3
SATPREP PARAMETRICS AND CALCULUS On problems 1 – 5, find dy dx and d 2 y dx 2 . 1. x = t 2 , y = t 2 + 6t + 5 2. x = t 2 + 1, y = 2t 3 t 2 3. x = t , y = 3 t 2 + 2t 4. x = ln t , y = t 2 + t 5. x = 3sin t + 2, y = 4cos t 1 _____________________________________________________________________________ 6. A curve C is defined by the parametric equations x = t 2 + t 1, y = t 3 t 2 . (a) Find dy dx in terms of t. (b) Find an equation of the tangent line to C at the point where t = 2. 7. A curve C is defined by the parametric equations x = 2cos t , y = 3sin t . (a) Find dy dx in terms of t. (b) Find an equation of the tangent line to C at the point where t = π 4 . ______________________________________________________________________________ On problems 8 – 10, find: (a) dy dx in terms of t. (b) all points of horizontal and vertical tangency 8. x = t + 5, y = t 2 4t 9. x = t 2 t + 1, y = t 3 3 t 10. x = 3 + 2cos t , y = 1 + 4sin t ______________________________________________________________________________ On problems 11 - 12, a curve C is defined by the parametric equations given. For each problem, write an integral expression that represents the length of the arc of the curve over the given interval. 11. x = t 2 , y = t 3 ,0 t 2 12. x = e 2t + 1, y = 3 t 1, 2 t 2

SATPREP PARAMETRICS AND CALCULUS

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SATPREP PARAMETRICS AND CALCULUS

SATPREP PARAMETRICS AND CALCULUS

On problems 1 – 5, find

dydx

and d 2 ydx2 .

1. x = t2 , y = t2 + 6t + 5 2. x = t2 +1, y = 2t3 − t2

3. x = t , y = 3t2 + 2t 4. x = ln t, y = t2 + t 5. x = 3sin t + 2, y = 4cos t −1 _____________________________________________________________________________ 6. A curve C is defined by the parametric equations x = t2 + t −1, y = t3 − t2 .

(a) Find

dydx

in terms of t.

(b) Find an equation of the tangent line to C at the point where t = 2. 7. A curve C is defined by the parametric equations x = 2cos t, y = 3sin t .

(a) Find

dydx

in terms of t.

(b) Find an equation of the tangent line to C at the point where t =

π4

.

______________________________________________________________________________ On problems 8 – 10, find:

(a)

dydx

in terms of t.

(b) all points of horizontal and vertical tangency 8. x = t + 5, y = t2 − 4t 9. x = t2 − t +1, y = t3 − 3t 10. x = 3+ 2cos t, y = −1+ 4sin t ______________________________________________________________________________ On problems 11 - 12, a curve C is defined by the parametric equations given. For each problem, write an integral expression that represents the length of the arc of the curve over the given interval. 11. x = t2 , y = t3, 0 ≤ t ≤ 2 12. x = e2t +1, y = 3t −1, − 2 ≤ t ≤ 2

Page 2: SATPREP PARAMETRICS AND CALCULUS

Answers to Worksheet on Parametrics and Calculus

2

2

2

3

32 6 3 31. 1 ;2 2 2

dy t d y tdx t t dx t t

−+= = + = = −

______________________________________________________________________________ 2

2

32. 3 1;2

dy d ytdt dx t

= − =

________________________________________________________________________________ 2

2

1 13 1 2 22 2

1 12 2

6 2 18 23. 12 4 ; 36 41 12 2

dy t d y t tt t tdx dxt t

− −

+ += = + = = +

________________________________________________________________________________

2

22 22 1 4 14. 2 ; 41 1

dy t d y tt t t tdx dx

t t

+ += = + = = +

________________________________________________________________________________

2

2

2

3

4 sec4sin 4 435. tan ; sec3cos 3 3cos 9

tdy t d yt tdx t dx t

−−= = − = = −

_______________________________________________________________________________

6. (a)

dydx

=3t2 − 2t2t +1

(b) When t = 1,

dydx

=3 ⋅12 − 2 ⋅1

2 ⋅1+1=

85

, x = 5, y = 4 so the tangent line equation is

y − 4 =

85

x − 5( )

________________________________________________________________________________

7. (a)

dydx

=3cos t−2sin t

= −32

cot t

(b) When t = π

4,

dydx

= −32

cotπ4= −

32

, x = 2, y =3 2

2 so the tangent line equation is

y −

3 22

= −32

x − 2( ) ________________________________________________________________________________

8. (a)

dydx

=2t − 4

1

(b) A horizontal tangent occurs when

dydt

= 0 and dxdt

≠ 0 so a horizontal tangent

occurs when 2t − 4 = 0 which is at t= 2. When t = 2, x = 7 and y = − 4 so a horizontal

tangent occurs at the point 7, −4( ) . A vertical tangent occurs when

dxdt

= 0 and dydt

≠ 0

Since 1≠ 0 , there is no point of vertical tangency on this curve.

Page 3: SATPREP PARAMETRICS AND CALCULUS

9. (a)

dydx

=3t2 − 32t −1

(b) A horizontal tangent occurs when

dydt

= 0 and dxdt

≠ 0 so a horizontal tangent occurs when

3t2 − 3 = 0 which is at t = ±1 . When t = 1 , x = 1 and y = − 2, and when t = −1, x = 3 and y = 2 so a horizontal tangent occurs at the points

1, −2( ) and 3, 2( )

A vertical tangent occurs when

dxdt

= 0 and dydt

≠ 0 so a vertical tangent occurs when

2t −1= 0 so t = 1

2. When

t = 1

2, x =

34

and y = −118

so a vertical tangent occurs at the

point

34

, −118

⎛⎝⎜

⎞⎠⎟

.

______________________________________________________________________________

10. (a)

dydx

=4cos t−2sin t

(b) A horizontal tangent occurs when

dydt

= 0 and dxdt

≠ 0 so a horizontal tangent

occurs when 4cos t = 0 which is at t = π

2 and

3π2

. When t =

π2

, x = 3 and y = 3, and when

t = 3π

2, x = 3 and y = − 5 so a horizontal tangent occurs at the points

3, 3( ) and 3, −5( ) .

A vertical tangent occurs when

dxdt

= 0 and dydt

≠ 0 so a vertical tangent occurs when

−2sin t = 0 so t = 0 and π . When 0,t = x = 5 and y = −1and when t = π , x = 1 and y = −1 so a vertical tangent occurs at the points

5, −1( ) and 1, −1( ) .

_______________________________________________________________________________

11. s =

dxdt

⎛⎝⎜

⎞⎠⎟

2

+dydt

⎛⎝⎜

⎞⎠⎟

2

dta

b

∫ = 2t( )2+ 3t2( )2

dt0

2

∫ or 4t2 + 9t4 dt0

2

_______________________________________________________________________________

12. s =

dxdt

⎛⎝⎜

⎞⎠⎟

2

+dydt

⎛⎝⎜

⎞⎠⎟

2

dta

b

∫ = 2e2t( )2+ 3( )2

dt− 2

2

∫ or 4e4t + 9 dt− 2

2