a in e r- f t e r stagi ng the outboard engines and thr us ttr uc tu re . Note t h a t th e 180,000-poundcap ab i l i t y o f the f iv e F-1 eng ine veh ic le i spproa ching t he 275,000-pound ran ge of theNO-s age Satu rn V. The SEO of 28,000 poundsachieved without th e use of a t h i r d s t a g e ,e.g., Centaur, i s s ign if ican t . This der iv at iveal so in je ct s 46,000 pounds t o a lunar tr ans fert r a j ec to ry .The major charac ter is ic s o f th is der ivat i vev e h i c l e a r e t h e u t i l i z a t i o n o f t h e s ta nd a rdS-IVEi upper stage of the Saturn V with minoradaptations and th e S-IC st ag e with theje t t i sonab l e th rus t s t ruc tu re . The cen terF-1 engine i s once again used as the su sta ine reng ine af ter s tag ing and i s requ ired to burnapproximately 190 seconds longe r than- th epresent Saturn V engines.The e a r l i e s t a v a i l a b i l i t y d a t e f o r anoperat ional "C" derivative, paced by the S-IDstage development, i s 36 months a f t e r ATP.'!A" AND '%" P E ~ O R M A N C ECONPARISON

    It is Tnteres ti ng to compare th e high-energy performance ca pa bil i t ie s of de rivat ivesI t I!A and '%". Fig ure 10 shows t he in cr ea se dhigh-energy mission payload cap ab il it y of afive F-1' engine "C" derivative (s-ID/S-IVB)compared w i t h . the four F-1 engine "AA"-* ri va ti ve (S-IC/S-IVB). The di ff er en cebetweeri the se vehic les is t h e a b i l i t y of t he:"v eh ic l e to s t ag e th e th ru s t s t ru c tu re

    di th the four outboard engines. As a poin t

    requ ired fo r seve ral represen ta t ive miss ionsi s ind icated a t the top o f the f igure .

    The mission p ro fi le used i n achievingthe high-energy missions assunes d ir ec t asc entto a 100-n. m i . c i rcu la r p arking o rb i t w i thr e s t a r t of t h e S-IVB s t a g e t o i n j e c t t hepayload to th e various energy leve ls (C3).The dashed l ine s ind ic ate the a dd i t ion alperformance expected with a Centaur s ta gein tegrated in t o conf igurat tons as an additions1propulsive stage. A concept showing how, theCentaur might be i nte gra ted within the Satur nLEM Adapter (SLA) portion i s displayed i n theconfig urati on "blow up" t o th e ri gh t of theperformance plots.The "A" d e r iv a ti v e e f f e c ti v e l y f i l l sthe inter media te payload regime (20,000 lb )f o r t h e lower-snergy missi ons t o Mars andVenus. A Centaur ve rs io n, des ignated '!AA"/Centaur on the graph (Figure lo) , can extendthe pay load in je ct i on ca pab i l i ty t o the moredemanding energy levels (C-j = 150 km2/sec2)and become competitive with the Saturn V.The "C" de ri va ti ve inc rea ses the Mars/Venustype payload ca pa bi li ty , a s coinpared with"A", by approximately 50 percent.In order to f u l ly apprecia te the capa-b i l i t i e s o f th e d e r iv a t iv e v ehic l es , t h eSaturn V and Sa tu rn VICentaur performance .hasbeen included on the chart. Depending uponthe requirements, i.e., la rg er payloads,shor t er t r ip t imes , e tc . , the Saturn Vde ri va ti ve s and Satur n V/Centaur can encompassthe t o t a l pay load and ener gy spectrum.I'D D" DERIVATIVE - THE UPRATING STEP

    The u l t imate i n Satu rn V evolutionaryco ncept s , w i th r e sp ec t to f l ex i b i l i t y andca pa bi li ty , i s achieved when some futu rerequirement di ct a te s development of the '9"der iva tiv e shown i n Figure 11. This vehiclef a l l s i n to a category ident ifi ed by the authorsas the uprat ing s tep . It w i l l come about whenmore ambitious missions a r e undertaken orwhen exi st in g programs d es ir e siz eab leexpans ion. Theref ore , th e forci ng functi onsw i l l be a requirement f or a ground-fi t tedlunar base, manned plan eta ry m hs ons , nu clea rmodule fl ig ht s and/or othe r forecasted requi re-men ts .The upratin g s te p should be viewed i n termsof using evolutionary systems development withemphasis on incorpo ratin g th e following designgoals in to the '9" der iva t ive design:

    1. Maximum payload envelope - - The coresta ges should be designed t o a 33-foot-diameterpay load, with maximum veh ic le h eig ht a tt ai na bl eunder reasonab le launch fa ci l i ty const ra in t s .

    2. A common co re s hou ld be int rod uce dto encompass the previ ously discussed der iva ti ve sI Q I I I I C I I. T h e v e r s a t i l i t y of 0 , 2, and4 SRM s trap-ons should be incorporated t oprovide payload/cos t f l e x i b i l i t y . The e f f e c tof the S-ID a ppl ic at ion must be considered

  • 8/3/2019 Saturn V Derivatives

    8/15

    saturn V Derivatives 27

    (iduY E T P A Y L O A Dt

    HYP ERB OLIC EXCESS SPEED SQUARED C ~ ( K ~% - ?

    Fig. 1 0 - Derivative "A"and "C" performance com-parison

    Fig. 11 - llD1l derivative,the uprating step

    PAY-LOAD LEO.

    SlVB FOR HIGHLUNAR BASE CORE 144.000ENERGY MISSIONS sNUCLEAR MODULES W IM" SRM 380.000

    (Two STAGE) IU- -I PLANETARY LANDING W 1%" SRM 495,000W 160" SRM 7I C 004MAJOR CHARACTERISTICS

    BASED ON DESIGN GOALSCOMMOMCORECOMCEPT. CORE VEHICLE ALO NEOR WITHTWOOR FOUR SRM AS REQUIRED FOR THRUST AUGMEMTATIONEMCOMP&SSES DERIVAT IVES ''A" "8" AND " CSRUS.IC ONLY STACE W I T W IMCREASEO PROPELLANT CAPACITY.

    'o AVAILABILITY (COMMON OR INDEPENDENT DEVELOPMENT)

    EA O 40 M O NT H S A F T E R A T P

    when mod i f i ca t ions a re inco rpora ted i n t o the .common core elements.

    3; The payload inc rease o v e r t h e p resen tSa t u r n V c a p a b i l i t y s h o ul d b e l a r g e .MSFC contracted and in-house s t ud id s haved e mo n st r at e d t h e f e a s i b i l i t y of u p r a t i n g t h eSa t u r n V v e h i c l e by us ing so l id rocke t moto r(SRM) s t r a p - o n s f o r b o o s t a s s i s t . The

    s i g n i f i c a n t LEO c a p a b i l i t i e s i n d i c a t e d i nFigure 11 a r e achievable wi th moderate changest o t h e s t a n d ar d v e h i c l e , c o n s i s t i n g o f ale ng th en ed f i r s t s t a g e , s t r u c t u r a l s t r en g t h en i n gof a l l s t age s , and a t t achmen ts fo r the SRMs.The t remendous cap ab i l i t y of t hese con f igu ra t io ns(us ing a th ree - s t age co re ) i s apprecia ted whenone con side rs a payload of 190,000 pounds -

  • 8/3/2019 Saturn V Derivatives

    9/15

    R . D. Scott and W . L . Corcoran

    CORE ENGINES

    CORE LENGTH(PROPELLANT \\\\\

    100 " I '. \I . II .I ,0 100 200 300 400 500 600 700 800 900 1MX)

    1W N M P A Y L O A D WEIGHT - 1CCQ L B Si n j e c t e d i n t o a 72 h ou r l u n a r t r a n s f e r t r a j e c t o r yby th e vehi c le with four 3-segment 156-inch-diam ete r SRM s trap-o ns .

    The f i r s t d e si g n g oa l - maximum payloadenvelope - shou ld be g iven ca re f u l cons ide ra ion .Trade- offs between the launch veh ic le payloadw e i gh t .a n d l e n g th c o n s t r a i n t s f o r t h e u pr a t e dtwo-stage Saturn V a r e shown on the launchveh ic le /pay load ma tching ch a r t i n F igu re 12.The da ta a r e based on ma in ta in ing a t o t a l -ve hi cl e he ig ht of 410 fe e t imposed by the KSCVAB r e s t r a i n t . The a l l o w ab l e u p r a te d S a t u r n Vp ay lo ad l e n g t h c a p a b i l i t y i s p l o t t e d a s afunc t ion o f pay load c apa b i l i ty ob ta ined wi thstra p-on so l i d roc ket motor (SRM) s i ze andc o r e v e h i c l e p r o pe l l a n t c a p a ci t y . I f t h ec o r e v e h i c l e l e n g th i s n o t i n c r e a s e d f o r t h eu p r a t i n g s t e p , 192 f e e t a r e a v a i l a b l e F orpayload without exceeding t he 410-foot l i m i t

    . of the VAB. Pay load to the r i gh t o f the two-s t a g e S a t u rn V p o i n t r e s u l t s f ro m i n c r e as e dSRM pro pel la nt weight with two or f our 120-inch, 156-inch or '260-inch-diameter s tra p-ons o l i d r o c k e t m o to rs . Othe r po in ts on the l inewould re pre sen t design va r i a t io ns i n SRMconf igu rat i on parameters such as burntime.

    For any s tra p-on motor weight , th epay load can be inc reased by inc rea s ing bas icS a t u r n V or common cor e prop el lan t capa cit y.For exampl e, when fo ur 1 20- inc h-d iam ete r SRMsa r e s t r a p p e d on t o t h e c o r e v e h i c l e , t h e p ay -load we igh t can be f u r t he r inc reased by add ingcore leng th up t o 42 f ee t where a cons t ra inedoptimum occurs. Any add i t iona l co re leng thbeyond t ha t po in t would show no inc re as e i npayload. The locu s of t he se optimums fo reach SRM forms th e lower boundary of th eenc losed a rea .

    Pay load ca pab i l i ty o f the veh ic l e can bef u r t h e r i n c r e as e d b y u p r a t i n g t h e l i q u i de n g i n e ( s ) i n t h e c o m o n c o r e v e h i c l e . Thedashed l in es shown on the ch art r epre sent pay-load ca pab i l i ty wi th 1 .8 -mi l l ion -pound- th rustF - 1 en g in e s i n t h e S -I C f i r s t s t a g e a nd J - 2 seng ines i n the S - I1 second s tage . The a reabetween t he dashed and the s o l id l in es fo r ag iven SRM strap -o n we igh t rep rese n ts pa r t ia lc o r e e n g i n e u p r a t i n g.

    Fig. 12 - Launch vehicle/payload match-ing chart, uprated Saturn V 2-stage ("D"derivative with SRM) Ref. 10

    Figu re 12 then rep re se nts a map of t het o t a l s p e c t r u n o f S a t u r n V u p r a t i n g u s i n gs t rap -on so l i d rocke t motoys. Many specificpo in ts on th i s map have been s tud ied i n de t a i lby s ta ge con t rac to rs under MSFC c o n t r a c t s ;however , th e f ea s i b i l i ty o f an up ra t i ng prog ramu t i l i z i n g a common core and minimizing lauzchf a c i l i t i e s i mp ac ts ( e v o lu t i o n ar y sy s te msdevelopment) has no t been f u l ly explored . I ft h e f l e e t of S a tu r n V evo lu t iona ry launchvehi c le s u t i l i z i ng common cor e e lements i sd et er m in ed f e a s i b l e , t h en t h i s f l e e t , i t sl au nc h f a c i l i t y r e qu i r e m en t s , m i ss i o n a p p l i -c a t o n s, and t h e i r i n t e r a c t i o n s s h ou l d b es t u d ie d a s a n i n t e g r a t e d a c t i v i t y .

    The second design goal - a common co r e -would open the door t o th e evolu t ion arycombined development of a fa mil y of de ri va ti veveh ic le . For up ra ted veh i c le s , an evo lu t i ona rysystem development shou ld be used where a l ld e r i v a t i v e v e h i cl e s o f the fami ly a r e des ignedand developed s imul taneous ly to withstan d themost demanding miss ion requirements for ecas ted .The en t i r e fami ly i s des ign ed t o us e commonsta ges . With the evol ut i onar y developmentapproach , the bas e l in e veh ic le shou ld be as t reng thened Sa tu rn V core wi th inc reasedprope l la n t capac i t y and fou r s t rap -on motorsf o r b oo st a s s i s t . The S-ID s ingle-s tage-to-o r b i t mode of ope ra t io n f o r t he f i r s t s ta ge("B" der iva t iv e ) would be inco rpora teds i m u l t an e o u sl y w i t h t h e c o r e u p r a t i n g t oi n c r e a s e t h e l au nc h s y st e m f l e x i b i l i t y .

    The e v o l u t i o n a r y d e r i v a t i v e f l e e t w ouldc o n s i s t of t h e S-ID s i n g l e - s t a g e - t c - o r b i tve h i cl e , and S-ID/s-IVB, th e common co re (twoand t hr ee) s t ag e veh ic le , and th e common corewi th two and fou r s t ra p -on so l i d rocke t mo to rs .The payload range of such a f l e e t c o u l d e x te n dfrom 50,000 pounds t o over 700,000 pounds t o 'low ear th o rb i t , depending upon the degree ofu p r a t i n g r e q u ir e d . I n j e c t i o n s t a g e s c ou l d b eu se d w i t h t h e d e r i v a t i v e v e h i c l e s t o i n c r e a s eth e i r h igh -ene rgy payload cap ab i l i ty .

    -The th ird design goal - a l ar ge payloadi n c r e a s e - must be tempered somewhat t os a t i s f y t h e o th e r d e s ig n o b j e c t i v e s . Arec en t ly completed s tudy ind ica ted the

  • 8/3/2019 Saturn V Derivatives

    10/15

    Saturn V Derivat ives 29

    Fig. 13 - Vehicle design

    iSFPARATE DEVELOPMENT -

    f e a s i b i l i t y of i n c r e a si n g t h e S a t ur n V capa-b i l i t y b y u s i n g f o u r s t r a p - o n 2 60 -i nc h- di am et erso l i d rock e t mo tors , bo th i n a ze ro -s tage and

    D E S I S NI M P A C T

    F A C I L I T YI M P A C T

    boos t-as s i s t mode ; however , the s tudy fu r t he remphasized the requirements fo r l arg e launchf a c i l i t y a nd v e h i c l e i mp ac ts .

    Manned in te rp la ne ar y miss ion s t d d i e shave ind ic a ted a LEO payload requirement i nthe 500,000-pound range. This ca pa bi l i ty i s

    D E S I G N S U S TA I N E RE N G I N E TH R U S TS T R U C T U R E A N DT V C S Y 4 T E MD E S I G N S E P A R A -T I O N S Y S TE M FO RFO U R E N G I N E P O D

    s M O D I F Y M O B I L EL A U N C H E R A N DM O B I L E S E R V I C ES T R U C T U R E F O RS I N G L E S T A G E

    demonstra ted i n F igure 12 as being achievableby a Sa tu rn V with o r wi thou t inc reasedprope l lan t capac i ty p lus fou r 156- inch -d iamete rs t rap-on SRMs . This requirement , in conjunctionwith the min imal launch fa c i l i t y and Vehic leimpact ass oc ia te d wi th the common core des ignconcep t fo r up ra t i ng to t h i s payload range ,

    A M D A T T A C H E D

    T V C S Y S TE MS Y S TE M FO R FO U R

    s u p p l i e s t h e r a t i o n a l e f o r n o t e xt en di ngSa tu rn V d e r i v a t i v e s p a s t t h e p r e s e n t l y

    F A C I L I T YI M P A C T

    projected requirements .I f t h e "Dl ' der iva t ive deve lopmen t i s

    . E S I G N S U S TA I N E RE N G I N E T H R U S TS T R U C T U R E A N DT V C S Y S TE MD E S I G N S E P A R A -T I O N S Y S TE M FO RFO U R E N G I N E P O DM I N O R A D A P TI O N ST O S.ID 6 S - I V BS TA G E S. O D I F Y M O B I L EL A U N C H ER A N 0M O B ! L E S E R V I C ES TR U C TU R E FO RV E H I C L E L E H G T H

    approached with ' these desi gn goal s i n mind,an "open-ended" evol ut io nary f l e e t of fu tu reveh ic l es can be developed f or minimum to t a lprogram co st . Whether the above upra tedconf i gu ra t ion i s deve loped independen tly o ra s i n t h e p r e f e r r e d e v o l u t i o n a ry co m on c o r e

    e L E N G T H E 4 A NDS TR E N G TH E NS TR U C TU R E

    D E S I G N S O LI DR O C K E T M O T O RSA T T A C H M E N T

    MODIFY MOBILEL A U N C H E R A N DM O B I L E S E R V I C ES T R U C T U R E F O RL O N G E R V E H I C L E

    -commonality and impact

    . E N G T H E N A N DS TR E N G TH E NS TR U C TU R E

    M O D I FY M O B I L EL A U N C H E R A N DM O B I L E S E R V I C ES TR U C TU R E FO RL O N G E R V E H I C L E

    LENI,TYEN ANDS T R E N G T H E N .S T R U C T U R El ESIGN SOLID RO CK ETM O TO R S A TTA C H M E N Tl E V E L D P I M L S R M 'S

    M O D I FY L \ O B I L EL A U N C H E R A N DM O B I - E S E R V I C ES TR U C TU R E FO RLON GER VEHICLE

    c on ce pt , t h e e a r l i e s t a v a i l a b i l i t y d a t e i s40 months af ter ATP d a t e .

    . E N G T H E N A ND ,S TR E N G TH E NS TR U C TU R E

    . O O I FY M O B I L EL A U N C H E R A N DM O B I L E S E R V I C ES TR U C TU R E FO RL O N G E R VEHICLE

    I U N I V E R S A L M O B I L E L A U N C H E RU N I V E R S A L M O B I L E S E R V I C E S TR U C TU R E-

  • 8/3/2019 Saturn V Derivatives

    11/15

    30. R.-D. Scott and W. L. Corcoran

    SATURN V CONTINUOUS PROGRAMAT LESS THAN DESIGN OF61YRECONOMF LEAST ADDITIONAL COSTS

    @ EFFECTIVE USE OF FACILITIES AND PERSONNELPRODUCTION PENALTIES

    . ANNUAL FIXED COSTSCOSTS hlUST CONSIDER

    SATURN V AND DERIVATIVEVEHICLE M IX .LAUNCH RATE OF EACH VEHICLE CLASS

    WHEN UPRATING, DEVELOP AUMHICLES SIMULTANEOUSLYFig. 14 - The cost picture

    THE COST PICTLTRF:Many of th e func tion s requ ired to produce

    and launch the Saturn V or der iva t ive vehic l esa r e f ixed on an annual basi s (plant maintenance,etc .) o r f ixed by the need to complete a taski n a given t ime (launch crew si ze , etc . ).When the Saturn V production r a t e i s var i edand when derivative type vehicles are producedi n addi t ion t o Sa turn V ' s , the change i n uni tcost must be appreciated. There i s no argumentt o th e economy of making ad di ti on al use ofSaturn V equipment and faci l i t ies. For purposesof t h is paper, we ar e not assuming any programfo r any de f in i te per iod of t ime fo r determiningcos t s i n o r de r t o am ort ize i nves b e n t cos t sover that per iod. We are , i ns t ead , a l loca t ingR&D cos t s as appl i cable to each der iva t iv eco nf ig ura tio n based on th e economy ofcommonality i n design revi sio ns. The magnitudeof the payload ca pab i l i t i e s for a l l candida testends to discount t he s l i g ht performancedegradat ion suffered fo r th is concept of open-ended development.

    The Saturn V and near-term derivativem i x of v e h ic l es w i l l u t i l i z e S a tu rn f a c i l i t i e s ;no add i t i ona l l aunch f ac i l i t i e s a r e r equi r edf o r a . t r a f f i c r a t e o f six or l e s s de r i va t i vevehicles per year .To provide a reaso nable basi s f o r c o s tcomparison of evolutionary derivatives ,wehave establ ished a bas el in e program for del iveryand launch a t KSC of t hre e Saturn V vehiclesper year . This three-per-jear production ra tei s based pa r t ia l l y on th e January 11, 1967PSAC Report which s t a t e s i n p ar t :"At least two Saturn V/Apollo sys temsper year w i l l be required for cbnt inued

    lunar explo ration during the immediatepost-Apollo period. We beli eve a th ir dcomplete system should also be builtannua lly as a backup, . (Ref. 11)Total cos t analyses must consider a l l

    th e veni cle s t o be produced and launched tosa t i s f y t o t a l ob j ec ti ve s . S ince cu r r en t.planning st rongly indicates the product ionand launch of some qu an ti ty af Sa tu rn Vs each

    yea r f o r t he nex t s eve r a l yea r s , t he t o t a lco st dr iv ing f ac tor i s how many add i t ioa nlvehicl es w i l l be launched. With the belowoptimum Saturn V annua l r a t e t he l ea s t .add i t ion al cos t i s incurred by .adding Saturn Vder i vat i ve vehicle s. This avoids addi t iona 1annual f ixe d cos ts as would be incurred i f anon-related v ehic le were sel ecte d wi th separa tebelow-optimum production f a c i l i t ie s and ase pa ra te below-optimum launc h complex. I nbr ief , pay one annual f ixed product ion faci l i tycost and one annual fixed launch complex cost,not two of each.Eff ec riv e us e of production and launchfa c i l i t i es and personnel ensures veryeconomical de r iv at i ve vehicle s. The lowproduction r a t e penal ty f or three Sa turn Vsper year adds about 20 percen t to t he hardwareco st. Inc rea sin g th e number of S-IC, S- I1and S-IVB sta ges t o s i x per year eliminate sproduction pe na l i t i es . Annual f ixed costsfor Sa turn V produc ti on f a c i l i t i e s a r e i ncur redto maintain the production capabi l i ty . Therefore,fo r example, th e S-IC/S-IVB veh icle praduc tioncan be added through s i x per ye ar t o t a l by payingon ly t he a dd i t i ona l r ecu r r i ng cos t s. Similareconomy is obtained i n launch co sts, i n tha tSaturn V has paid the f ixe d annual cost andthe S-IC/S-IVBs add only th e recur ring c os ts,i .e. , prop ella nts and pad refurbishment.The Saturn V and d er i vat ive vehicle mixshould be cons idered wi th r espec t to r e l a t i veto ta l c ost and t o ta l number of launches peryear. Keeping wi thin the establ ished basel ine,the to t a l cos t s l o r th e s ingle- and two-s tageder iva t iv e vehic l es w i l l be incrementa l un i tcos t s a f t e r f ixed annual cos t s a r e absorbedby the three-s tage vehicles.When v eh icl es a r e upra ted OT when severalnew veh icl es a r e added, th e whole developmentshould be done simulta neous ly. Consideringthe cos t of DDTdE f o r t he l a r ges t vehi c le sa s un i t y , e ach add i t i ona l veh i c l e D D T S w i l ladd'about 10 percent to the cos t . The savingsfrom combined st ructural tests , for example,becomes q u it e obvious. A major saving isobtained by proportioning the R&D f l i g h t s f o rthe group of vehicles under simultaneousdevelopment, rather than specifying R6d)f l igh t s for each separa te ver s ion .

    Relat ive c osts of product ion uni ts andveh i c le suppo rt a c t i v i t i e s a s a f unc t ion o fr eq u ir ed t r a f f i c r a t e s a r e i l l u s t r a t e d inFigure 15. The l e f t ch ar t on production ra tepen al t ie s demonstrates the uni t cost increasetha t re su l t s when th e production ra te decreasesbelow optimum. A s previous ly s t a t ed , t heproduction r a t e of s i x Sa turn V vehic l es peryear i s considered optimum.

    The example shows th at when the ye arlyrate increases by one vehicle f rom 3 u n i t s /year to 4 u n i t s / ~ e a r , t h e t o t a l c o st i n c re a se sby 8 0 perce nt of th e optimum u n i t cos t. Con-versely , when the r a te decreases th e penaltyi s 20 percent of the 6/year un i t cost .

    Vehicle suppor t consists of operat ingthe phys ical p l an t , comunica t ions , i nspec tion ,

  • 8/3/2019 Saturn V Derivatives

    12/15

    Saturn V DerivativesPRODUCTION RATE PEXALTY VfHlCLE SUPPORT

    0 1 7 3 4 5 6 0 1 2 3 4 5 6Fig. 1 5 - Cost factors PRODUCT ION RATE (UNIT S IYEAR) PROD UCT ION RAT E (UNIT S IYEAR)

    3 SATURN Vs + 3 " A DERIVATIVES1

    ' ADDITIONAL " A VEHICLESCOST OF ONEADDITIONALw SATURN V

    BENEFITS OF NEAR ?ERM DERIV ATIVESVERY LOW R&D COSTLOW RISKEARLY AVAILABILITYLOW RECURRING COST Fig. 16 - Saturn V and "A" derivative

    0 1 .0 1 . 2 3 4 5 - 6 7 8 9 (s-IC/S-IVB) vef ii~ les , ot d cost oftypi-TOTALNUMBER F LAUNCHFS PFR YFAR cal 1 0yr program

    t r anspo r t a t i o . n , sy s em i n t e g r a t i on , and t e s t S-IC/S-IVBS could be added fo r smal l addi t ion alcomplexes. Most of the se co st s a r e incu rred cost . For example, wi th a program of th re ea t an annual f i xed r a t e . The annual f i xed Sa tu rn Vs per y ea r, olve to s i x S-IC/S-IVBs coul dcos t m a i n t a i n s t he cap ab i l i t y - t o p roduce and be added f o r a s i x - pe r cen t i nc r ea se i n cos ti s independ ent of prod uctio n ra te . Some f o r each S-IC/S-IVB.c o s t s , such a s i n spec t i on and sys em i n t e g r a t i o nt a s k s , a r e i nc u r re d a s a f unc t i on o f t h equ an t i t y of un i t s produced. The r ight -han dcha r t shows t ha t a f t e r t he annua l f i xed co s ti s i n c ur r ed f o r t h e S a t u r n V program, der iva t iveveh i c l e s can be added f o r a sm a l l ad d i t i on a lcos t . For example, each ad di t io na l veh ic l ea dd s l e s s t h a n f i v e p e r c e nt t o t h e t o t a l v e h i c l esuppor t co s t . Although no t inc luded , l aunchcos t s show a S i m i l a r cha r ac t e r i s t i c .

    The t o t a l c o s t v a r i a t i o n o f a t y p i c a lten-year program of Saturn V and "A" de r i va t i ve'S-ICIS-IVB) vehicles is i l l u s t r a t e d i n. gur e 16 . The d i f f e r e n t s l opes of t he " A l lSaturn VI I l i ne and the "Saturn V plus a numberyf 'RA"v e h i c l e l i n e d em on st ra te t h i s v a r i a t i o n~ i t h eh i c l e mix and t r a f f i c r a t e . The un i tco s t of Sa turn Vs decreases as the l aunch r a t eincreases .

    The cha r t p r imar i ly shows th a t f or fo ur .or f ewer Sa turn Vs p er y e a r. a s u a n t i t v o f

    DEVELOPMENT OF THE FLEETThe Saturn V evolu t ionary f ami ly , wi th

    development cos ts f or the upra ted Satu rn Vde r i v a t i ve s , i s dep i c ted i n F i gu r e 17 . Thevar ious sta ges a re color coded t o emphasizethe commonal ity aspe cts of the se veh ic le s.The requirement for combined developmentbecomes obvious when we se e th e ut i l i z a t i o nof common hardware th roughou t t he e n t i r efamily . The f i r s t s t age , now des ignatedS-ID, s common t o a l l conf i gura t ions and theupper s t ages of the three s t ag e '7)" commoncore ar e combined se pa ra te ly wi th t h i s s t ag et o form the "C" and I 'D " de r i va t i ve s . T heSolid Rocket Motors a r e a l s o s tr a p pe d t o t h eS-ID s t age for th ru s t augmenta t ion wi th ar e su l t i ng sc a r we i gh t from t he s t r uc t u r a la t tachment s caus ing neg l ig ib l e payloaddeg rada ti on i n t he o t he r app l i ca t i o ns .

  • 8/3/2019 Saturn V Derivatives

    13/15

    R. D. Scott and W. L. Corcoran

    Fig. 17 - Development cos t .fo r upra ted Sa turn V and d e ~ivat ives

    SATURN VDERIUATIVE5 ID 5 14'r)" CORE(2 STAGE "0" COREO STAGE)

    I-ID.5.1115 IvBhRw'9"VEMICLE SEP4RATE DEVELOPM ENT . COMSlNEO DEVELOPMENT

    DDThE RhDF LlGH TS TOTAL OCTLE (I60 FLIGHTS TOTAL

    U D R l V I .15 .I5 .1 3 3 .M .I1S-ID a s . & - .I S- - m- .of- R8TOTAL 1.13 t . ~ 2.w u I* 1.46

    PZ DERIVAT IVE "0" "D" CORE "D" CORE "C "0 "( S - I D I S - I I I S - I V B I 3 STAGE 2 S TA GE 6 - 1 W S - I V B I ( 5 - 1 0 1S RM) Fig. 18 .-Operational cost

    NOTE: INCREhlENTAL COSTS FOR 1 AN D 2 STAGE VEHICLES AFTER 3 STAGE VEHICLES INCUR THE com par ison of Saturn V deri-F IXED COSTS. vative vehiclesThe combined' development o f a fa mil y of

    s i m i l a r l a u n c h v e h i c l e s i s more economica 1i n many resp ec ts than se par ate developments .Econotily i s o bt ain ed pr im ar il y by uni fi ed DDT&E,fewer R&D f l i g h t s , a nd c o m o n a l i t y o f h ard wa re .

    When develo ping th e evo lut ion ary famil y,t h e t h r e e - s t ag e v e h i c l e w it h s o l i d r o ck e tmotors would be the ba sel ine . *daptat ions anda c c e ss o r y . p a r t s k i t s f o r t h e s m a l le r d e r i va t i v eveh i c les would be incorpora ted dur ing the coredes ign. Drawings would conta in nota t io ns ofveh ic l e ap p l i c ab i l i t y . Designs would incorpora tet h e c a p a b i l i t y f o r q u ic k a d a p t a t i o n of s t a g e st o a n y o f t h e f i v e c o n f i g u r a ti o n s .

    When a new launch vehicle i s in t roduced ,

    two or more R&D o r m an -r at in g f l i g h t s a r en ee de d t o e s t a b l i s h co nf id en c e. I f t h e f i v eveh ic les shown, o r any o ther f l ve d i f f e re n tveh icl es , were developed independent ly, a tle a s t 10 development f l ig ht s would be neededto p rove the des ign and system in tegra t ion .A major saving i s obtained by propor t ioningt he RED f l i g h t s f o r t h e gr ou p o f v e h i c l e sunder simultane ous development ra th er than

    - s p e c i f y i n g R&D f l i g h t s f o r e a ch s e p a r at evers ion. The evolut io nary-fami ly of ve hic leswould be design ed t o wit hsta nd th e most demandingre qui rem en ts of th e group and , w it h many conunoncomponent s, each t e s t bu i lds conf idence i n th ee n t i r e g ro up . The th ree- s t age ve h ic l e wi th

  • 8/3/2019 Saturn V Derivatives

    14/15

    Saturn V Derivatives

    Fig. 19 - Saturn V Derivatives: c a pabil i t ies , resources , schedule

    stra p-on so l i d rocket motors would need two R&Dfrights t o t e s t each component and each i n t er -fac e under t he most r igorous condit ion s .A f t e r s u c c e s s f u l R&D f l i g h t s o f t h e l a r g e s tveh i c le , the sma l le r de r iva t iv e veh ic le s wouldneed one R&D f l i g h t e ac h t o c he ck d i f f e r e n tin te r face s and poss ib le anomalies . I f theth ree -s tage veh ic le wi thou t so l i d rocke tmotors is tes ted second, th e two-s tage vers ions h o u l d n o t r e q u i r e a n R&D f l i g h t b e ca us e t h e,nly change i s a much l i g h t e r payload. By .simultaneous desi gn and development of a l lveh icl es i n t he common core fa mil y, F&D f l i g h t scan sa fe ly be reduced by approximately 50percen t .The pr imary message of t h i s cha rt i s thereduction of ' to t a l re l a t iv e development c'os tsfrom 2.50 to 1.46, or 42 percent , by simult an-eous development achieved through the commoncore concep t fo r Sa tu rn V d e r i v a t i v e v e h ic l e s.

    Afte r the evolut iona ry family becomeso p e r a t i o n a l t h e a v er a ge u n i t r e c u r r i n g c o s t sth a t would be in curr ed a r e shown on Figu re 18.?he lar ge three-s tage vehi c les per form themost demanding tasks and incur the annualf ixed c os t s fo r ma in ta in ing the launch capa -b i l i ty . For miss ions o f l e s se r pay loads thesmal le r v eh ~ c l es n joy th e economies o f 'commonality and span the payload spectrum,A s shown, the singl e-s tag e S-ID cos ts only18 pe rcen t a s much as the base l ine v eh ic le , theS-ID/S-IVB costs 23 perc ent a s much, and thetwo-s tag e cor e -vehicl e 26 percen t .CONCLUSIONS

    I f the a ssumpt ion tha t a th ree -pe r-yearr o d uc t i o n r a t e f o r S a t ur n V appea rs t o bereasonable fo r planning purposes , then,

    qbviously , Saturn V f a c i l i t i e s a n d o p e r a t i o n sesi-gned for a s ix-per-year production ra t e

    a r e u se d i n e f f i c i e n t l y a t t h i s l ow er p r od u ct i onr at e . When Sat urn V e le me nt s a r e u t i l i z e d a s

    de r i va t i ve veh ic le s t o comple te the payloadspectrum between t he Sat urn IB and miss ionrequirements beyond th e Satu rn V, m o r e e f f i c i e n tu s e o f t h e se f a c i l i t i e s an d o p e ra t i o ns r e s u l t s .Because this approach i s very economical, theder iva t iv e vehic l e program co sts become hig hlycompet i t ive fo r any se lec t ed pay load requ i re -ment..

    Using the S-ID bp th a s a st ag e and one-h a l f t o o r b i t a nd , a s i t becomes available,a replacemen t' fo r the S -IC i n the s t ab le o fSa tu rn V d e r i v a t i v e v e h i c l es i n c r e a s e s t h ef l e x i b i l i t y and c a p a b i l i t y i n t h e i n t e rm e di a tepayload range. The pay Wad f le xi b i1.i y ob ta inedb y i n s t a l l i n g e n g i n e s , s o l i d r o c k e t m o to r s, o rprope l lan ts pecu liar to each pay load and miss ion~ -requirement i s a d i s t i n c t a d v an t ag e o f t h eevolutionary scheme ; however, th e majoradvantage of t he evolu t ion ary concept i s .t h e c o m n a l i t y o f d e si gn r e v is i o n f or a l lsuggested der i vat ive sys ems. A redesignedt h r u s t s t r u c t u r e w it h s c a r a tt a ch m en t s f o rSRM stra p-on s and a stren gthe ned Satu rn Vc o r e e s s e n t i a l l y i mp le me nt t h e d e r i v a t i v esys ems th at evolve from our p res ent man:ra t ed system. The s i ng le R&D expend i tu re ,amor t ized over th i s s ta b l e o f veh ic le s , p lacese ac h d e r i v a t i v e i n a f a v o r a b l e c o m pe t i t iv ep o s i t i o n f o r i t s p o i n t o n t h e c om pl et epayload spectrum.

    The c a p a b i l i t y f o r t h e s e S a t u r n D e r i v a t i v e .evo lu t iona ry veh ic le s to span the ea r t ho r b i t a l payload spectrum from 50,000 t o 500;OOOpounds i s i l l u s t r a t e d i n F i gu r e 19. S t a r t i n gwith the .present ' opera t iona 1 v e h i c l e , i t i sp o s s i b l e t o a c q u ir e a ne a r- t er m e a r t h o r b i t . .lo gi s t ic s system i f we pursue the path of t he11A o d e r i v a t i v e . The rou te of s epa rat e develop--ment of der ivat ive 'Dl1 i s n o t recommended f o r .the lar ge payload cap ab il i t y require d of mannedpla net ary exp lor ati on. The most econornica 1and stra igh tf orw ard ev olu ti ona ry cdmmon systems

  • 8/3/2019 Saturn V Derivatives

    15/15

    R. -D. cott and W . L Corcorande-,elopment i s the recommended path of advance-ment f o r v e r s a t i l i t y , e f f i c i e n c y , a nd a b i l i t yt o m eet a l l t h e p o t e n t i a l m i s s io n r e qu ir em en ts .This ex pl oi ta t i on of the commona l i t y concepti s portrayed by de ri va t i ve s "BB", "C", and 'DD"coverin g th e payload spectrum fo r minimumt o t a1 development cost.We h av e d e s c r i b e d t h e c a p a b i l i t y andv e r s a t i l i t y o f t h e S at u rn V launch vehiclesystem to per form ear t h o r b i t a l and h ighenergy missions. In ad di t i on , we have id ent i-f i ed a near term, low R&D co st , hi ghly rel ia bl e ,low recurr ing/cos t "A' ' der ivat ive launch vehicle .Fin al l y , we- have developed an e volut ion arycommon core concept t h a t can be i n i t i a t e d throught h e 9'' de ri va t i ve development program. Thisconc ept dem ons trat es th e economy of choosingproper des ign goa 1s and .u t i l i z i ng combineddevelopments to ac hi eve an open-ended evoluti on-a r y f l e e t o f f u t u r e l au nc h v e h ic l e s .

    Zn t h e l on g r u n, t h e v e r s a t i l i t y and u t i l i t yof the S atur n V launch ve hi cl e may prove t o beo f e ve n g r e a t e r s i g n i f i c a n c e t o t h e - u n i t e dS t a t e s t h an i t s r o l e a s t h e ' bo on r o c ke t *I o ra s a compet i to r wi th So vie t l aunch veh i c les ; and,t h e e w l u t i o n a r y f a m i l y o f S a t u r n V d e r i v a t i v e spresen ted here in would t r u l y compr ise an a l l -purpose family of space launch vehicles .

    - ABBREVIATIONSStdS a tS-ICS - I 1S-Iv3IULEOSEOSRMEADATP 'N. M i .c3R&DDDT&El bKm

    StandardS a t u r nF i r s t St a g e o f S a t u rn VSecond Sta ge of Sat urn V .Third S tage of Sa turn VIns t rument Uni tLOWBarth Orbi t (100 n. m i .c i r c u l a r )S yn ch ro no us k r t h O r b i tSolid Rocket MotorE a r l i e s t A v a i l a b i l i t y D ateAuthor i ty to ProceedNaut ica l Mi leEnergy Parameter (h 2/ se c2 )Research and DevelopmentDesign Development Test and

    Engineer ingPoundKilometer

    Sec Second .SLA Sa tu rn LEM AdapterVAB V e r t i c a l Assembly Bui ldingREFERENCES

    1. A. G. Or il l i on and R. D . S c o t t ,"Selected Methods fo r Uprating. Sa tur n Vehicle s,"pape r pr ese nte d a t SAE Advanced Launch Vehi cleand Propulsion Sys tem Conference, k n t s v i l l e ,Alabama, June 1966.2 . R. G. T o e l l e , 'A Performance Studyfor the Appl ica t ion of t he Sa turn V t o HighEnergy Earth Escape Mission, " NASA Te chn ic alMemorandum X-53639, J u l y 31', 1967.

    3. J. Martin, "Saturn V Growth andF l e x i b i l i t y , " Document Number D5-13352, TheBo ein g Company, March 31 , 1967.4. L. Lane, "Or bita l Launch Vehicl es fo rthe 1970's , I 1 Document Number D-13366, TheBoeing Company, J u l y 12 , 1967.

    5. NASAIGeorge C. Marsha l l Space F l ig h tCen ter, Contr act NAS8-20265, St ud ie s of"Improved Saturn V Vehicles and IntermediatePayload Saturn Vehicles (P-115) Fi na l Report, "North American Av iat ion , Inc . S&ID, October 1966.

    6. NASAIGeorge (3. Marsha l l Space F l i gh tCe nte r, Con tr ac t NAS8-20266, "St udie s of ImprovedSaturn V Vehicles and Intermediate PayloadSatu rn Vehicles (P-115) Fi na l Report , TheBoeing Company, October 1966.

    7. I?ASA/George C. Marsha l l Space F l i gh tCen ter, Con tr act NAS8 -21105, "F ina l Re por t-Sa turn V Vehicle with 260" Diameter SolidMotor Study," The Boeing Company, December 18,1967.

    8 . WSAIJohn F. Kennedy Spac e Cen te r,Con trac t NAS10-3547, "Study of Launch F a c i l i t i e sfor Improved Saturn - Phase I11 F i n a l R e po r t, "Ma rt in Company Documeht CR-66-41 (Volume 11 1) ,December 1966.

    9. NASAIGeorge 'C . Marsha l l Space F l i gh tCen te r, Co nt ra ct NAS8-18025, "Manned Pl an et ar yFlyby Missions Based on Satu rn/A pol lo Sys ternsFina1 Report , North American Aviation, Inc .S&ID, August 1967.

    10. J. Do ll ar d, "Common Nuclear P ro pu ls io nModule Approach to Space Exploration, "Document Number D5-13425, The Boeing Company,January 1968.

    11. P r e s i d e n t ' s ' S c i e n t i f i c A dv is pr yCommittee (PSAC) Report, January 11, 1967. .